JPH05171B2 - - Google Patents

Info

Publication number
JPH05171B2
JPH05171B2 JP62062592A JP6259287A JPH05171B2 JP H05171 B2 JPH05171 B2 JP H05171B2 JP 62062592 A JP62062592 A JP 62062592A JP 6259287 A JP6259287 A JP 6259287A JP H05171 B2 JPH05171 B2 JP H05171B2
Authority
JP
Japan
Prior art keywords
polished
polishing
polishing tool
tool
rotated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62062592A
Other languages
Japanese (ja)
Other versions
JPS63232932A (en
Inventor
Manabu Ando
Nobuo Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6259287A priority Critical patent/JPS63232932A/en
Publication of JPS63232932A publication Critical patent/JPS63232932A/en
Priority to US07/401,477 priority patent/US4956944A/en
Publication of JPH05171B2 publication Critical patent/JPH05171B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、予めある程度の精度に研磨された光
学素子等の被研磨物をさらに高精度に研磨するた
めの修正研磨方法およびその装置に関する。 〔従来の技術〕 従来、この種の修正研磨方法およびその装置と
しては、下記のイおよびロのものが知られてい
る。 イ 第5図に示すように、図示しない駆動手段に
より回転されるワーク回転軸25′に結合され
た支持体14′の上方に、該支持体14′の半径
方向に揺動自在な棒体20′を設け、該棒体2
0′の下端部に設けられた工具支持体18′の下
面に被研磨物12′の径に比較して小径の研磨
パツド16′を接着固定した研磨装置を使用し、
円板状光学ガラス等の被研磨物12′を前記支
持体14′に接着することによつてワーク回転
軸25′に対し回転対称となるように固定支持
する。 ついで、前記支持体14′を矢印B方向へ回
転させることにより前記被研磨物12′を回転
させ、ノズル22′から研磨液を供給しつつ、
工具支持体18′を矢印C方向へ回転させなが
ら被研磨物12′に押圧すると同時に矢印A方
向に揺動させて修正研磨する。 ロ 上記イの方法および装置における工具支持体
18′を矢印C方向へ回転させる代わりに、工
具支持体の被研磨物の半径方向の揺動運動の回
数および幅を、被研磨物の被研磨位置に応じて
変化させて研磨する方法およびその装置(米国
特許第3564776号明細書参照)。 〔発明が解決しようとする問題点〕 上述した従来の研磨方法およびその装置は、い
ずれも円板状の研磨パツドを使用したものであつ
て、被研磨物の大きなうねりの除去は可能である
が、軸対称形状の被研磨物を研磨加工する際に発
生する、被研磨物の回転中心に対して半径方向に
交互に形成された同心円状の微小な凸部と凹部
(以下、「リツプル」という。)を除去することが
できないという問題点があつた。 本発明は、上記従来の技術の有する問題点に鑑
みてなされたものであつて、被研磨物のリツプル
を確実に除去することができる修正研磨方法およ
びその装置を提供することを目的とする。 〔問題点を解決するための手段〕 上記目的を達成するため、本発明の修正研磨方
法は、被研磨面にリツプルを有する被研磨物を回
転運動させ、その被研磨面に対し、有効接触面が
輪帯状である研磨工具を回転させながら圧接し、
さらに、該研磨工具を、被研磨物の回転半径方向
に走査運動させると同時に、前記研磨工具を支持
する揺動アームを前記走査運動の移動軌跡上に沿
つて移動させるとともに、前記研磨工具を揺動ア
ームによつて前記走査運動の移動軌跡にほぼ平行
方向に揺動させる、すなわち前記リツプルに対し
てほぼ法線方向に揺動運動させることにより、前
記被研磨物と前記研磨工具との間に相対速度を生
じさせるものである。 また、前記相対速度に占める被研磨物の回転運
動の割合を小さくするとよい。 さらに、上記方法の発明を実施するための装置
としては、駆動手段により回転されるワーク支持
体と、該ワーク支持体に支持されて回転され、そ
の被研磨面の回転中心に対して半径方向に交互に
形成された同心円上の微小な凹凸を有する被研磨
物の被研磨面に圧接される、有効接触面が輪帯状
であり、その輪帯の内径の中央部を通り被研磨面
に垂直な軸を中心に強制回転される研磨工具とを
備え、さらに、該研磨工具を揺動自在に支持しか
つ前記ワーク支持体の回転半径方向に走査運動さ
せる送り装置と、前記研磨工具を前記走査運動の
移動軌跡にほぼ平行方向に揺動運動させるための
前記送り装置上に設けられた揺動装置を有する修
正研磨装置。 〔作用〕 予めある程度の精度に研磨されたリツプルを有
する被研磨物をワーク支持体上に固定支持させ、
駆動装置を起動して前記ワーク支持体を回転させ
ることによつて前記研磨物を回転させる。つい
で、強制回転する有効接触面が輪帯状である研磨
工具をその送り装置および揺動装置を作動させて
前記ワーク支持体の回転半径方向に走査運動させ
ると同時に前記リツプルに対しほぼ法線方向へ揺
動運動させると、前記リツプルに対し研磨工具の
輪対状の有効接触面が前記リツプルの山部にのみ
あたり、前記リツプルの山部のみを除去する。こ
の場合、前記研磨工具の走査運動により被研磨物
の被研磨面の広い範囲にわたりリツプルの除去が
なされるとともに、研磨工具の揺動運動は前記研
磨工具の強制回転と相まつて研磨工具と被研磨物
との相対速度を生じさせる主要な要素となつて、
迅速にリツプルの除去がなされ、さらに、被研磨
物の回転運動は、リツプルの周方向全域に均一に
除去するための要素となる。 〔実施例〕 本発明の実施例を図面に基づいて説明する。 第1図a,bに示すように、ワーク支持体14
は、機枠10に軸承されたワーク回転軸25に結
合されており、駆動手段としての駆動モータ26
によつて歯車27aおよ27を介して回転され
る。一方、研磨工具28は、アーム31に一体に
設けられた頭部31aに軸承され、該頭部31a
の上部に固定されたモータ30等の駆動手段によ
り回転される回転軸29と結合されて、強制回転
される。 また、機枠10上には、前記ワーク支持体14
に並設して、前記研磨工具28を揺動自在に支持
しかつ前記ワーク支持体14の回転半径方向に走
査運動させる送り装置が設けられている。該送り
装置は、機枠10に固設されたスライド案内36
に滑合された送りコラム32に一体的に設けられ
た不図示のナツトに螺合された送りねじ35を有
し、該送りねじ35を送りモータ34によつて正
回転または逆回転させることにより、前記スライ
ド案内36に沿つて送りコラム32を矢印A方向
へ往復移動させるとともに、前記送りコラム32
上部にピン33によつて金具33aを枢着し、該
金具33aの上部に垂直方向に設けたピン42に
より揺動自在に設けられたアーム31から構成さ
れている。さらに、前記アーム31の頭部31a
には、揺動アーム41の一端が枢着されており、
その他端は前記送りコラム32の上部に配設され
たクランク機構40のピン40aにより枢着さ
れ、該クランク機構40をその軸に直結された図
示しないモータにより駆動することによつて前記
揺動アーム41を介して前記頭部31aを揺動さ
せ、ひいては前記研磨工具を揺動運動させるよう
に構成されており、これにより前記送り装置上に
設けられた揺動装置が構成されている。 39は制御装置であつて、スライド案内36に
並設された光学的または磁気的なリニアスケール
またはインダクトシンよりなる送り位置検出ユニ
ツト37a,37bの信号に基づき、研磨工具2
8の揺動運動、走査運動および回転を制御するも
のである。 第2図a,bに示す本発明の研磨工具28は、
円筒状の本体の上端部2箇所に、工具回転軸29
に直角方向に挿入されたドライブピン29aが係
合される切欠28aを備え、下端面にはピツチ、
発泡ポリウレタン等からなる輪帯状の有効接触面
28bが固着されている。そして、工具回転軸2
9の中心線はこの輪帯状の有効接触面28bの内
径の中央部を通つている。 なお、図中38は研磨液供給ノズル22より供
給された研磨液を受ける筺体である。 次に本発明の修正研磨方法の工程について説明
する。 第3図aは、予めある程度の程度に研磨された
被研磨物12を示し、その被研磨面である表面に
はピツチp、深さhのリツプルが存在する。この
ような被研磨物をワーク支持体14上に接着する
ことにより固定支持させ、アーム31をピン33
を支点として回動させて工具回転軸29が前記被
研磨物12の被研磨面に対して垂直になるように
セツトし、必要により研磨液供給ノズル22より
研磨液を供給し、さらに送りモータ34および揺
動モータを起動し、送りねじ35を正または逆回
転させて送りコラム32を所定幅で往復移動させ
ることにより研磨工具を所定幅で走査運動させる
とともに、クランク機構40および揺動アーム4
1を作動させて研磨工具28を被研磨物12のリ
ツプルに対しほぼ法線方向に揺動させ、リツプル
の山部のみを除去し、第3図bに示すようなリツ
プルの除去がなされた修正研磨された被研磨物1
2aを得る。 第4図は、被研磨物12に対する研磨工具28
の相対運動の方向に示し、被研磨物12は矢印b
方向へ回転するとともに、矢印C方向に所定幅で
揺動運動し、さらに被研磨物12の回転半径方向
へ位置dからeまでの間の任意幅の走査運動をす
る。これらの各回転、揺動運動および走査運動に
より、被研磨物12と研磨工具28との相対速度
を生じさせリツプルを除去する。 次に、本発明において、微小なリツプルを除去
するために必要な研磨工具の運動条件や形状につ
いて検討した結果を示す。 この検討で使用したテストピースは、外径170
mm、曲率半径490mmの石英ガラス製のレンズであ
り、その球面には事前にピツチ6〜7mm、凹凸の
差約0.1μmのリツプルを発生させてある。一方、
研磨工具Aの外径は20mmとし、当り面を全面あた
りとし、被加工物の曲率と等しい凹面になつてい
る。(以下、工具Bも当り部分は同様の凹面)、研
磨工具Bは外径20mm、内径15mmの輪帯あたりと
し、当り面はすべてピツチにて作成してある。ま
た、この検討には、第1図に示す研磨装置を使用
した。 工具の運動条件の検討 それぞれ被研磨物の中心から半径方向60mm〜80
mmの区間に対して検討を行なつた。また、表1中
の速度成分比は被研磨物上の中心から半径方向70
mmでの平均した値である。検討1は従来例の例、
検討2は主要な研磨運動を構成する被研磨物の回
転運動、工具の回転運動、工具の揺動運動の3要
素をほぼ均等にした場合、検討3は被研磨物の回
転運動の割合を10%以下とした例である。この場
合の使用研磨工具はBを使用した。なお、走査は
1mm/minの速度で被研磨物上60mm〜80mmの区間
の走査とした。 検討1では除去量は多いが、リツプルはそのま
ま残り除去が進まない。 検討2ではリツプルの除去は多少進むが、その
除去量自体が少ないので、リツプルを除去するに
は非常に長い時間がかかる。 検討3では、リツプルの除去は進んだ。 この検討内容から次のことを導き出せる。すな
わち、被研磨物と研磨工具との間の相対速度に占
める被研磨物の回転の割合は低い方がよい。この
時、他の要素のうち、工具の走査は、リツプルの
除去を連続して被研磨物上の広い部分にわたり行
なうための要素なので、前記相対速度に占める研
磨工具の走査運動が高い割合を占めることはな
い。また、研磨工具を揺動運動させるための揺動
機構として通常第1図に示されるようにクランク
機構を用いるが、クランク機構から振動が発生し
やすく、また、揺動運動する部分の重量の制約、
クランク機構の負荷から揺動運動の単位時間内の
回数はあまり大きくできない。そして揺動運動の
ストロークも、クランク機構の大きさ、負荷から
あまり長くできない。従つて、相対沿度において
研磨工具の揺動運動が極端に高い割合を占めるこ
とは、相対速度の絶対値がある程度大きくなると
困難となる。しかし、研磨工具の回転を除けば、
研磨工具の揺動運動による相対速度が主ではあ
る。研磨工具の回転はその自由度は大きく、その
相対速度に占める割合を大きくするとは可能であ
る、検討3のようにある程度大きな相対速度の中
でも87%を占めることができる 工具の形状の検討 検討3の条件で研磨工具AおよびBのそれぞれ
のリツプル除去能力の差を検討した。この場合、
当り面単位面積にかかる荷重はそれぞれ等しくな
るようにした。その結果、研磨工具Bのリツプル
除去能力が良好であり、研磨工具Aの能力は低い
ものであつた。研磨工具Aと研磨工具Bとの差は
研磨工具の被加工物上における運動時の安定性の
差と考えることができる。すなわち、安定性の悪
い研磨工具では、研磨加工中の、とくに揺動時
に、リツプルの谷の部分にも研磨工具があたつて
しまい、リツプル山部を選択的に除去しようとい
う意図に反した状態の研磨になると考えられる。 以上のことから、研磨工具は輪帯状であること
と検討3の条件、言い換えるなら、リツプルの法
線方向の相対速度を主とし、リツプルの接線方向
の相対速度成分をなるべく減じたものとすること
をともに満たすことが、リツプルを除去するのに
必要なことがわかつた。また、研磨工具の有効接
触面の外径はリツプルの少なくと2倍以上あるこ
とが好ましい。
[Industrial Field of Application] The present invention relates to a corrective polishing method and apparatus for polishing an object to be polished, such as an optical element, which has been previously polished to a certain degree of precision, to a higher degree of precision. [Prior Art] Conventionally, as this type of corrective polishing method and apparatus thereof, the following methods A and B are known. B As shown in FIG. 5, a rod 20 swingable in the radial direction of the support 14' is placed above the support 14' connected to the work rotation shaft 25' rotated by a drive means (not shown). ', and the rod 2
A polishing device is used in which a polishing pad 16' having a diameter smaller than that of the object to be polished 12' is adhesively fixed to the lower surface of a tool support 18' provided at the lower end of the polishing tool 0'.
An object to be polished 12', such as a disk-shaped optical glass, is fixedly supported by adhering it to the support 14' so as to be rotationally symmetrical with respect to the work rotation axis 25'. Next, by rotating the support body 14' in the direction of arrow B, the object to be polished 12' is rotated, and while supplying the polishing liquid from the nozzle 22',
The tool support 18' is rotated in the direction of arrow C and pressed against the object to be polished 12', and simultaneously swung in the direction of arrow A for corrective polishing. (b) Instead of rotating the tool support 18' in the direction of arrow C in the method and apparatus of (a) above, the number and width of the oscillating movement of the tool support in the radial direction of the object to be polished is adjusted to the position of the object to be polished. A method and apparatus for polishing by changing the polishing according to the conditions (see US Pat. No. 3,564,776). [Problems to be Solved by the Invention] The conventional polishing methods and devices described above all use a disk-shaped polishing pad, and although it is possible to remove large undulations from the object to be polished, , small concentric convexes and recesses (hereinafter referred to as "ripples") are formed alternately in the radial direction with respect to the rotation center of the workpiece, which occur when polishing an axisymmetric workpiece. .) could not be removed. The present invention has been made in view of the problems of the above-mentioned conventional techniques, and it is an object of the present invention to provide a corrective polishing method and an apparatus therefor, which can reliably remove ripples from a polished object. [Means for Solving the Problems] In order to achieve the above object, the corrective polishing method of the present invention rotates a workpiece having ripples on the surface to be polished, and creates an effective contact surface with respect to the surface to be polished. is pressed while rotating the abrasive tool, which has a ring-like shape.
Further, the polishing tool is moved in a scanning motion in the rotation radius direction of the object to be polished, and at the same time, a swinging arm supporting the polishing tool is moved along a locus of movement of the scanning motion, and the polishing tool is rocked. By causing the movable arm to swing in a direction substantially parallel to the locus of the scanning movement, that is, to swing in a direction substantially normal to the ripple, a gap between the object to be polished and the polishing tool is created. It gives rise to relative velocity. Further, it is preferable to reduce the ratio of the rotational movement of the object to be polished to the relative speed. Furthermore, an apparatus for carrying out the invention of the above-mentioned method includes a work support rotated by a driving means, a work support that is supported by the work support and rotated, and is rotated in a radial direction with respect to the rotation center of the surface to be polished. The effective contact surface that comes into pressure contact with the polished surface of the workpiece, which has minute irregularities on concentric circles formed alternately, is in the form of an annular zone, and a contact surface that passes through the center of the inner diameter of the annular zone and is perpendicular to the polished surface. a polishing tool that is forcibly rotated about a shaft; A correction polishing device having a swing device provided on the feed device for swinging motion in a direction substantially parallel to a movement locus of the correction polishing device. [Operation] A workpiece to be polished having ripples that has been polished to a certain degree of precision is fixedly supported on a workpiece support,
The polishing object is rotated by starting the drive device and rotating the work support. Next, the polishing tool, which is forcibly rotated and has an annular effective contact surface, is moved in a scanning direction in the direction of the rotation radius of the workpiece support by operating its feeding device and swinging device, and at the same time in a direction substantially normal to the ripple. When the polishing tool is rocked, the ring-shaped effective contact surface of the polishing tool contacts only the peaks of the ripples, and only the peaks of the ripples are removed. In this case, the scanning motion of the polishing tool removes ripples over a wide range of the polished surface of the workpiece, and the rocking motion of the polishing tool, together with the forced rotation of the polishing tool, causes the polishing tool and workpiece to be polished. It is the main element that causes the relative velocity with objects,
The ripples are quickly removed, and furthermore, the rotational movement of the object to be polished is a factor in uniformly removing ripples over the entire circumferential area. [Example] An example of the present invention will be described based on the drawings. As shown in FIGS. 1a and 1b, the workpiece support 14
is coupled to a work rotation shaft 25 supported on the machine frame 10, and is connected to a drive motor 26 as a drive means.
is rotated by gears 27a and 27. On the other hand, the polishing tool 28 is rotatably supported by a head 31a provided integrally with the arm 31.
It is coupled to a rotating shaft 29 that is rotated by a driving means such as a motor 30 fixed to the upper part of the holder, and is forced to rotate. Further, on the machine frame 10, the work support 14
A feeding device is provided in parallel with the polishing tool 28 to swingably support the polishing tool 28 and to scan the polishing tool 28 in the direction of the rotation radius of the workpiece support 14 . The feeding device includes a slide guide 36 fixed to the machine frame 10.
A feed screw 35 is screwed to a nut (not shown) integrally provided to a feed column 32 that is slidably fitted to the feed column 32, and the feed screw 35 is rotated forward or backward by a feed motor 34. , reciprocates the feed column 32 in the direction of arrow A along the slide guide 36, and moves the feed column 32 back and forth in the direction of arrow A.
It consists of an arm 31 which has a metal fitting 33a pivotally attached to the upper part thereof by a pin 33, and is swingably provided by a pin 42 provided vertically on the upper part of the metal fitting 33a. Furthermore, the head 31a of the arm 31
One end of a swinging arm 41 is pivotally connected to the
The other end is pivotally connected by a pin 40a of a crank mechanism 40 disposed on the upper part of the feed column 32, and the swing arm is driven by a motor (not shown) directly connected to the shaft of the crank mechanism 40. 41 to swing the head 31a and, in turn, swing the polishing tool, thereby forming a swing device provided on the feed device. Reference numeral 39 denotes a control device that controls the polishing tool 2 based on signals from feed position detection units 37a and 37b, which are arranged in parallel with the slide guide 36 and are composed of optical or magnetic linear scales or inductors.
8 to control the swinging movement, scanning movement and rotation. The polishing tool 28 of the present invention shown in FIGS. 2a and 2b includes:
Tool rotation shafts 29 are located at two locations on the upper end of the cylindrical body.
A notch 28a is provided in which a drive pin 29a inserted perpendicularly is engaged, and a pitch is provided on the lower end surface.
A ring-shaped effective contact surface 28b made of foamed polyurethane or the like is fixed. And the tool rotation axis 2
9 passes through the center of the inner diameter of this annular effective contact surface 28b. Note that 38 in the figure is a housing that receives the polishing liquid supplied from the polishing liquid supply nozzle 22. Next, the steps of the corrective polishing method of the present invention will be explained. FIG. 3a shows a polished object 12 that has been polished to a certain degree in advance, and ripples with a pitch p and a depth h exist on the polished surface. The workpiece to be polished is fixedly supported by adhering it to the workpiece support 14, and the arm 31 is connected to the pin 33.
The tool rotation axis 29 is set perpendicular to the surface to be polished of the object 12 to be polished by rotating the tool as a fulcrum, and if necessary, the polishing liquid is supplied from the polishing liquid supply nozzle 22, and the feed motor 34 Then, the swing motor is started, the feed screw 35 is rotated forward or backward, and the feed column 32 is reciprocated in a predetermined width, thereby causing the polishing tool to perform a scanning motion in a predetermined width, and the crank mechanism 40 and the swing arm 4
1, the polishing tool 28 is oscillated in a direction substantially normal to the ripples on the object to be polished 12, and only the peaks of the ripples are removed, and the ripples are removed as shown in FIG. 3b. Polished object 1
Get 2a. FIG. 4 shows the polishing tool 28 for the object 12 to be polished.
The object to be polished 12 is shown in the direction of the relative movement of arrow b.
The polishing member rotates in the direction of arrow C, swings in a predetermined width in the direction of arrow C, and further performs a scanning motion in an arbitrary width from position d to e in the rotation radius direction of the object to be polished 12. These rotations, rocking motions, and scanning motions generate relative speeds between the workpiece 12 and the polishing tool 28 to remove ripples. Next, the results of a study on the motion conditions and shape of the polishing tool necessary for removing minute ripples in the present invention will be shown. The test piece used in this study had an outer diameter of 170 mm.
The lens is made of quartz glass and has a radius of curvature of 490 mm, and ripples are generated in advance on its spherical surface with a pitch of 6 to 7 mm and a difference in unevenness of about 0.1 μm. on the other hand,
The outer diameter of the polishing tool A is 20 mm, and the contact surface is a concave surface that is the same as the curvature of the workpiece. (Hereinafter, tool B also has a similar concave contact surface.) Polishing tool B has a ring zone with an outer diameter of 20 mm and an inner diameter of 15 mm, and all contact surfaces are made of pitch. Further, in this study, a polishing apparatus shown in FIG. 1 was used. Consideration of tool motion conditions 60mm to 80mm in the radial direction from the center of the object to be polished
The study was conducted on an interval of mm. In addition, the velocity component ratio in Table 1 is 70° in the radial direction from the center on the object to be polished.
This is the average value in mm. Study 1 is a conventional example,
In Study 2, when the three elements of the main polishing motion, namely the rotational movement of the object to be polished, the rotational movement of the tool, and the oscillating movement of the tool, are made approximately equal, in Study 3, the ratio of the rotational movement of the object to be polished is set to 10. % or less. In this case, B was used as the polishing tool. The scanning was performed at a speed of 1 mm/min over an area of 60 mm to 80 mm above the object to be polished. In Study 1, the removal amount is large, but the ripples remain and the removal does not progress. In Study 2, the ripples are removed to some extent, but the amount of removal itself is small, so it takes a very long time to remove the ripples. In study 3, ripple removal progressed. The following can be derived from this study. That is, the ratio of the rotation of the polished object to the relative speed between the polished object and the polishing tool should be low. At this time, among other factors, the scanning of the polishing tool is an element for continuously removing ripples over a wide area of the workpiece, so the scanning movement of the polishing tool accounts for a high proportion of the relative speed. Never. Furthermore, although a crank mechanism as shown in Fig. 1 is normally used as a swinging mechanism for swinging the polishing tool, vibrations are likely to be generated from the crank mechanism, and there are also restrictions on the weight of the swinging part. ,
Due to the load on the crank mechanism, the number of rocking movements per unit time cannot be increased very much. Also, the stroke of the rocking motion cannot be very long due to the size and load of the crank mechanism. Therefore, it becomes difficult for the swinging motion of the polishing tool to occupy an extremely high proportion of the relative creep when the absolute value of the relative speed becomes large to a certain extent. However, except for the rotation of the polishing tool,
The relative speed due to the oscillating motion of the polishing tool is the main factor. The rotation of the polishing tool has a large degree of freedom, and it is possible to increase its proportion of the relative speed.As in study 3, we will consider a tool shape that can account for 87% of the relative speed even at a relatively high speed.Study 3 The difference in ripple removal ability between polishing tools A and B was examined under the following conditions. in this case,
The load applied to the unit area of the contact surface was made equal to each other. As a result, the ability of polishing tool B to remove ripples was good, and the ability of polishing tool A was low. The difference between polishing tool A and polishing tool B can be considered to be a difference in stability during movement of the polishing tool on the workpiece. In other words, with an unstable polishing tool, during polishing, especially during rocking, the polishing tool will hit the valleys of the ripples, which is contrary to the intention of selectively removing the peaks of the ripples. It is thought that this will result in polishing. From the above, the polishing tool should be ring-shaped and the conditions of Study 3, in other words, the relative velocity should be mainly in the normal direction of the ripples and the relative velocity component in the tangential direction of the ripples should be reduced as much as possible. It was found that satisfying both is necessary to eliminate ripples. Further, it is preferable that the outer diameter of the effective contact surface of the polishing tool is at least twice the ripple.

【表】 次に、加工条件の1例を前述の検討に準じてあ
げる。 被研磨物12を外径170mm、曲率半径490mmの石
英ガラス製の凸レンズとする。研磨工具28の有
効接触面をピツチ材で成形された外径20mm、内径
17.5mmの切れ目のない輪帯状とし、被研磨物の回
転数をa=2rpm、研磨工具の回転数をb=
200rpm、揺動を100サイクル/minでストーロー
クc=10mm、走査位置d=40mm、e=70mm、走査
速度=1mm/minとし、研磨液を6重量パーセン
トの酸化セリウムとした。この加工条件の下でピ
ツチp=6〜7mm、凸凹の差h=0.1μmのリツプ
ルを有する材料を2回研磨したところリツプルの
深さh=0.06μmに減り、さらにもう3回研磨し
て計5回の研磨を行なつたところh=0.03μmと
なつてほぼ満足する結果が得られた。 これを、従来の方法と比較した場合を第2表に
示す。
[Table] Next, an example of processing conditions will be given based on the above study. The object to be polished 12 is a convex lens made of quartz glass with an outer diameter of 170 mm and a radius of curvature of 490 mm. The effective contact surface of the polishing tool 28 is made of pitch material with an outer diameter of 20 mm and an inner diameter.
The shape is a 17.5 mm continuous ring, the rotation speed of the object to be polished is a = 2 rpm, and the rotation speed of the polishing tool is b =
The polishing solution was 200 rpm, oscillation was 100 cycles/min, stroke c was 10 mm, scanning position d was 40 mm, e was 70 mm, scanning speed was 1 mm/min, and the polishing liquid was 6 weight percent cerium oxide. Under these processing conditions, when a material with ripples with pitch p = 6 to 7 mm and unevenness difference h = 0.1 μm was polished twice, the ripple depth h = 0.06 μm, and after polishing three more times, the When polishing was performed five times, h=0.03 μm, which was a nearly satisfactory result. Table 2 shows a comparison with the conventional method.

〔発明の効果〕〔Effect of the invention〕

本発明は、上述のとおり構成されているので、
以下に記載するような効果を奏する。 本方法の発明は、被研磨物と有効接触面が輪帯
状である研磨工具との間の相対速度を、被研磨物
の回転と、研磨工具の回転、揺動運動および走査
運動により生じさせるので、被研磨物の広い範囲
にわたつてリツプルの除去が可能となるとともに
研磨工具の振動が抑制され、高精度の修正研磨が
できる。 また、研磨工具の有効接触面が輪帯状であるの
で、その有効接触面がリツプルの山部のみに当
り、迅速かつ高精度の修正研磨ができる。 本装置の発明は、上記効果のほか、ワーク支持
体、研磨工具の回転、送り装置または揺動装置を
それぞれ別個に制御できるので、リツプルの除去
に最適な被研磨物と研磨工具との相対速度を得る
ことができ、本方法の発明の実施に適している。
Since the present invention is configured as described above,
This produces the effects described below. The invention of this method is such that the relative velocity between the workpiece and the polishing tool whose effective contact surface is in the form of an annular zone is generated by the rotation of the workpiece and the rotation, oscillating motion and scanning motion of the polishing tool. This makes it possible to remove ripples over a wide range of objects to be polished, suppresses vibration of the polishing tool, and enables highly accurate corrective polishing. Furthermore, since the effective contact surface of the polishing tool is annular, the effective contact surface contacts only the ridges of the ripples, allowing quick and highly accurate corrective polishing. In addition to the above-mentioned effects, the invention of this device allows the work support, the rotation of the polishing tool, the feed device, or the swing device to be controlled separately, so that the relative speed between the workpiece to be polished and the polishing tool is optimal for removing ripples. can be obtained and is suitable for carrying out the invention of this method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の研磨装置の一実施例を示し、
aはその縦断面図、bはaの−矢視図、第2
図aは研磨工具の斜視図、第2図bは研磨工具の
取付状態の断面図、第3図aは修正研磨前の被研
磨物の断面図、第3図bは修正研磨後の被研磨物
の断面図、第4図は被研磨物に対する研磨工具の
相対運動を示した上面図、第5図は従来の研磨方
法の1例を示した斜視図である。 10……機枠、12……被研磨物、14……ワ
ーク支持体、22……研磨液供給ノズル、26…
…駆動モータ、27,27a……歯車体、28…
…研磨工具、29……工具回転軸、30……モー
タ、31……アーム、32……送りコラム、3
3,42……ピン、34……送りモータ、35…
…送りねじ、36……スライド案内、38……筺
体、39……制御装置、40……クランク機構、
41……揺動アーム。
FIG. 1 shows an embodiment of the polishing apparatus of the present invention,
a is its vertical cross-sectional view, b is a -arrow view of a, the second
Figure a is a perspective view of the polishing tool, Figure 2 b is a cross-sectional view of the polishing tool installed, Figure 3 a is a cross-sectional view of the object to be polished before corrective polishing, and Figure 3 b is a cross-sectional view of the workpiece after corrective polishing. FIG. 4 is a top view showing the relative movement of the polishing tool with respect to the object to be polished, and FIG. 5 is a perspective view showing an example of a conventional polishing method. DESCRIPTION OF SYMBOLS 10... Machine frame, 12... Workpiece to be polished, 14... Work support, 22... Polishing liquid supply nozzle, 26...
...Drive motor, 27, 27a...Gear body, 28...
... Polishing tool, 29 ... Tool rotation axis, 30 ... Motor, 31 ... Arm, 32 ... Feed column, 3
3, 42...Pin, 34...Feed motor, 35...
...Feed screw, 36...Slide guide, 38...Housing, 39...Control device, 40...Crank mechanism,
41... Swing arm.

Claims (1)

【特許請求の範囲】 1 被研磨物12の被研磨面の回転中心に対して
半径方向に交互に形成された同心円状の微小な凹
凸部を有する被研磨物12を回転運動させ、その
被研磨面に対し、有効接触面が輪帯状である研磨
工具28を、その輪帯の内径の中央部を通り被研
磨面に垂直な軸を中心に回転させながら圧接し、
さらに、該研磨工具28を、前記被研磨物12の
回転半径方向に走査運動させると同時に、前記研
磨工具28を支持する揺動アーム31を前記走査
運動の移動軌跡上に沿つて移動させるとともに、
前記研磨工具28を前記揺動アーム31によつて
前記走査運動の移動軌跡にほぼ平行方向に揺動さ
せて、前記被研磨物12と前記研磨工具28との
間に相対速度を生じさせることを特徴とする修正
研磨方法。 2 駆動手段26により回転されるワーク支持体
14と、該ワーク支持体14に支持されて回転さ
れ、その被研磨面の回転中心に対して半径方向に
交互に形成された同心円上の微小な凹凸部を有す
る被研磨物12の被研磨面に圧接される、有効接
触面が輪帯状であり、その輪帯の内径の中央部を
通り被研磨面に垂直な軸を中心に強制回転される
研磨工具28とを備え、さらに、該研磨工具28
を揺動自在に支持し、かつ前記ワーク支持体14
の回転半径方向に走査運動させるための送り装置
と、前記研磨工具28を前記走査運動の移動軌跡
にほぼ平行方向に揺動運動させるための前記送り
装置上に設けられた揺動装置を有する修正研磨装
置。
[Scope of Claims] 1. An object to be polished 12 having concentric fine concave and convex portions formed alternately in the radial direction with respect to the center of rotation of the surface to be polished of the object to be polished 12 is rotated, and the object to be polished is rotated. A polishing tool 28 whose effective contact surface is in the form of a ring is pressed against the surface while rotating around an axis passing through the center of the inner diameter of the ring and perpendicular to the surface to be polished,
Furthermore, the polishing tool 28 is moved in a scanning motion in the rotational radial direction of the object to be polished 12, and at the same time, the swinging arm 31 supporting the polishing tool 28 is moved along the movement locus of the scanning motion,
The polishing tool 28 is swung by the swing arm 31 in a direction substantially parallel to the movement locus of the scanning motion to generate a relative speed between the object to be polished 12 and the polishing tool 28. Features a correction polishing method. 2. A workpiece support 14 rotated by the driving means 26, and minute irregularities on concentric circles that are supported and rotated by the workpiece support 14 and are alternately formed in the radial direction with respect to the rotation center of the surface to be polished. Polishing in which the effective contact surface that is pressed against the polished surface of the workpiece 12 having a section is in the form of an annular zone, and the polishing is forcibly rotated around an axis that passes through the center of the inner diameter of the annular zone and is perpendicular to the polished surface. and a polishing tool 28.
is supported swingably, and the workpiece support 14
A modification comprising: a feeding device for scanning in the radial direction of rotation; and a swinging device provided on the feeding device for swinging the polishing tool 28 in a direction substantially parallel to the trajectory of the scanning motion. Polishing equipment.
JP6259287A 1987-03-19 1987-03-19 Polishing method and device therefor Granted JPS63232932A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6259287A JPS63232932A (en) 1987-03-19 1987-03-19 Polishing method and device therefor
US07/401,477 US4956944A (en) 1987-03-19 1989-08-29 Polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6259287A JPS63232932A (en) 1987-03-19 1987-03-19 Polishing method and device therefor

Publications (2)

Publication Number Publication Date
JPS63232932A JPS63232932A (en) 1988-09-28
JPH05171B2 true JPH05171B2 (en) 1993-01-05

Family

ID=13204748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6259287A Granted JPS63232932A (en) 1987-03-19 1987-03-19 Polishing method and device therefor

Country Status (1)

Country Link
JP (1) JPS63232932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866438B1 (en) * 2012-06-29 2018-06-11 동우 화인켐 주식회사 Adhesive composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2513426B2 (en) * 1993-09-20 1996-07-03 日本電気株式会社 Wafer polishing machine
JPH10329012A (en) 1997-03-21 1998-12-15 Canon Inc Polishing device and polishing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618269A (en) * 1984-06-22 1986-01-14 Canon Inc Curved-face polishing machine
JPS6133665A (en) * 1984-07-27 1986-02-17 新技術開発事業団 Collapse elimination apparatus in artificial lung apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618269A (en) * 1984-06-22 1986-01-14 Canon Inc Curved-face polishing machine
JPS6133665A (en) * 1984-07-27 1986-02-17 新技術開発事業団 Collapse elimination apparatus in artificial lung apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866438B1 (en) * 2012-06-29 2018-06-11 동우 화인켐 주식회사 Adhesive composition

Also Published As

Publication number Publication date
JPS63232932A (en) 1988-09-28

Similar Documents

Publication Publication Date Title
RU2421319C2 (en) Vibration grinding machine
JPH02109672A (en) Device and method for grinding and polishing
JPH05171B2 (en)
JPH05329762A (en) Method and device for polishing curved surface
JP3990205B2 (en) Polishing equipment
JPH032628B2 (en)
JP4208364B2 (en) Spherical surface generating device and spherical surface generating method
JP4460736B2 (en) Polishing equipment
SU1682130A1 (en) Machine for two-side finishing of spherical surfaces
JPS5953153A (en) Method and apparatus for polishing spherical body
JPH0761606B2 (en) Optical lenses, mirrors, etc.
JP2574278B2 (en) Toric surface processing equipment
JPH08118213A (en) Internal cylindrical grinding machine and grinding method
JPH1199454A (en) Polishing device and polishing method
JP2001025943A (en) Outer-periphery surface grinding machine and grinding method for cylindrical work
JPS63232944A (en) Polishing tool
JPH0379150B2 (en)
JP2003225851A (en) Polishing method and polishing machine
JP2004017166A (en) Aspheric lens polishing method and device using cam type sphere center type polisher
JPH0985603A (en) Polishing method and polishing device
JPH03294163A (en) Curved surface working device
JPH0966445A (en) Polishing device and polishing method
JP2001259973A (en) Grinding method and device for peripheral surface of cylindrical work
JPS626948B2 (en)
JP2001179584A (en) Polishing method and polishing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees