JPH05176497A - Electric thrust generating device provided with control function adaptable for thrust - Google Patents

Electric thrust generating device provided with control function adaptable for thrust

Info

Publication number
JPH05176497A
JPH05176497A JP35696291A JP35696291A JPH05176497A JP H05176497 A JPH05176497 A JP H05176497A JP 35696291 A JP35696291 A JP 35696291A JP 35696291 A JP35696291 A JP 35696291A JP H05176497 A JPH05176497 A JP H05176497A
Authority
JP
Japan
Prior art keywords
thrust
stress
screw shaft
amount
feed screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35696291A
Other languages
Japanese (ja)
Other versions
JP2777759B2 (en
Inventor
Ichiro Kamimura
一郎 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3356962A priority Critical patent/JP2777759B2/en
Publication of JPH05176497A publication Critical patent/JPH05176497A/en
Application granted granted Critical
Publication of JP2777759B2 publication Critical patent/JP2777759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To permit adaptable control faithful to objective command by a method wherein stress is controlled by a signal from a stress/strain measuring sensor arbitrarily and the amount of thrust displacement is operated and processed by the value of rigidity of respective members to correct it automatically. CONSTITUTION:A stress/strain measuring sensor A is attached to the end of a feed screw shaft 3 to take out the amount of strain of the feed screw shaft 3 based on a thrust as an electric signal. Then, the amount of thrust displacement is operated by the signal through a computer CPU by the value of rigidity of respective members such as a pretension nut 5 or the like, in which arbitrary stress control is effected and stored, whereby the amount of thrust displacement is corrected automatically. According to this method, the amount of strain due to the fluctuation of the thrust can be obtained correctly and adaptable control, faithful to an objective command, can be effected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は推力発生装置の推力発
生源である固定送り用ボールねじ軸から直接に応力を計
測することにより、高速あるいは低速運動中や急加減速
中の連続した推力を刻々瞬時に計測しつつ応力,位置,
速度等の適応制御を行なうことを必要とするあらゆる分
野で利用できる装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures continuous stress during high speed or low speed motion or during rapid acceleration / deceleration by measuring stress directly from a fixed feed ball screw shaft which is a thrust source of a thrust generator. Stress, position, while measuring instantly
The present invention relates to a device that can be used in all fields requiring adaptive control of speed and the like.

【0002】[0002]

【従来の技術】従来の油圧推力発生装置での推力測定は
主として油圧力計によって計測していたが、ピストンパ
ッキンの抵抗や油温あるいはバルブ等により、推力制御
は高精度が得られない欠点があった。また従来の各種ロ
ボットやNC工作機械では一般的には位置と速度とのパ
ラメータで制御されており、推力又は応力は第2次的に
考えられている。そして推力測定を必要とする場合には
主電動機の電流値を逆算するか、もしくは固定された送
り用ねじナット側に応力センサー等を設置して計測して
いる。しかし解析が困難だったり、取付け方法が複雑な
どによって大方の装置では速度のみで制御され、荷重変
動は二次的に考えられている。
2. Description of the Related Art Thrust measurement in a conventional hydraulic thrust generator is mainly performed by an oil pressure gauge, but there is a drawback that thrust control cannot obtain high accuracy due to resistance of piston packing, oil temperature, valve, etc. there were. In addition, various conventional robots and NC machine tools are generally controlled by parameters of position and speed, and thrust or stress is secondarily considered. When thrust measurement is required, the current value of the main motor is calculated backwards, or a stress sensor or the like is installed on the side of the fixed feed screw nut for measurement. However, due to the difficulty of analysis and the complicated mounting method, most devices are controlled only by speed, and load fluctuations are considered secondarily.

【0003】ねじ軸自体の応力制御は、ねじ軸回転形で
は歪メーターを使用するには出力用スリップリングを必
要としたり、又固定ナット側で応力測定すると、ボール
ねじ軸上のナットの位置によって同ねじ軸の歪量が同じ
なので、ねじ軸のスラストによる歪量を計測し難い欠点
がある。そのために従来の装置において推力零の場合1
ミクロンの精度で停止できていても、例えば推力2トン
を加えればボールねじナット部で20ミクロン、スラス
トベヤリング部で30ミクロン、その他で20ミクロ
ン、計70ミクロンの歪み移動をする。このことはNC
装置での電気的なパルス溜り量と同じような誤差となっ
てくる。従来の制御法であるセミクローズド法でも解決
されない。
The stress control of the screw shaft itself requires an output slip ring in order to use a strain meter in the screw shaft rotation type, and when the stress is measured on the fixed nut side, it depends on the position of the nut on the ball screw shaft. Since the strain amount of the same screw shaft is the same, it is difficult to measure the strain amount due to the thrust of the screw shaft. Therefore, in the case of zero thrust in the conventional device, 1
Even if it can be stopped with an accuracy of micron, if a thrust of 2 tons is applied, for example, the ball screw nut portion will move by 20 microns, the thrust bearing portion will cause a strain movement of 30 microns, and the other will cause a strain movement of 70 microns. This is NC
The error is similar to the amount of electrical pulse accumulation in the device. Even the conventional control method, the semi-closed method, cannot be solved.

【0004】即ち前記の2トンの推力を零にすること
で、その装置は応力のみにより70ミクロンから元の1
ミクロンに自然と戻るのである。この事が前者の電気的
なパルス溜り量と同類の誤差現象となり重大な誤差要因
となる。
That is, by reducing the thrust of 2 tons to zero, the device can reduce the original stress from 70 microns to 1
It naturally returns to Micron. This causes an error phenomenon similar to the former electric pulse accumulation amount, and becomes a serious error factor.

【0005】そのために実際の作業では精密であればあ
るほど、ゆっくりと、より軽く負荷をかけないと目的は
達せられず非能率となる。またNC加工機等では砥石の
目詰まり状態とドレッシング直後の仕上げ状態での加工
や、カッタのチップが新品の時と損耗状態での加工時の
切削抵抗力は大巾に変化して仕上精度誤差の要因とな
る。そのためにNC加工機の担当者の常時監視が必要と
ならざるを得ない。
Therefore, in the actual work, the more precise the work, the slower and lighter the load is, and the purpose cannot be achieved, resulting in inefficiency. In addition, in NC processing machines, the cutting resistance changes greatly during processing when the grindstone is clogged and finished immediately after dressing, and when the cutter tip is new and worn. It becomes a factor of. Therefore, it is inevitable that the person in charge of the NC processing machine needs to be constantly monitored.

【0006】当然急激な加速原則状態下でも同様な誤差
を生じている。そして従来のロボットや位置決め装置の
ように送り用ねじ軸が回転する機構では、ねじ軸自身の
応力測定は複雑であり且つ高価となり一般的ではなく、
そのため外力変化に対する適応能力がない。
Naturally, a similar error occurs even under the sudden acceleration principle condition. And in a mechanism in which a screw shaft for feed rotates like a conventional robot or a positioning device, stress measurement of the screw shaft itself is complicated and expensive, and is not general,
Therefore, there is no ability to adapt to changes in external force.

【0007】[0007]

【発明が解決しようとする課題】そこでこの発明では、
上記のような加工状態で、より高精度な位置決めを維持
させるためには送り用ねじ軸を固定し、同ねじナットを
回転させる機構として、送り用ねじ軸、同ナット、スラ
ストベヤリング等の主要部品の各々の応力に対する歪み
量を記録演算処理させ、全歪み量により修正させること
により制御して高精度が確保される。急激な負荷変動や
加減速状態でこの歪みをいかに早く修正するかが動的制
御(ダイナミックコントロール)の課題である。高価で
高精度な装置ほど高い剛性を有するとしても負荷に対す
る応力と歪み量は決して0にはできない。
Therefore, according to the present invention,
In order to maintain more precise positioning in the above processing state, the feed screw shaft is fixed and the screw nut is rotated as a mechanism, and the main parts such as the feed screw shaft, the nut, thrust bearings, etc. The strain amount for each stress is recorded and calculated, and the strain amount is corrected by the total strain amount so that high precision is ensured. The problem of dynamic control is how to quickly correct this distortion under sudden load changes and acceleration / deceleration conditions. Even if an expensive and highly accurate device has high rigidity, the stress and strain amount against a load can never be zero.

【0008】そのため応力と歪み量の把握が絶対必要と
なる。以上の理由により更に高精度にするためには、い
かに応力計測の精度を高めるかが大きな課題であり、応
力・歪センサを軸端部に固着したボールねじ軸を固定さ
せることが大きな課題となっている。
Therefore, it is absolutely necessary to understand the amount of stress and strain. For the above reasons, how to improve the accuracy of stress measurement is a major issue for achieving higher accuracy, and fixing the ball screw shaft with the stress / strain sensor fixed to the shaft end is a major issue. ing.

【0009】[0009]

【課題を解決するための手段】上記の目的課題を達成す
るために、本発明を一実施例により説明すると、図1及
び図3において、任意の直方体又は円筒体の本体内に中
空電動機Mを設置し、該電動機Mの中空出力軸1内に直
接又は歯車を介して送り用ねじナット2を嵌合し、かつ
前記中空出力軸1の外周部を軸承し、また前記送り用ね
じナットに嵌入する送り用ねじ軸3を電動機Mの中空出
力軸1の内部まで貫入してその外端を一端又は両端を基
台4に固定し、一端は予張力ナット5で締め電動機体M
を基台4に往復させて成る電気式直線推力発生装置にお
いて、送り用ねじ軸3の端部に応力・歪みメータAを取
付け、これよりインターフェイスIFを経てコンピュー
タCPUに電気的接続をする。又電動機Mからはロータ
の軸受温度T,エンコーダ6による回転速度V,及び電
動機Mの位置を示す移動量μmは基台4のリニヤスケー
ルLによりそれぞれ同様にインターフェイスIFを経て
CPUに電気的接続されている。さらに電動機の動力電
力は電動機MからCPU,ドライバーDを経て更に又コ
ンピュータCPUに電気的接続されて成る推力適応制御
機能付き電気式推力発生装置である。
In order to achieve the above object, the present invention will be described with reference to one embodiment. In FIGS. 1 and 3, a hollow electric motor M is provided in the body of an arbitrary rectangular parallelepiped or cylinder. It is installed, the feed screw nut 2 is fitted into the hollow output shaft 1 of the electric motor M directly or via a gear, and the outer peripheral portion of the hollow output shaft 1 is borne and fitted into the feed screw nut. The feed screw shaft 3 is inserted into the hollow output shaft 1 of the electric motor M, one end or both ends of which are fixed to the base 4, and the one end is fastened with a pretension nut 5
In an electric linear thrust generator that reciprocates on the base 4, a stress / strain meter A is attached to the end of the feed screw shaft 3, and is electrically connected to the computer CPU via the interface IF. Further, the bearing temperature T of the rotor from the electric motor M, the rotation speed V by the encoder 6, and the moving amount μm indicating the position of the electric motor M are electrically connected to the CPU via the interface IF by the linear scale L of the base 4, respectively. ing. Further, the motive power of the electric motor is an electric thrust generating device with a thrust adaptive control function, which is electrically connected from the electric motor M through the CPU and the driver D and further to the computer CPU.

【0010】[0010]

【作用】上記のように構成された本発明の装置は、送り
ねじ軸3の端部に、応力・歪みセンサを取付けたことに
より推力に基づく送りねじ軸の歪み量を電気信号で取出
し、CPU部で他の数値と共に演算処理され、そして指
令値どおりに駆動電流としてドライバーからフィードバ
ックさせて目的の推力を発揮させるものである。従来の
エンコーダのみによるセミクローズド法、又はリニヤス
ケールによるクローズド法、あるいはこの両者を併用し
た方法でも正確な推力測定はできなかった。
In the apparatus of the present invention configured as described above, a stress / strain sensor is attached to the end portion of the feed screw shaft 3 to extract the strain amount of the feed screw shaft based on the thrust by an electric signal, and the CPU It is calculated with the other numerical values in the section, and is fed back from the driver as a driving current according to the command value so that the desired thrust is exerted. Accurate thrust measurement could not be performed by the conventional semi-closed method using only an encoder, the closed method using a linear scale, or a method using both of them.

【0011】また送り用ねじ軸3の固定部一端の予張力
ナット5は、これを締めつけることでねじ軸3に予張力
を与え任意に緊張させて軸の撓み剛性を増すことにより
振動数も高くできる。なお電動機本体の温度測定により
全体の熱膨張による誤差も補正できる。さらに推力発生
体である固定送りねじ軸3に応力・歪センサーAを取付
けたため、その精度は1万分の1以下10万分の1の分
解能力で推力を瞬時に演算できるので、切削や研削加工
中の負荷が確実に把握できる。
Further, the pretension nut 5 at one end of the fixed portion of the feed screw shaft 3 is tightened to give a pretension to the screw shaft 3 to arbitrarily tension the screw shaft 3 to increase the flexural rigidity of the shaft, thereby increasing the frequency of vibration. it can. By measuring the temperature of the motor body, the error due to the thermal expansion of the whole can be corrected. Furthermore, since the stress / strain sensor A is attached to the fixed feed screw shaft 3 which is a thrust generator, the accuracy can be calculated instantly with a disassembly capacity of 1 / 10,000 or less and 1 / 100,000, so during cutting or grinding. The load of can be surely grasped.

【0012】従来のねじ軸回転型ではボールねじ軸が回
転するため、主としてナット側に歪みセンサまたは圧力
センサを取付けていたので複雑かつ高価となり、あまり
実用できなかった。
In the conventional screw shaft rotating type, since the ball screw shaft rotates, a strain sensor or a pressure sensor is mainly attached to the nut side, which is complicated and expensive, and cannot be practically used.

【0013】図2に示すものは、従来のボールねじ軸回
転から、ボールねじ回転の中空モータを使用したボール
ねじ軸が直線運動するロボット用推力発生装置である。
そしてこのねじ軸端に応力・歪測定用センサーAを取付
けたもので、上記同様に目的の推力を正確に制御でき、
荷重の大きさ方向の判定などを必要とするロボットの製
作が初めて可能となった。なお図のようにロボットアー
ムI,IIなど多数を設置しても正確な荷重が計れるた
め、荷重による変形を有限要素法等の解析計算を行なう
ことにより巨大アームとしても高精度の位置決めと荷重
測定を可能ならしめた。なおロボットアーム自体が荷重
の測定能力を有するので、軽重の判定をするロボットア
ームが得られるようになった。すなわち各部材の剛性値
を記憶させることで、その時の推力により正確な歪量を
演算できる。これが推力適応制御である。
FIG. 2 shows a thrust generating device for a robot in which a ball screw shaft rotates linearly from a conventional ball screw shaft rotating type using a ball screw rotating hollow motor.
The sensor A for stress / strain measurement is attached to the end of the screw shaft so that the target thrust can be accurately controlled in the same manner as above.
For the first time, it became possible to manufacture a robot that requires determination of the load magnitude direction. As shown in the figure, accurate load can be measured even if a large number of robot arms I, II, etc. are installed. Therefore, by performing analytical calculation such as finite element method for deformation due to load, positioning and load measurement can be performed with high accuracy even as a giant arm. If possible. Since the robot arm itself has the ability to measure the load, it is possible to obtain a robot arm that determines whether it is light or heavy. That is, by storing the rigidity value of each member, an accurate strain amount can be calculated by the thrust force at that time. This is thrust adaptive control.

【0014】[0014]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下記述のような効果を奏するものであ
る。
Since the present invention is configured as described above, it has the following effects.

【0015】(1)上記の通りすべての条件下における
推力の変動を瞬時に、正確に測定できるので、加減速中
における巨大な推力変動時、すなわち円弧,曲線運動時
の各軸間における連系運動下で、従来は遅れパルス溜り
量として処理していたが推力変動による歪み量を的確に
把握できるので、目的指令通りの忠実な適応制御が可能
となった。
(1) As described above, since the fluctuation of the thrust force under all conditions can be measured instantaneously and accurately, the interconnection between the axes during the huge thrust force fluctuation during acceleration / deceleration, that is, during the arc or curved motion. In the past, processing was performed as a delay pulse accumulation amount during motion, but since the distortion amount due to thrust fluctuation can be accurately grasped, faithful adaptive control according to the target command became possible.

【0016】(2)ねじ軸を固定したため、ねじ軸の応
力を高分解能で演算できることは、前述の通りNC加工
機等での砥石の目詰まりによる研削抵抗の変化や、バイ
トやカッタのチップの損耗による切削抵抗力の変化をミ
クロ的に且つ瞬時に検出できるので、長時間に亘る完全
無人化を図れる。
(2) Since the screw shaft is fixed, the stress of the screw shaft can be calculated with high resolution. That is, as described above, the change of the grinding resistance due to the clogging of the grindstone in the NC processing machine or the tip of the cutting tool or the cutter. Since the change in the cutting resistance force due to wear can be detected microscopically and instantly, it is possible to achieve complete unmanned operation for a long time.

【0017】(3)また上述のようにロボット装置にお
いては、従来はロボットアームにはボールねじ軸が回転
しているため圧力センサが取付け難かったが、本発明に
よればロボットアーム自体の推力計測機能が計量秤とし
てもそのまま利用できるので、例えば作業ロボット自身
で製品の重量の変化を計ったり、作業力の判定まででき
るため、より一歩人間に近づく効果がある。
(3) Further, as described above, in the robot apparatus, it is difficult to attach the pressure sensor because the ball screw shaft rotates on the robot arm, but according to the present invention, the thrust measurement of the robot arm itself is made. Since the function can be used as it is as a weighing scale, for example, the work robot itself can measure the change in the weight of the product and even determine the work force, so that it has the effect of becoming closer to a human.

【0018】(4)ロボットの各アームや軸間に本発明
の推力検出機能を持たすことで、各部の荷重状態が把握
されるため、この力分布を有限要素法的に演算処理すれ
ば、従来の巨大クレーンのように大型化しても超精密な
る位置決め、または作業が可能となる。
(4) By providing the thrust detection function of the present invention between each arm and axis of the robot, the load state of each part can be grasped. Therefore, if this force distribution is calculated by the finite element method, the conventional method is used. Even if it is enlarged like a giant crane, it will be possible to perform ultra-precision positioning or work.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電気式推力発生装置の推力位置速度制
御回路図である。
FIG. 1 is a thrust position / speed control circuit diagram of an electric thrust generator of the present invention.

【図2】片端中空電動機使用の推力発生装置によるロボ
ットアーム用推力位置速度制御回路図である。
FIG. 2 is a thrust position / speed control circuit diagram for a robot arm by a thrust generator using a hollow hollow motor.

【図3】図1の中空電動機の縦断面を示す詳細正面図で
ある。
3 is a detailed front view showing a vertical cross section of the hollow motor of FIG. 1. FIG.

【図4】図2のロボット用の差動歯車使用の片端支持中
空電動機の縦断面を示す詳細正面図である。
FIG. 4 is a detailed front view showing a vertical cross section of a one-end supported hollow electric motor using a differential gear for the robot of FIG.

【符号の説明】[Explanation of symbols]

1 中空出力軸 2 送り用ねじナット 3 送り用ねじ軸 4 基台 5 予張力ナット 6 エンコーダ A 応力・歪みセンサー M 電動機体 D ドライバー CPU コンピュータ IF インターフェイス L リニヤスケール DG 差動歯車 DP 表示 T ロータの軸受温度 V 回転速度 μm 移動量 R ロボット RA ロボットアーム 1 Hollow Output Shaft 2 Feed Screw Nut 3 Feed Screw Shaft 4 Base 5 Pre-tension Nut 6 Encoder A Stress / Strain Sensor M Motor Body D Driver CPU Computer IF Interface L Linear Scale DG Differential Gear DP Display T Rotor Bearing Temperature V Rotation speed μm Travel amount R Robot RA Robot arm

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 任意の直方体又は円筒体の本体内に中空
電動機を設置し、該電動機の中空出力軸内に送り用ねじ
ナットを嵌合し、かつ同中空出力軸の外周部を軸承した
る構造で、送り用ねじ軸の外端を基台に固定、もしくは
任意揺動台に固定して成る電気式推力発生装置におい
て、同送り用ねじ軸の任意端部に応力・歪測定用センサ
ーを固着させ、その信号によりコンピュータで任意の応
力制御及び記憶された各部材の剛性値により推力変位量
を演算処理して自動補正することを目的とした推力適応
制御機能付き電気式推力発生装置。
1. A hollow electric motor is installed in the body of an arbitrary rectangular parallelepiped or cylindrical body, a feed screw nut is fitted in the hollow output shaft of the electric motor, and the outer peripheral portion of the hollow output shaft is supported. In the electric thrust generator with a structure in which the outer end of the feed screw shaft is fixed to the base or fixed to an arbitrary rocking base, a stress / strain measurement sensor is attached to the arbitrary end of the feed screw shaft. An electric thrust generator with a thrust adaptive control function, which is intended to automatically fix the amount of thrust displacement calculated and calculated according to the stiffness value of each member which is fixedly controlled by a computer and fixedly stored by the computer.
JP3356962A 1991-12-24 1991-12-24 Electric thrust generator with thrust adaptive control function Expired - Lifetime JP2777759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3356962A JP2777759B2 (en) 1991-12-24 1991-12-24 Electric thrust generator with thrust adaptive control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3356962A JP2777759B2 (en) 1991-12-24 1991-12-24 Electric thrust generator with thrust adaptive control function

Publications (2)

Publication Number Publication Date
JPH05176497A true JPH05176497A (en) 1993-07-13
JP2777759B2 JP2777759B2 (en) 1998-07-23

Family

ID=18451658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3356962A Expired - Lifetime JP2777759B2 (en) 1991-12-24 1991-12-24 Electric thrust generator with thrust adaptive control function

Country Status (1)

Country Link
JP (1) JP2777759B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036172A1 (en) * 1997-02-14 1998-08-20 Karasawa Fine Co., Ltd. High pressure pump
WO2002016804A1 (en) * 2000-08-21 2002-02-28 Toshiaki Shimada Drive shaft moving device
CN108505993A (en) * 2018-05-31 2018-09-07 西南石油大学 A kind of formation pressure test physical analogy and graduation apparatus and method
EP2268922B1 (en) 2008-03-26 2019-02-20 Quantum Servo Pumping Technologies Pty Ltd Ultra high pressure pump with an alternating rotation to linear displacement drive mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196711A (en) * 1986-02-21 1987-08-31 Tokyo Seimitsu Sokki Kk Servo-driving device
JPH033692A (en) * 1989-05-29 1991-01-09 Secoh Giken Inc Numerical controller for load

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196711A (en) * 1986-02-21 1987-08-31 Tokyo Seimitsu Sokki Kk Servo-driving device
JPH033692A (en) * 1989-05-29 1991-01-09 Secoh Giken Inc Numerical controller for load

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036172A1 (en) * 1997-02-14 1998-08-20 Karasawa Fine Co., Ltd. High pressure pump
WO2002016804A1 (en) * 2000-08-21 2002-02-28 Toshiaki Shimada Drive shaft moving device
US6968752B2 (en) 2000-08-21 2005-11-29 Toshiaki Shimada Drive shaft moving device
EP2268922B1 (en) 2008-03-26 2019-02-20 Quantum Servo Pumping Technologies Pty Ltd Ultra high pressure pump with an alternating rotation to linear displacement drive mechanism
CN108505993A (en) * 2018-05-31 2018-09-07 西南石油大学 A kind of formation pressure test physical analogy and graduation apparatus and method

Also Published As

Publication number Publication date
JP2777759B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
US8950507B2 (en) Device for preventing vibrations in a tool spindle
CN102156033B (en) Measurement device and measurement method of torsional vibration modal of numerical control machine
EP0331142B1 (en) Numerical control device involving correction for lost motion
RU2624412C1 (en) Stand for testing screw-nut gear rolling
US7052370B2 (en) High-precision machining system
CN111890128A (en) Force measurement type piezoelectric fast knife servo device with three-dimensional decoupling
EP0065993A1 (en) Copy cam driving device for machine tool
JPH05176497A (en) Electric thrust generating device provided with control function adaptable for thrust
US4222692A (en) Machine tool feed system with adjustable bearings
US5782674A (en) Sensors for internal grinding machines
Saglam et al. Three-component, strain gage based milling dynamometer design and manufacturing
JPH05138481A (en) Rectilinear guiding device with axial force detecting means
EP3317629B1 (en) Test bench for charging devices
US11613335B2 (en) Cycloidal dynamic propulsion or positioning system for a ship
JPH1190822A (en) Work rest device
US5584744A (en) Machine tool
Suzuki et al. A stick motion compensation system with a dynamic model
Noh et al. Improvement of a fast tool control unit for cutting force measurement in diamond turning of micro-lens array
JPH08261858A (en) Torque transducer measuring apparatus
CN101598633B (en) Measuring method for axial rigidity and damping of supporting point in screw rod drive feeding system
JP3412208B2 (en) Tool cutting machine
JPH0775816B2 (en) Axial force measuring device
CN109489951A (en) A kind of loading device for hydrostatic pressure spindle system
CN211388778U (en) Screw transmission linear module
Breaz et al. Using the modern CNC controllers capabilities for estimating the machining forces during the milling process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100508

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120508

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120508

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120508