JP3412208B2 - Tool cutting machine - Google Patents

Tool cutting machine

Info

Publication number
JP3412208B2
JP3412208B2 JP28345093A JP28345093A JP3412208B2 JP 3412208 B2 JP3412208 B2 JP 3412208B2 JP 28345093 A JP28345093 A JP 28345093A JP 28345093 A JP28345093 A JP 28345093A JP 3412208 B2 JP3412208 B2 JP 3412208B2
Authority
JP
Japan
Prior art keywords
fine movement
workpiece
amount
cutting
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28345093A
Other languages
Japanese (ja)
Other versions
JPH06218652A (en
Inventor
力 浜田
隆文 浅田
義寛 池本
享 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP28345093A priority Critical patent/JP3412208B2/en
Publication of JPH06218652A publication Critical patent/JPH06218652A/en
Application granted granted Critical
Publication of JP3412208B2 publication Critical patent/JP3412208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Turning (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、NCテーブルを有する
バイト移動式切削装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting tool having a NC table and a movable tool.

【0002】[0002]

【従来の技術】近年、NCテーブルを有するNC切削装
置は、ビデオシリンダーなどの高精度部品加工用に広く
活用されている。
2. Description of the Related Art In recent years, an NC cutting device having an NC table has been widely used for processing high precision parts such as a video cylinder.

【0003】以下に従来のNC切削装置について説明す
る。図6は従来のNC切削装置の概略の平面構成図であ
る。図6において、1はNC切削装置で、2は主軸であ
る。3はバイトで、図示しない手段によりNCテーブル
4に固定してある。5はNC切削装置1やNCテーブル
4を制御する制御装置である。6は主軸2に設けられた
チャックで、被削物7を保持する。なお、問題点を明確
にするため被削物7はビデオシリンダーを想定し、最終
的には図7に示すように被削物7の回転中心となる異材
質のシャフト8が焼き填め、圧入等で固定される場合に
ついて説明する。
A conventional NC cutting device will be described below. FIG. 6 is a schematic plan configuration diagram of a conventional NC cutting device. In FIG. 6, 1 is an NC cutting device and 2 is a spindle. Reference numeral 3 is a byte, which is fixed to the NC table 4 by means not shown. Reference numeral 5 is a control device for controlling the NC cutting device 1 and the NC table 4. Reference numeral 6 denotes a chuck provided on the main shaft 2 for holding the work piece 7. In order to clarify the problem, the workpiece 7 is assumed to be a video cylinder, and finally, as shown in FIG. The case of fixing with is explained.

【0004】以上のように構成されたNC切削装置1に
ついて、以下その動作について説明する。まず、主軸2
の回転にともない被削物7は矢印A方向に回転する。こ
の状態でバイト3を固定したNCテーブル4は、あらか
じめ制御装置5に組み込まれたプログラム通り矢印B,
矢印C方向へ動くことで、バイト3が被削物7へ切込
み、例えば被削物7の外周面が高精度に切削加工される
ことになる。
The operation of the NC cutting device 1 configured as described above will be described below. First, the spindle 2
The workpiece 7 rotates in the direction of arrow A in accordance with the rotation. In this state, the NC table 4 with the byte 3 fixed is shown by the arrow B, which is programmed according to the program previously installed in the control device 5.
By moving in the direction of arrow C, the cutting tool 3 cuts into the workpiece 7, and, for example, the outer peripheral surface of the workpiece 7 is cut with high precision.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、次のような問題点がある。すなわち、被
削物7自身は高精度に加工できるが、シャフト8を被削
物7へ固定すると図7のようにシャフト8が被削物7の
外周面に対して傾いてしまう。なお、実際の傾きは数ミ
クロンのオーダーであるが、図7では説明のため極端に
示してある。この結果、最終製品としてのビデオではビ
デオテープが被削物7の外周を基準に走行し、ビデオの
ヘッド部はシャフト8を基準に回転することになるの
で、ビデオヘッドがビデオテープを正確にトレースでき
なくなり、結果として画質が低下することになる。尚、
この問題点を解決するには、シャフト8を被削物7に固
定したのちにシャフト8を基準として被削物7の外周面
を加工すればよい。しかしながら、従来のNC切削装置
でこれを実現しようとすると、傾いて固定されたシャフ
ト8の外周が主軸2の回転で振れないよう被削物7をチ
ャック6で調整しつつ固定する必要があるが、このよう
な作業は人間の手作業となり極めて量産性の低い方法と
言わざるを得ない。以上被削物7がビデオシリンダーの
場合を想定して説明したが、このような問題はビデオシ
リンダー特有の課題ではない。例えば、図8に示す棒状
の第2の被削物9の外周を全長にわたって精度良く加工
しようとする場合を考える。この場合は、まず被削部9
の9a部をチャック8で保持して9b部を加工し、その
後、9b部をチャック7で保持し直して9a部を加工す
ればよい。しかしながら実際はチャック7で9b部を掴
み直しすると、主軸1の回転中心とチャック7で保持さ
れた9b部の中心とに微妙な差が発生し、9bの非チャ
ック部にミクロンオーダーの振れが発生する。一方、9
a部は当然ながら主軸1の回転中心で加工されることに
なるので、このような方法では第2の被削物9の全長に
わたって精度良く加工することができないことは一般に
広く知られている。尚、この場合の解決策も上記したビ
デオシリンダーの場合と同様に考えればよい。すなわ
ち、まず9b部を加工する時にチャック7で保持する長
さより充分長く加工しておき、この後チャック7で9b
部を保持する時にチャック7からはみだした9b部の振
れがなくなるようチャック7で調整しつつ9b部を保持
すればよい。しかしながら、この方法も人手に頼った量
産性の低いやり方としかいえない。
However, the above-mentioned structure has the following problems. That is, the work 7 itself can be machined with high precision, but when the shaft 8 is fixed to the work 7, the shaft 8 tilts with respect to the outer peripheral surface of the work 7 as shown in FIG. Although the actual inclination is on the order of several microns, it is extremely shown in FIG. 7 for the sake of explanation. As a result, in the video as the final product, the video tape runs with the outer periphery of the work piece 7 as a reference, and the head portion of the video rotates with the shaft 8 as a reference, so that the video head traces the video tape accurately. As a result, the image quality is degraded. still,
To solve this problem, after fixing the shaft 8 to the workpiece 7, the outer peripheral surface of the workpiece 7 may be machined with the shaft 8 as a reference. However, in order to realize this with the conventional NC cutting device, it is necessary to adjust and fix the workpiece 7 with the chuck 6 so that the outer periphery of the shaft 8 which is inclined and fixed does not swing due to the rotation of the spindle 2. It must be said that such a work is a manual work of a human and has extremely low mass productivity. The above description has been made assuming that the workpiece 7 is a video cylinder, but such a problem is not a problem peculiar to a video cylinder. For example, let us consider a case where the outer circumference of the rod-shaped second workpiece 9 shown in FIG. 8 is to be accurately machined over its entire length. In this case, first the work part 9
9a part may be held by the chuck 8 to process the 9b part, and then the 9b part may be held again by the chuck 7 to process the 9a part. However, in reality, when the chuck 7 re-grasps the 9b portion, a subtle difference occurs between the center of rotation of the spindle 1 and the center of the 9b portion held by the chuck 7, and micron-order shake occurs in the non-chuck portion of the 9b. . On the other hand, 9
Since part a is naturally machined at the center of rotation of the spindle 1, it is generally well known that such a method cannot precisely machine the entire length of the second workpiece 9. Incidentally, the solution in this case may be considered in the same manner as in the case of the above video cylinder. That is, first, when processing the 9b portion, it is processed sufficiently longer than the length held by the chuck 7, and then the 9b is processed by the chuck 7.
The 9b portion may be held while adjusting the chuck 7 so that the swinging of the 9b portion protruding from the chuck 7 is eliminated when holding the portion. However, this method can only be said to be a method with low mass productivity that depends on human labor.

【0006】本発明は上記した従来の問題点を解決する
もので、被削物の固着されたシャフトを基準に加工した
り、第2の被削物の切削加工のようにチャックの掴み変
えが必要な場合などの加工基準面が主軸の回転にともな
い振れを生じている時に効果的なバイト移動式切削装置
を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and it is possible to change the grip of the work piece such that the work piece is machined on the basis of the fixed shaft or the second work piece is cut. An object of the present invention is to provide an effective cutting tool for a cutting tool when the machining reference surface is shaken with the rotation of the spindle when necessary.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明のバイト移動式切削装置は、NC切削装置の主
軸に設けたチャックで保持される被削物に固定されたシ
ャフトの振れ量を検出する振れ検出センサと、前記被削
の回転位置を検出する回転位置検出センサと、この回
転位置検出センサおよび振れ検出センサの測定値から前
被削物の加工点におけるバイト位置の補正量を算出す
る演算装置と、前記補正量を前記被削物の回転位置およ
び前記加工点に同期して出力する出力回路と、この出力
回路の出力によりバイトが固定された微動台を微動させ
駆動源を有する微動装置と、この微動装置固定され
NCテーブルとを備え、前記演算装置は、前記微動台
変位量を検出する変位計により検出される実際の変位
と前記算出される補正量との差をフィードバックして前
記バイトの微動量を制御し、前記被削物を切削する構成
としたものである。
In order to achieve this object, a cutting tool of a bite moving type according to the present invention is a cutting tool fixed to a work held by a chuck provided on a spindle of an NC cutting machine.
A shake detection sensor for detecting a shake amount of Yafuto, the workpiece
A rotational position detection sensor for detecting a rotational position of the object, an arithmetic unit for calculating a correction amount of the byte position in the machining point of the workpiece material from the measured values of the rotational position detecting sensor and the shake detecting sensor, the correction amount wherein an output circuit for outputting in synchronization with the rotational position and the working point of the work object, a fine movement apparatus having a driving source for finely moving the fine movement stage that byte is fixed by the output of the output circuit, the fine movement apparatus fixed Done
An NC table, and the arithmetic unit is an actual displacement amount detected by a displacement meter that detects the displacement amount of the fine movement table.
By feeding back the difference between the correction amount the calculated control the fine movement amount of the bytes and is obtained by a structure for cutting the workpiece material.

【0008】[0008]

【作用】この構成によって、まず切削前にチャックで保
持された被削物の加工基準面の複数箇所の振れ量を被削
物の回転位置と対応して測定し、この測定結果から被削
物の切削面全体の振れ量と回転位置の関係すなわち補正
量を演算しておく。次に実際切削する時は、被削物の加
工点(バイトと被削物の接触点)と被削物の回転位置に
対応する補正量を出力回路から同期しつつ出力し、この
出力でバイトを補正量だけ微動装置で微動させること
で、バイトと被削物は相対的に振れがない状態にでき
る。よって、この後は一般的なNC切削装置を用いた通
常の加工をするだけで、加工基準面が振れを有する被削
物でもあたかも振れがないのと同じように高精度に切削
することができる。
With this structure, first, the deflection amount at a plurality of points on the machining reference surface of the workpiece held by the chuck before cutting is measured in correspondence with the rotational position of the workpiece, and the measurement result is used. The relationship between the shake amount of the entire cutting surface and the rotational position, that is, the correction amount is calculated. Next, when actually cutting, the machining point of the workpiece (contact point between the tool and the workpiece) and the correction amount corresponding to the rotational position of the workpiece are output from the output circuit in synchronization with this output. By finely moving the tool by a correction amount by the fine moving device, the tool and the work can be relatively shake-free. Therefore, after that, only by performing a normal machining using a general NC cutting device, it is possible to perform the cutting with high accuracy as if the workpiece having the machining reference surface has a runout as if there is no runout. .

【0009】[0009]

【実施例】以下本発明の第1の実施例について、図1,
図2を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG.
This will be described with reference to FIG.

【0010】図1は本発明のバイト移動式切削装置の平
面概略図を示す。なお、図1において従来例と同一機能
部品には同一番号を付している。1はNC切削装置で、
2は主軸、3はバイト、4はNCテーブル、5はNCテ
ーブル4やNC切削装置1を制御する制御装置である。
6は主軸2に設けられたチャックで、シャフト8が固定
された被削物7を保持している。尚、シャフト8は被削
物7の加工基準であり、このシャフト8は主軸2の回転
により振れが発生するよう故意に傾けて図示している。
FIG. 1 shows a schematic plan view of a cutting tool moving type cutting apparatus according to the present invention. Note that, in FIG. 1, the same functional components as those in the conventional example are designated by the same reference numerals. 1 is an NC cutting device,
Reference numeral 2 is a spindle, 3 is a bite, 4 is an NC table, and 5 is a control device for controlling the NC table 4 and the NC cutting device 1.
Reference numeral 6 is a chuck provided on the main shaft 2, and holds a work 7 to which a shaft 8 is fixed. The shaft 8 is a machining reference for the work piece 7, and the shaft 8 is shown by intentionally inclining it so that the main shaft 2 rotates to cause runout.

【0011】従来例と異なる点は以下の点である。10
は被削物7の回転位置を検出する回転位置検出センサで
主軸2に設けている。11a,11bは振れ検出センサ
で、金具19を介してNCテーブル4へ固定される。1
2は演算装置で、回転位置検出センサ10および振れ検
出センサ11a,11bの信号をもとに被削物7の加工
点における補正量を被削物7の回転位置に対応して演算
する。13は出力回路で、実際にバイト3で被削物7を
加工する時、上記演算結果をもとにその切削点における
補正量を被削物7の回転位置と同期して微動装置14へ
出力する。バイト3はこの微動装置14へ固定され、か
つ微動装置14はNCテーブル4上に固定されている。
尚、15は各構成部品間の信号のつながりを示すために
あえて記したもので、通常の電気配線と考えると理解し
易い。図2は、図1に用いた微動装置14の詳細側面図
で、バイト3が図示しない手段で微動台16に固定され
る。微動台16にはバネ部16aが設けてあり、端部が
取付台17に固定される。18は圧電素子で、一方を取
付台17に、他方は微動台16に固定してある。尚、N
Cテーブル4へは取付台17が図示しない手段で固定さ
れる。
The points different from the conventional example are as follows. 10
Is a rotational position detection sensor for detecting the rotational position of the workpiece 7, and is provided on the spindle 2. Reference numerals 11a and 11b are shake detection sensors, which are fixed to the NC table 4 via a metal fitting 19. 1
Reference numeral 2 denotes an arithmetic device which calculates a correction amount at a machining point of the workpiece 7 based on the signals of the rotational position detection sensor 10 and the shake detection sensors 11a and 11b, corresponding to the rotational position of the workpiece 7. An output circuit 13 outputs the correction amount at the cutting point to the fine movement device 14 in synchronism with the rotational position of the workpiece 7 based on the above calculation result when the workpiece 7 is actually processed by the cutting tool 3. To do. The bite 3 is fixed to the fine movement device 14, and the fine movement device 14 is fixed on the NC table 4.
It should be noted that the reference numeral 15 is added for the purpose of showing the connection of signals between the respective components, and it is easy to understand if it is considered as a normal electric wiring. FIG. 2 is a detailed side view of the fine movement device 14 used in FIG. 1, in which the cutting tool 3 is fixed to the fine movement table 16 by means not shown. The fine movement table 16 is provided with a spring portion 16 a, and the end portion is fixed to the mounting table 17. Reference numeral 18 denotes a piezoelectric element, one of which is fixed to the mounting base 17 and the other of which is fixed to the fine movement base 16. Incidentally, N
The mount 17 is fixed to the C table 4 by means not shown.

【0012】以上のように構成されたバイト移動式切削
装置について、以下その動作について説明する。まず、
主軸2を回転させると被削物7は矢印A方向に回転する
ので、その加工基準となるシャフト8は振れながら回転
する。この状態すなわち切削前の状態で、2つの振れ検
出センサ11a,11bはそれぞれの位置でのシャフト
8の振れ量が、回転位置センサ10で検出される被削物
7の回転位置と対応して測定できる。
The operation of the cutting tool moving tool constructed as above will be described below. First,
When the main shaft 2 is rotated, the work 7 rotates in the direction of arrow A, so that the shaft 8 serving as a machining reference rotates while swinging. In this state, that is, before cutting, the two shake detection sensors 11a and 11b measure the shake amount of the shaft 8 at each position in correspondence with the rotational position of the workpiece 7 detected by the rotational position sensor 10. it can.

【0013】次に、この測定結果をもとに被削物7の被
加工面の補正量をその回転位置と対応して演算装置12
で演算するが、この詳細を図3で説明する。図3は図1
の中のバイト3,被削物7,シャフト8,回転位置検出
センサ10、および2つの振れ検出センサ11a,11
bのみを示している。尚、図3ではシャフト8が振れ検
出センサ11a,11bから最も遠ざかった位置を実線
で、記号は8aで示している。また、ここから主軸2が
180度回転し、シャフト8が振れ検出センサ11a,
11bから最も近づいた状態を2点鎖線で、記号を8b
で示している。尚、このような2つの状態は振れ検出セ
ンサ11a,11bを例えば静電容量式の距離センサで
構成すれば、その距離の最大位置,最小位置から容易に
特定できる。また、この時の被削物7の回転位置は主軸
2に設けた回転位置検出センサ10により検出できる。
ここでシャフト8aとバイト3との距離が、主軸2が1
80度回転して8b位置にきても常に一定となるよう、
すなわちシャフト8とバイト3の相対的な振れが無くな
るよう制御するには、振れ検出センサ11aで検出した
距離と同一量だけバイト3を微動装置14で主軸2の回
転と同期して微動させればよいことになる。同様に振れ
検出センサ11a,11bの位置にバイト3がきた時
は、バイト3の微動量を振れ検出センサ11bで検出し
た距離とし、かつ主軸と同期して微動することで相対的
な振れが無い状態にできる。さらに、バイト3が振れ検
出センサ11a,11b以外の任意の位置にある時で
も、金具19で固定されていた振れ検出センサ11aと
11b間の距離Eに対する振れ検出センサ11aと11
bで検出される振れ量の差Fの傾きから単純な比例計算
で演算し、バイト3をこの演算結果どおり主軸2と同期
して微動することで、相対的に振れの無い状態が実現で
きる。バイト3を微動させる微動装置14の具体的内容
については後述する。尚、バイト3が加工基準面である
シャフト8に対して相対的に振れの無い状態で被削物7
の外周面を加工することは、当然ながらこの加工された
外周面がシャフト8を基準に加工されることを意味す
る。尚、このような演算は一般的なパソコンを使う事で
容易に演算でき、かつ演算結果を保存できる。
Next, based on this measurement result, the arithmetic unit 12 correlates the correction amount of the surface to be machined of the workpiece 7 with its rotational position.
The calculation will be performed in accordance with the following, and details thereof will be described with reference to FIG. FIG. 3 shows FIG.
Tool 3, workpiece 7, shaft 8, rotational position detection sensor 10, and two shake detection sensors 11a, 11
Only b is shown. In FIG. 3, the position where the shaft 8 is farthest from the shake detection sensors 11a and 11b is indicated by a solid line and the symbol is indicated by 8a. Further, from here, the main shaft 2 rotates 180 degrees, and the shaft 8 moves the shake detection sensor 11a,
The state closest to 11b is indicated by a chain double-dashed line, and the symbol is 8b
It shows with. It should be noted that these two states can be easily specified from the maximum position and the minimum position of the distance by configuring the shake detection sensors 11a and 11b by, for example, capacitance type distance sensors. The rotational position of the workpiece 7 at this time can be detected by the rotational position detection sensor 10 provided on the spindle 2.
Here, the distance between the shaft 8a and the bite 3 is 1 for the spindle 2.
Even if it rotates 80 degrees and comes to the 8b position, it will always be constant.
That is, in order to control the relative shake of the shaft 8 and the cutting tool 3 to be eliminated, the tool 3 is finely moved by the fine movement device 14 in synchronization with the rotation of the main shaft 2 by the same amount as the distance detected by the shake detection sensor 11a. It will be good. Similarly, when the cutting tool 3 comes to the positions of the shake detection sensors 11a and 11b, the fine movement amount of the cutting tool 3 is set as the distance detected by the shake detection sensor 11b, and the fine movement is performed in synchronization with the main shaft, so that there is no relative shake. Can be in a state. Further, even when the cutting tool 3 is at any position other than the shake detecting sensors 11a and 11b, the shake detecting sensors 11a and 11b with respect to the distance E between the shake detecting sensors 11a and 11b fixed by the metal fitting 19 are fixed.
A relatively proportional shake-free state can be realized by performing a simple proportional calculation from the inclination of the shake amount difference F detected in b, and finely moving the bite 3 in synchronization with the spindle 2 in accordance with the calculation result. The specific contents of the fine movement device 14 for finely moving the bite 3 will be described later. In addition, in a state where the cutting tool 3 is relatively free from swinging with respect to the shaft 8 which is the machining reference surface,
Machining the outer peripheral surface of means that the machined outer peripheral surface is machined on the basis of the shaft 8. Note that such calculation can be easily calculated by using a general personal computer, and the calculation result can be saved.

【0014】次に出力回路13について説明する。出力
回路13はバイト3で被削物7を実際に切削加工する時
に、バイト3のシャフト8の軸方向の位置に対応する演
算結果を主軸2の回転位置と同期して後述する圧電素子
18へ出力するものである。このためにまずバイト3の
シャフト8の軸方向の位置は、バイト3を有する微動装
置14が固定されたNCテーブル4の位置として制御装
置5から入力すればよい。次に被削物7の回転位置は、
主軸2に設けた回転位置検出センサ10の回転位置を入
力すればよい。以上のことを明確にしたおけば、この2
つの信号に対応する演算結果を同期して出力することは
従来の制御技術で容易に実現できる。
Next, the output circuit 13 will be described. When actually cutting the workpiece 7 with the cutting tool 3, the output circuit 13 synchronizes the calculation result corresponding to the axial position of the shaft 8 of the cutting tool 3 with the rotation position of the spindle 2 to the piezoelectric element 18 described later. It is what is output. For this purpose, first, the position of the cutting tool 3 in the axial direction of the shaft 8 may be input from the control device 5 as the position of the NC table 4 to which the fine movement device 14 having the cutting tool 3 is fixed. Next, the rotational position of the workpiece 7 is
The rotational position of the rotational position detection sensor 10 provided on the main shaft 2 may be input. If you clarify the above, this 2
Synchronous output of the calculation result corresponding to one signal can be easily realized by a conventional control technique.

【0015】次に微動装置14の動作を図2を使って説
明する。微動装置14は出力回路13で出力された信号
に基づいて実際にバイト3を所定量だけ微動させる装置
である。このため出力回路13からの信号に対応して変
位を発生させる駆動源として圧電素子18を用いてい
る。この圧電素子18は一端が十分な剛性を有する取付
台18に固定され、他端はバネ部16aを有する微動台
16に固定してある。この構成で圧電素子18に出力回
路13の信号が入力されると、これ自体が伸び縮みし、
結果としてバネ部16aが変形することで微動台16が
微動することとなる。尚、圧電素子18の駆動電圧は一
般的に数百ボルトであり、かつヒステリシスを有するの
で、出力回路13の信号を増幅回路で増幅し、また微動
台の変位量を変位計20で計測しつつ所定の変位量とす
るようフィードバック制御で制御する場合が多い。
Next, the operation of the fine movement device 14 will be described with reference to FIG. The fine movement device 14 is a device for actually finely moving the bite 3 by a predetermined amount based on the signal output from the output circuit 13. For this reason, the piezoelectric element 18 is used as a drive source for generating displacement in response to the signal from the output circuit 13. The piezoelectric element 18 has one end fixed to a mounting base 18 having sufficient rigidity, and the other end fixed to a fine movement base 16 having a spring portion 16a. With this configuration, when the signal of the output circuit 13 is input to the piezoelectric element 18, it expands and contracts itself,
As a result, the spring portion 16a is deformed, so that the fine movement table 16 slightly moves. Since the drive voltage of the piezoelectric element 18 is generally several hundred volts and has hysteresis, the signal of the output circuit 13 is amplified by the amplifier circuit, and the displacement amount of the fine movement table is measured by the displacement gauge 20. In many cases, feedback control is performed so as to obtain a predetermined displacement amount.

【0016】以上本発明の第1の実施例について、被削
物7の外周をシャフト8を基準に加工した場合で説明し
たが、基本的にはシャフト8の振れ量と振れの中心が主
軸2の回転位置と対応して振れセンサ11a,11bの
信号から演算できるので、被削物7の任意の方向での補
正量も演算できる。このため被削物7の端面部の補正量
を同様に演算し、この方向へ微動できる図示しない微動
装置、バイトをNCテーブル4に設けておけば、この面
の軸基準加工も可能となる事は言うまでもない。また、
従来例の説明で用いた図8に示す棒状の第2の被削物9
を加工する場合でも容易に適用できることは明確であ
る。
The first embodiment of the present invention has been described above with reference to the case where the outer periphery of the work piece 7 is machined with the shaft 8 as a reference. Basically, the runout amount of the shaft 8 and the center of the runout are the main shaft 2 Since it can be calculated from the signals of the shake sensors 11a and 11b corresponding to the rotational position of, the correction amount of the workpiece 7 in any direction can also be calculated. For this reason, if the correction amount of the end surface of the work 7 is calculated in the same manner and a fine movement device (not shown) capable of finely moving in this direction and a cutting tool are provided in the NC table 4, axis reference machining of this surface is also possible. Needless to say. Also,
The rod-shaped second workpiece 9 shown in FIG. 8 used in the description of the conventional example.
It is clear that it can be easily applied even when processing.

【0017】次に本発明の第2の実施例について図4を
参照しながら説明する。図4は本発明のバイト移動式切
削装置の平面概略図を示す。尚、図4において従来例と
同一機能部品には同一番号を付している。1はNC切削
装置で、2は主軸、3はバイト、4はNCテーブル、5
はNCテーブル4やNC切削装置1を制御する制御装置
である。6は主軸2に設けられたチャックで、シャフト
8が固定された被削物7を保持している。尚、シャフト
8は被削物7の加工基準であり、このシャフト8は主軸
2の回転により振れが発生するよう故意に傾けて図示し
ている。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 shows a schematic plan view of the cutting tool of the present invention. In FIG. 4, the same functional parts as those in the conventional example are designated by the same reference numerals. 1 is an NC cutting device, 2 is a spindle, 3 is a cutting tool, 4 is an NC table, 5
Is a control device for controlling the NC table 4 and the NC cutting device 1. Reference numeral 6 denotes a chuck provided on the main shaft 2, which holds a workpiece 7 to which a shaft 8 is fixed. It should be noted that the shaft 8 is a machining reference for the work piece 7, and the shaft 8 is shown by intentionally tilting it so that the main shaft 2 rotates to cause a runout.

【0018】第1の実施例と異なるのは、振れ検出セン
サ11は複数の測定部を持たず、1個の測定部11cか
らなりNCテーブル4に取り付けられ、NCテーブルと
共に移動自在に構成されている。従って回転中のシャフ
ト8の振れ量を、振れ検出センサ11は、NCテーブル
4が図中B方向およびC方向に移動することにより、シ
ャフト8の先端近傍および固定端近傍の、それぞれの位
置でのシャフト8の振れ量を回転位置センサ10で検出
される被削物7の回転位置と対応して測定できる。図中
センサ11はシャフト8の先端近傍の位置にある時を実
線で、固定端近傍の位置にある時を2点鎖線で示してい
る。
The difference from the first embodiment is that the shake detection sensor 11 does not have a plurality of measuring parts, is composed of one measuring part 11c, is attached to the NC table 4, and is movable together with the NC table. There is. Therefore, the shake detection sensor 11 detects the shake amount of the rotating shaft 8 at the respective positions near the tip end and the fixed end of the shaft 8 by moving the NC table 4 in the directions B and C in the drawing. The shake amount of the shaft 8 can be measured in correspondence with the rotational position of the workpiece 7 detected by the rotational position sensor 10. In the figure, the sensor 11 is shown by a solid line when it is located near the tip of the shaft 8 and by a chain double-dashed line when it is located near the fixed end.

【0019】振れ検出センサ11は、1個の測定部11
cを有することにより、第1の実施例のように複数のセ
ンサ11a,11bを有し、それぞれのセンサの感度特
性が異なる場合よりも精度良くシャフト8の振れ量を測
定できる。尚、微動装置14は圧電アクチュータ、また
はリニヤモータ、または比例制御電磁ソレノイド等が用
いられる。
The shake detection sensor 11 has one measuring unit 11.
By having c, it is possible to measure the shake amount of the shaft 8 more accurately than in the case where the plurality of sensors 11a and 11b are provided as in the first embodiment and the sensitivity characteristics of the respective sensors are different. As the fine movement device 14, a piezoelectric actuator, a linear motor, a proportional control electromagnetic solenoid, or the like is used.

【0020】次に図5を用いて本発明の第3の実施例に
ついて説明する。図5においてNCテーブル4には第2
の実施例に基づく微動装置14、バイト3を有するが、
加えて第2の微動装置22、第2のバイト21を有し、
第2の微動装置22は出力回路23により駆動されてい
る。また端面位置検出センサ24を有し、チャック後の
被削物7またはシャフト8の端面の絶対位置を検出する
よう構成されている。この構成により被削物7は外周面
だけでなく端面(図中H)の加工も行い、シャフトとの
直角度が良好に加工できる。またこの端面加工に際して
は端面位置検出センサ24により被削物の位置を検出
し、切り込み量(切削加工量)を決定することができ
る。
Next, a third embodiment of the present invention will be described with reference to FIG. In FIG. 5, the NC table 4 has a second
A micro-movement device 14 according to the embodiment of FIG.
In addition, it has a second fine movement device 22 and a second bite 21,
The second fine movement device 22 is driven by the output circuit 23. Further, it has an end face position detection sensor 24, and is configured to detect the absolute position of the end face of the workpiece 7 or the shaft 8 after chucking. With this configuration, not only the outer peripheral surface but also the end surface (H in the drawing) of the work 7 is machined, and the perpendicularity to the shaft can be machined well. Further, at the time of this end face machining, the position of the work piece can be detected by the end face position detection sensor 24 to determine the cutting amount (cutting amount).

【0021】尚、本実施例において振れ検出センサ11
a,11bは静電容量式の距離センサを用いたが、渦電
流センサや電気マイクロなどの他のセンサを用いてもよ
い。また主軸1に回転位置検出センサを設けているが、
NC切削装置自体に主軸2の回転位置検出センサを内蔵
している場合はこれを兼用してもよく、また直接被削物
7やシャフト8の回転位置結果を測定していもよい。さ
らに本実施例では演算結果を一旦記録し、その後必要な
補正量を同期して出力する構成としたが、バイト3の位
置と主軸2の位置をもとに補正量を瞬時に計算,出力し
てもよい。
In the present embodiment, the shake detection sensor 11
Although capacitance type distance sensors are used for a and 11b, other sensors such as an eddy current sensor and an electric micro may be used. In addition, although a rotational position detection sensor is provided on the spindle 1,
If the NC cutting device itself has a built-in rotational position detection sensor for the spindle 2, it may also be used as the sensor, or the rotational position result of the work 7 or the shaft 8 may be directly measured. Further, in the present embodiment, the calculation result is temporarily recorded and then the necessary correction amount is output in synchronization, but the correction amount is instantaneously calculated and output based on the position of the bite 3 and the position of the spindle 2. May be.

【0022】[0022]

【発明の効果】以上のように本発明のバイト移動式切削
装置では、バイトはバネ部に一体的に固定されておりこ
のバネ部を微動する微動装置を有し、このバネ部の振動
変位量を変位計が正確に検出し、演算装置が出力を調整
しフィードバック制御を行うことにより高精度の加工を
行うことができる。 また、被加工物はシャフト部と被加
工部から成り、第1の振れセンサはシャフト部の振れを
計測し、演算装置はこの測定精度が高い振れ量検出値か
ら補正量を精度良く演算し、バイトは被加工物の被加工
部を切削するため、高精度に加工できる。
As described above, in the cutting tool moving type cutting apparatus of the present invention, the cutting tool is integrally fixed to the spring portion.
Has a fine movement device that finely moves the spring part of the
The displacement meter accurately detects the amount of displacement, and the arithmetic unit adjusts the output.
High-precision machining by performing feedback control
It can be carried out. In addition, the work piece is
The first run-out sensor consists of engineering parts
Is the measured value of the shake amount highly accurate?
Accurately calculate the correction amount from the
Since the part is cut, it can be processed with high precision.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例におけるバイト移動式切
削装置の概略平面図
FIG. 1 is a schematic plan view of a cutting tool moving type cutting device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例におけるバイト移動式切
削装置の側面概略図
FIG. 2 is a schematic side view of the cutting tool moving type cutting device according to the first embodiment of the present invention.

【図3】本発明の第1の実施例におけるバイトの同期方
法を説明する説明図
FIG. 3 is an explanatory diagram illustrating a byte synchronization method according to the first embodiment of this invention.

【図4】本発明の第2の実施例におけるバイト移動式切
削装置の概略図
FIG. 4 is a schematic view of a cutting tool moving type cutting device according to a second embodiment of the present invention.

【図5】本発明の第2の実施例におけるバイト移動式切
削装置の要部平面図
FIG. 5 is a plan view of an essential part of a cutting tool moving type cutting device according to a second embodiment of the present invention.

【図6】従来のNC加工切削装置の概略平面図FIG. 6 is a schematic plan view of a conventional NC processing and cutting device.

【図7】被削物の完成図[Figure 7] Completion drawing of the work piece

【図8】第2の被削物の平面図FIG. 8 is a plan view of a second work piece.

【符号の説明】[Explanation of symbols]

2 主軸 3 バイト 4 NCテーブル 5 制御装置 8 シャフト 10 回転位置検出センサ 11,11a,11b 振れ検出センサ 12 演算装置 13 出力回路 14 微動装置 16 微動台 18 圧電素子 21 第2のバイト 22 第2の微動装置 23 第2の出力回路 24 端面位置検出センサ 2 spindles 3 bytes 4 NC table 5 control device 8 shafts 10 Rotational position detection sensor 11, 11a, 11b shake detection sensor 12 arithmetic unit 13 Output circuit 14 Fine movement device 16 tremor 18 Piezoelectric element 21 second byte 22 Second fine movement device 23 Second output circuit 24 End face position detection sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 享 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平3−111148(JP,A) 特開 昭64−58457(JP,A) 特開 昭63−245303(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23Q 15/00 - 15/28 B23Q 17/00 - 23/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Nakagawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-3-111148 (JP, A) JP-A-64- 58457 (JP, A) JP-A-63-245303 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B23Q 15/00-15/28 B23Q 17/00-23/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 NC切削装置の主軸に設けたチャックで
保持される被削物に固定されたシャフトの振れ量を検出
する振れ検出センサと、前記被削物の回転位置を検出す
る回転位置検出センサと、この回転位置検出センサおよ
振れ検出センサの測定値から前記被削物の加工点にお
けるバイト位置の補正量を算出する演算装置と、前記補
正量を前記被削物の回転位置および前記加工点に同期し
て出力する出力回路と、この出力回路の出力によりバイ
が固定された微動台を微動させる駆動源を有する微動
装置と、この微動装置が固定されたNCテーブルとを備
え、前記演算装置は、前記微動台の変位量を検出する
位計により検出される実際の変位と前記算出される補
正量との差をフィードバックして前記バイトの微動量
制御し、前記被削物を切削する構成としたバイト移動式
切削装置。
1. A deflection amount of a shaft fixed to a work held by a chuck provided on a main shaft of an NC cutting device is detected.
A shake detection sensor for the rotational position detection sensor for detecting a rotational position of the workpiece material, Oyo this rotation position detecting sensor
An arithmetic unit for calculating a correction amount of the byte position in the machining point of the workpiece material from the measured values of the fine vibration detection sensor, the correction amount output for output in synchronization with the rotational position and the working point of the workpiece material The arithmetic unit includes a circuit, a fine movement device having a drive source for finely moving the fine movement table having a bit fixed by the output of the output circuit, and an NC table to which the fine movement device is fixed . A variable that detects the amount of displacement of the fine motion table.
By feeding back the difference between the correction amount actual displacement amount detected by the position meter and the calculated control the fine movement amount of the byte, the byte movable cutting apparatus configured to cut a work object.
【請求項2】 NC切削装置のNCテーブルに主軸に平
行方向および直角方向のそれぞれの方向に移動する微動
装置を備え、それぞれの微動装置にバイトを固定した請
求項1記載のバイト移動式切削装置。
2. The NC table of the NC cutting device is provided with a flat table for the spindle.
2. The cutting tool moving type cutting device according to claim 1, further comprising a fine movement device that moves in each of a row direction and a right-angled direction , and a bite is fixed to each fine movement device.
【請求項3】 NC切削装置の主軸に設けたチャックと
対向する位置に被加工物の長手方向の位置を検出する端
面位置検出センサを有する請求項1または2記載のバイ
ト移動式切削装置。
3. A byte movable cutting device according to claim 1, wherein having an end face position detecting sensor for detecting the longitudinal position of the workpiece to the chuck opposite to the position provided to the main axis of the NC cutting apparatus.
JP28345093A 1992-12-03 1993-11-12 Tool cutting machine Expired - Fee Related JP3412208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28345093A JP3412208B2 (en) 1992-12-03 1993-11-12 Tool cutting machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32392592 1992-12-03
JP4-323925 1992-12-03
JP28345093A JP3412208B2 (en) 1992-12-03 1993-11-12 Tool cutting machine

Publications (2)

Publication Number Publication Date
JPH06218652A JPH06218652A (en) 1994-08-09
JP3412208B2 true JP3412208B2 (en) 2003-06-03

Family

ID=26555045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28345093A Expired - Fee Related JP3412208B2 (en) 1992-12-03 1993-11-12 Tool cutting machine

Country Status (1)

Country Link
JP (1) JP3412208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105302069A (en) * 2015-11-23 2016-02-03 长春工业大学 Novel polishing method, based on polishing force control, for complex curved surface

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735028A (en) * 1994-10-19 1998-04-07 Matsushita Electric Industrial Co., Ltd. Processing apparatus with movable processing tool and processing method
KR960013532A (en) * 1994-10-19 1996-05-22 모리시타 요이찌 Bite cutting device and cutting method
JP6290012B2 (en) * 2014-06-18 2018-03-07 株式会社東芝 Machine Tools

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105302069A (en) * 2015-11-23 2016-02-03 长春工业大学 Novel polishing method, based on polishing force control, for complex curved surface
CN105302069B (en) * 2015-11-23 2017-10-31 长春工业大学 The complex-curved Polishing machining method controlled based on polishing power

Also Published As

Publication number Publication date
JPH06218652A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
JP2008200798A (en) Machine tool having workpiece reference position setting function by contact detection
US5361470A (en) Processing apparatus with movable processing tool
JP2706186B2 (en) Calibration method of arm origin of articulated robot
JP3412208B2 (en) Tool cutting machine
CN111624940B (en) Information processing apparatus and information processing method
JP2002273642A (en) Ball screw feed drive correcting method, and ball screw feed drive device
EP0708391B1 (en) Processing apparatus with movable processing tool and processing method
US5735028A (en) Processing apparatus with movable processing tool and processing method
KR910007053B1 (en) Method and system for controlling a machine tool such as turning machine
JPH07136801A (en) Mobile turning tool type cutter
JP3405744B2 (en) Measuring method of workpiece and time-dependent change in machine tool
JPH08171407A (en) Machining tool shift type machining device and its method
JP2607533B2 (en) Processing device and processing method
JP3686450B2 (en) Rotor processing equipment with shaft
JPH06210552A (en) Lathe tool bed
KR100217697B1 (en) Byte moving type cutting method and device
JPH1015713A (en) Cutting tool holder unit, working machine using the unit, and working method for rotary head drum
JPH0798256A (en) Driving force measuring instrument
JP2902706B2 (en) Feed control device
KR19980072253A (en) Waveform Correction System for Precision Machining Using Piezoelectric Microincision Device
JPH0612111A (en) Position controlling method for robot arm and position controller
KR100224862B1 (en) Apparatus and method for callibration of robot arm
JPH10286745A (en) Work measurement method for nc machine tool
JPH1043902A (en) Drum work device and work method
JPH0899254A (en) Spindle device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees