JPH05165094A - Projection type display device - Google Patents

Projection type display device

Info

Publication number
JPH05165094A
JPH05165094A JP3327615A JP32761591A JPH05165094A JP H05165094 A JPH05165094 A JP H05165094A JP 3327615 A JP3327615 A JP 3327615A JP 32761591 A JP32761591 A JP 32761591A JP H05165094 A JPH05165094 A JP H05165094A
Authority
JP
Japan
Prior art keywords
light
reflector
light source
lens
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3327615A
Other languages
Japanese (ja)
Inventor
Kazumi Kimura
一己 木村
Hideaki Mitsutake
英明 光武
Shigeru Kawasaki
茂 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3327615A priority Critical patent/JPH05165094A/en
Priority to DE69207362T priority patent/DE69207362T2/en
Priority to EP92117925A priority patent/EP0545052B1/en
Publication of JPH05165094A publication Critical patent/JPH05165094A/en
Priority to US08/403,549 priority patent/US5692819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Projection Apparatus (AREA)

Abstract

PURPOSE:To provide displaying of high resolution by arranging two high brightness regions of a light source on the optical axis, installing an optical element having a shorter focal distance than a reflector in its region near the optical axis, and performing illumination with light from two high brightness regions. CONSTITUTION:A light source 1 has regions alpha, alpha' having high brightness in the neighborhood of two electrodes in such an arrangement that the regions are positioned on the optical axis of the optical system concerned. A reflector 2 has its focal point in the high brightness region alpha on one side of the light source 1. That surface of a lens 2' on the reflector 2 side has the same shape as the reflector 2 and is located in proximity to the reflector 2, while the surface on the light source 1 side assumes either spherical or non-spherical form and constitutes a lens having positive power. A capacitor 4 near a light bulb has a function to direct the beam of illumination light to the incident pupil of a projection lens 8. Therein the high brightness regions alpha, alpha' of the light source 1 are made the most of, and the beam of illumination light whose resolution of extra-axial beam is improved can be obtained through appropriate combining of reflector 2. lens 2', and capacitor 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は投写表示装置、特にスラ
イドプロジェクタや液晶プロジェクタの光源及び照明系
を含めた光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection display device, and more particularly to an optical system including a light source and an illumination system of a slide projector or a liquid crystal projector.

【0002】[0002]

【従来の技術】液晶ライトバルブを用いた液晶プロジェ
クタは大画面・高精細表示のための装置として近年注目
されている。液晶プロジェクタの特徴としては、大画面
投影時に重要な表示像の明るさ、及び解像力を各々光源
の高輝度化、液晶ライトバルブの画素数に対して独立に
担わせることが可能な点にあり、CRT投写型に比べ、
装置のコンパクトさと相まって今後優位な位置を占める
と予想されている。
2. Description of the Related Art A liquid crystal projector using a liquid crystal light valve has recently attracted attention as a device for large-screen / high-definition display. As a feature of the liquid crystal projector, the brightness of the display image, which is important when projecting a large screen, and the resolving power can be independently assigned to the high brightness of the light source and the number of pixels of the liquid crystal light valve, Compared to CRT projection type
Combined with the compactness of the device, it is expected to occupy an advantageous position in the future.

【0003】図7は液晶プロジェクタの基本形態を示す
装置構成例である。メタルハライドランプやハロゲンラ
ンプ等からなる光源1から発光した光束は、光源位置或
いはその近傍に焦点を有する回転放物面からなるリフレ
クタ2で平行光束となり、カットフィルター3で不要な
赤外・紫外光を除去した後、液晶パネル6への照明光と
なる。液晶パネル6の前後には各々1枚ずつ偏光板が配
置され、偏光子5、検光子7の機能を持つ。コンデンサ
4は液晶パネル6の照明光を投影レンズ8の入射瞳へ向
けて集光し、光源或いはリフレクタ出射開口部の像を投
影レンズの入射瞳上に結像させるものであり、主として
フィールドレンズとしての役割を果たすものである。ツ
イステッド・ネマチック液晶(以下TN液晶と記す)及
びアクティブマトリクス等から構成される液晶パネル
6、偏光子5及び検光子7は、周知のように液晶ライト
バルブを構成するものである。上記液晶ライトバルブを
通過した照明光は上記液晶ライトバルブに入力される表
示信号に応じて変調され、投影レンズ8によって不図示
のスクリーン上に拡大投影される。
FIG. 7 shows an example of a device configuration showing a basic form of a liquid crystal projector. A light beam emitted from a light source 1 composed of a metal halide lamp or a halogen lamp becomes a parallel light beam by a reflector 2 composed of a paraboloid of revolution having a focal point at or near the light source position, and unnecessary infrared / ultraviolet light is cut off by a cut filter 3. After the removal, it becomes the illumination light for the liquid crystal panel 6. One polarizing plate is provided in front of and behind the liquid crystal panel 6, and functions as a polarizer 5 and an analyzer 7. The condenser 4 condenses the illumination light of the liquid crystal panel 6 toward the entrance pupil of the projection lens 8 and forms an image of the light source or the exit aperture of the reflector on the entrance pupil of the projection lens, and mainly as a field lens. Plays the role of. The liquid crystal panel 6, which includes a twisted nematic liquid crystal (hereinafter, referred to as TN liquid crystal) and an active matrix, the polarizer 5 and the analyzer 7, constitutes a liquid crystal light valve as is well known. Illumination light that has passed through the liquid crystal light valve is modulated in accordance with a display signal input to the liquid crystal light valve, and is enlarged and projected by a projection lens 8 onto a screen (not shown).

【0004】また、カラー表示を行う液晶プロジェクタ
としては、液晶パネル6の各画素上に赤・緑・青いずれ
かの色光のみ透過するフィルタをモザイク状に配置した
ものや、上記液晶ライトバルブの前後に色分解・色合成
のためのダイクロイックミラーを配し、各色光に各々1
組の液晶ライトバルブを用いるものが知られている。
Further, as a liquid crystal projector for displaying a color, a liquid crystal panel 6 in which a filter for transmitting only red, green, or blue color light is arranged on each pixel in a mosaic shape, or before and after the liquid crystal light valve is used. A dichroic mirror for color separation and color synthesis is placed on each side, and one for each color light.
It is known to use a set of liquid crystal light valves.

【0005】スライドプロジェクタは、液晶パネル6、
偏光子5及び検光子7の代わりにスライドを設置するわ
けであるが、その他の構成は前述した液晶プロジェクタ
と殆ど変わらない。よって、液晶プロジェクタと同様に
表示像を明るくしたければ、高輝度の光源を用いればよ
いし、解像力を上げたければ、高密度なスライドフィル
ムを用いればよい。
The slide projector includes a liquid crystal panel 6,
Although a slide is installed instead of the polarizer 5 and the analyzer 7, the other configurations are almost the same as those of the liquid crystal projector described above. Therefore, as in the case of a liquid crystal projector, if a display image is to be bright, a high-luminance light source may be used, and if resolution is to be increased, a high-density slide film may be used.

【0006】[0006]

【発明が解決しようとする課題】明るい大画面表示をす
るためには、先にも触れた様に発光部の輝度の高い光源
が必要である。可視波長域での発光効率の高い光源とし
て、近年メタルハライドランプが使用されるようになっ
ている。
In order to display a bright large screen, it is necessary to use a light source with a high brightness in the light emitting portion as mentioned above. In recent years, metal halide lamps have been used as a light source with high luminous efficiency in the visible wavelength range.

【0007】図8は代表的なメタルハライドランプの構
造を示したものである。
FIG. 8 shows the structure of a typical metal halide lamp.

【0008】石英からなる透明な管球部11には両端に
電極12、12′が設けられ、リード線14、14′を
介して電源と接続される。管内部13には水銀、ハロゲ
ン化金属等の放電・発光ガスが封入されている。電源か
らは駆形パルス波形をなす交流電流が供給される。
Electrodes 12 and 12 'are provided at both ends of a transparent tube portion 11 made of quartz, and are connected to a power source through lead wires 14 and 14'. A discharge / luminescent gas such as mercury or a metal halide is sealed in the tube interior 13. An alternating current having a driving pulse waveform is supplied from the power supply.

【0009】図9は上記メタルハライドランプの放電発
光状態を模式的に表したものであり、(a)は上記メタ
ルハライドランプの2つの電極を結ぶ線に対して垂直な
方向からみた輝度分布を等輝度線で表したもの、(b)
は点a、a′を結ぶ線分上での輝度分布を表したもので
ある。同図(a)に於て、両電極を結ぶランプ軸a、
a′上及びその近傍が輝度の高い領域をなし、このラン
プ軸から離れるに従って輝度は急速に低下する。同図
(b)に示すように輝度の高いランプ軸領域のうち、両
電極端に近接して特に輝度の高い2つの高輝度領域α、
α′が存在する。
FIG. 9 schematically shows a discharge light emission state of the metal halide lamp, and FIG. 9A shows a luminance distribution seen from a direction perpendicular to a line connecting the two electrodes of the metal halide lamp. A line, (b)
Represents the luminance distribution on the line segment connecting the points a and a '. In the figure (a), a lamp shaft a connecting both electrodes,
The area on and near a'forms a high brightness region, and the brightness decreases rapidly as the distance from the lamp axis increases. As shown in FIG. 6B, in the high-luminance lamp axis region, two high-luminance regions α, which are particularly high in luminance, are close to both electrode ends.
α'exists.

【0010】図10は現状の代表的照明系における光線
の集光状況を示すものであり、光学系全体の概略構成図
を示し、投影スクリーン9上の中心点(軸上点)P1
び周辺の点(軸外点)P2 からの投影レンズ8の瞳を満
たす光線を逆方向に追跡した光線(以下逆トレース光と
記す)を示している。
FIG. 10 shows the state of light focusing in a typical illumination system at present, and shows a schematic configuration diagram of the entire optical system, in which the center point (on-axis point) P 1 on the projection screen 9 and the periphery thereof are shown. The light ray that fills the pupil of the projection lens 8 from the point (off-axis point) P 2 is traced in the opposite direction (hereinafter referred to as reverse trace light).

【0011】図11においてスクリーン9上の軸外点P
2 からの逆トレース光に対応する、投影レンズ8の入射
瞳上での光源像を示した。一般に軸外点から見た入射瞳
は投影レンズの端部によってケラレる為、円形にはなら
ないが、ここでは簡単のため入射瞳は円形で示した。図
11に於て斜線の領域は、先に示した様な高輝度領域
α、またはα′からの光束で満たされる領域である。ス
クリーン9の周辺を照明する光は図から明らかな様に、
入射瞳を有効に使っていないので、有効F値が大きくな
り以下の様な問題が生じる。
In FIG. 11, the off-axis point P on the screen 9 is shown.
The light source image on the entrance pupil of the projection lens 8 corresponding to the reverse trace light from 2 is shown. Generally, the entrance pupil viewed from an off-axis point is not circular because it is vignetted by the end of the projection lens, but here the entrance pupil is shown as a circle for simplicity. In FIG. 11, the shaded area is the area filled with the luminous flux from the high-luminance area α or α ′ as described above. The light that illuminates the periphery of the screen 9 is, as is clear from the figure,
Since the entrance pupil is not used effectively, the effective F value becomes large and the following problems occur.

【0012】一般に有効F値、Fをもつ結像系のなすエ
アリーディスクの直径2rは 2r=2.44Fλ (λ:波長) で表わされる。従って有効F値が大きくなると、結像系
の解像力は低くなる。液晶プロジェクタの場合、例えば
HDTVに必要な画素数200万画素を対角1インチ以
下の液晶ライトバルブで実現する為には1画素の1辺は
約10μm以下となる。結像系のF値4.5、λ=0.
5μmとした場合エアリーディスクは2r≒5μmで画
素サイズに近い値となる。即ち従来例のように周辺光に
於て有効瞳をフルに利用してなく有効F値が大きくなっ
てしまうと、10μm或いはそれ以下の画素サイズに対
応する解像度を有する照明光学系が達成できない。
Generally, the diameter 2r of an Airy disk formed by an image forming system having an effective F value and F is represented by 2r = 2.44Fλ (λ: wavelength). Therefore, when the effective F value increases, the resolving power of the image forming system decreases. In the case of a liquid crystal projector, for example, in order to realize the number of pixels of 2 million required for HDTV with a liquid crystal light valve having a diagonal of 1 inch or less, one side of one pixel is about 10 μm or less. F-number of imaging system is 4.5, λ = 0.
When it is set to 5 μm, the value of the Airy disk is 2r≈5 μm, which is close to the pixel size. That is, if the effective F value becomes large without fully utilizing the effective pupil in the ambient light as in the conventional example, an illumination optical system having a resolution corresponding to a pixel size of 10 μm or less cannot be achieved.

【0013】スライドプロジェクタについても同様で、
現在使われている高密度投影用フィルムの解像度はミク
ロンオーダーになるので、従来例のような照明光学系を
用いると、投影される画像の周辺部の解像度が低下し、
見難くなってしまう。
The same applies to the slide projector,
Since the resolution of the high-density projection film currently used is on the order of microns, using an illumination optical system like the conventional example reduces the resolution of the peripheral portion of the projected image,
It becomes hard to see.

【0014】[0014]

【課題を解決するための手段】本発明は上記問題点に鑑
みてなされたものであり、メタルハライドランプ等の放
電型ランプの特に輝度の高い発光部を有効に利用する照
明光学系を提案し、画面の中心・周辺共に高解像度の画
像表示ができる投写表示装置を提供することを目的と
し、第1、第2の高輝度発光領域を有する光源と、該光
源からの光を被照明体へ向ける第1の焦点距離を有する
リフレクタからなる照明光学系と、前記被照明体の像を
投影する投影光学系とを有する投写型表示装置におい
て、前記光源の第1、第2の高輝度発光領域を前記照明
光学系の光軸上に配置し、前記リフレクタの前記光軸近
傍の領域に、第1の焦点距離よりも小さな第2の焦点距
離を有する光学素子を設け、前記曲面鏡を介した前記第
1の高輝度発光領域からの光と、前記光学素子を介した
前記第2の高輝度発光領域からの光が、前記被照明体の
周辺部を照明するよう構成したことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and proposes an illumination optical system that effectively utilizes a particularly bright light emitting portion of a discharge type lamp such as a metal halide lamp. A light source having first and second high-luminance light emitting regions and a light source for directing the light from the light source to an illuminated object for the purpose of providing a projection display device capable of displaying a high-resolution image at both the center and the periphery of the screen. In a projection display device having an illumination optical system including a reflector having a first focal length and a projection optical system for projecting an image of the object to be illuminated, the first and second high-luminance light emitting regions of the light source are provided. The optical element is disposed on the optical axis of the illumination optical system, and an optical element having a second focal length smaller than the first focal length is provided in a region near the optical axis of the reflector, and the optical element is provided via the curved mirror. Is it the first high-intensity emission region? And light, the light from the second high-brightness light-emitting region via the optical element, characterized by being configured to illuminate the periphery of the object to be illuminated.

【0015】[0015]

【実施例】図1は本発明の実施例を示す概略図である。
光源1は図8に示したメタルハライドランプである。リ
フレクタ2は回転楕円面形状の反射面を有し、光学素子
2′は本実施例ではレンズからなり後述する形状をな
す。3は不要な赤外光、紫外光を除去するカットフィル
ター、4は照明光束を投影レンズ8の入射瞳へ向けるコ
ンデンサ、6はTN液晶及びアクティブマトリクス等か
ら構成される液晶パネル、5、7は夫々偏光子、検光子
の機能をなす偏光板である。液晶パネル6及び偏光子
5、検光子7は周知のように液晶ライトベルブを構成す
るのものである。上記ライトバルブを通過した光束は投
影レンズ8によって不図示のスクリーン上に拡大投影さ
れる。
FIG. 1 is a schematic view showing an embodiment of the present invention.
The light source 1 is the metal halide lamp shown in FIG. The reflector 2 has a spheroidal reflecting surface, and the optical element 2'is a lens in this embodiment and has a shape described later. 3 is a cut filter for removing unnecessary infrared light and ultraviolet light, 4 is a condenser for directing the illumination light beam to the entrance pupil of the projection lens 8, 6 is a liquid crystal panel composed of TN liquid crystal and active matrix, and 5 and 7 are These are polarizing plates that function as a polarizer and an analyzer, respectively. The liquid crystal panel 6, the polarizer 5 and the analyzer 7 compose a liquid crystal light bell as is well known. The light flux passing through the light valve is enlarged and projected by a projection lens 8 onto a screen (not shown).

【0016】光源1は図9に示した如く両電極14、1
4′の近傍に非常に輝度の高い領域α、α′を有してお
り、この高輝度領域α、α′が共に光学系の光軸上にく
るように光源1は配置されている。リフレクタ2は光源
1の片方の高輝度領域αに焦点をもつ。一方、レンズ
2′のリフレクタ2側の面はリフレクタ2とほぼ同一の
形状をし、リフレクタ2に近接して設けられ、光源1側
の面は球面或いは非球面形を形成し、レンズとしては正
のパワーを有している。
The light source 1 has both electrodes 14 and 1 as shown in FIG.
Regions 4 and 4'having extremely high brightness are provided in the vicinity of 4 ', and the light source 1 is arranged so that the high brightness regions α and α'are both on the optical axis of the optical system. The reflector 2 has a focus on one high-intensity region α of the light source 1. On the other hand, the surface of the lens 2'on the side of the reflector 2 has substantially the same shape as the reflector 2 and is provided in the vicinity of the reflector 2, and the surface on the side of the light source 1 forms a spherical surface or an aspherical surface. Have the power of.

【0017】ライトバルブに近いコンデンサ4は照明光
束を投影レンズ8の入射瞳へ向ける機能をもち、主とし
てフィールドレンズの役割を果たす。
The condenser 4 close to the light valve has a function of directing the illumination light beam to the entrance pupil of the projection lens 8 and mainly plays a role of a field lens.

【0018】本構成に於いて光源1の高輝度領域α、
α′を有効に利用して、特に軸外光の解像度の改善され
た照明光束を得る機能を、リフレクタ2、レンズ2′、
コンデンサ4の組み合わせによって得るわけであるがそ
の詳細な説明を行なう。
In this structure, the high brightness area α of the light source 1,
A function of effectively utilizing α ′ to obtain an illumination light flux with improved resolution of off-axis light is provided by the reflector 2, the lens 2 ′,
Although it is obtained by combining the capacitors 4, its detailed description will be given.

【0019】図2は本発明の作用を分かりやすくする為
の比較例であり、スクリーン9上の軸外点P2 からのメ
リディオナル断面内での逆トレース光について光源1近
傍での収斂状況を示したものである。ちなみにスクリー
ン上の軸上の点P1 からの逆トレース光は、前述したリ
フレクタ2の形状の定義から明らかなようにリフレクタ
2の第1焦点でありかつ高輝度領域であるαに収斂する
ので、投影レンズ8の瞳を十分に利用することができ、
スクリーン上の中心部については十分な解像度を得るこ
とができる。
FIG. 2 is a comparative example for facilitating the understanding of the operation of the present invention, and shows the convergence state in the vicinity of the light source 1 for the reverse trace light in the meridional section from the off-axis point P 2 on the screen 9. It is a thing. By the way, as is apparent from the definition of the shape of the reflector 2 described above, the reverse trace light from the point P 1 on the axis on the screen converges on α, which is the first focus and high-intensity region of the reflector 2. The pupil of the projection lens 8 can be fully utilized,
Sufficient resolution can be obtained for the center of the screen.

【0020】図から分かる様に軸外点P2 に対して部分
光束l21、l22で各々収斂状況が異なる。部分光束l21
は高輝度領域αよりもリフレクタ2の底部に近い高輝度
領域α′の近傍に収斂している。また部分光束l22は高
輝度領域αよりもリフレクタ2の出射開口側にシフトし
て集光していることがわかる。これは軸外点P2 に対し
ては投影レンズ8の瞳の一部しか光源からの照明光束で
満たされないことを示しており、従来例と殆ど変わらな
い。
As can be seen from the figure, the partial light beams l 21 and l 22 have different convergence conditions with respect to the off-axis point P 2 . Partial luminous flux l 21
Are converged in the vicinity of a high-intensity region α ′ closer to the bottom of the reflector 2 than in the high-intensity region α. Further, it can be seen that the partial luminous flux l 22 is condensed and shifted to the exit opening side of the reflector 2 rather than the high brightness area α. This shows that for the off-axis point P 2 , only a part of the pupil of the projection lens 8 is filled with the illumination light flux from the light source, which is almost the same as the conventional example.

【0021】本実施例に於けるリフレクタ2は実際には
図1で示される様にリフレクタ2の底部分に近接して正
のパワーをもつレンズ2′が設けられており、図3はそ
の場合のスクリーン上点P2 からの逆トレース光につい
て光源1近傍での収斂状況を示したものである。
The reflector 2 in this embodiment is actually provided with a lens 2'having a positive power close to the bottom portion of the reflector 2 as shown in FIG. 3 shows the convergence state of the reverse trace light from the point P 2 on the screen in the vicinity of the light source 1.

【0022】部分光束l22はレンズ2′を介してリフレ
クタ2により光源1の高輝度領域αに収斂しており、部
分光束l22は輝度の高い照明光束となる。一方部分光束
21のうち、リフレクタ2で反射される光束l211 は図
2と同様に光源1の他方の高輝度点α′への収斂が維持
されている。レンズ2′を介してリフレクタ2で反射さ
れる光束l212 は光源1の高輝度点α′よりもリフレク
タの底部側へシフトする為、この光束は光源1の発光部
から外れる。また、スクリーンの軸上点からの逆トレー
ス光のうち、レンズ2′を通過する光束は光源1の高輝
度領域α、α′の中間部へ収斂する。
The partial luminous flux l 22 is converged on the high-luminance region α of the light source 1 by the reflector 2 via the lens 2 ', and the partial luminous flux l 22 becomes an illumination luminous flux with high luminance. On the other hand, of the partial luminous flux l 21, the luminous flux l 211 reflected by the reflector 2 is maintained to be converged on the other high-luminance point α ′ of the light source 1 as in FIG. The light flux l 212 reflected by the reflector 2 via the lens 2 ′ is shifted to the bottom side of the reflector from the high-intensity point α ′ of the light source 1, so that this light flux deviates from the light emitting portion of the light source 1. Also, of the reverse traced light from the on-axis point of the screen, the light flux passing through the lens 2'is converged on the intermediate portion between the high-brightness areas α, α'of the light source 1.

【0023】以上示したレンズ2′を付加することによ
る光線の収斂状況を投影レンズ8の入射瞳上での光源像
として図4に示した。
FIG. 4 shows a light source convergence state on the entrance pupil of the projection lens 8 by the addition of the lens 2'shown above.

【0024】図4は図3に示したレンズ2′を付加した
場合の光源像である。斜線部l22、l211 、非斜線部l
212 は夫々光束l22、l211 、l212 に対応する。光束
21のうち光束l212 に相当する逆トレース光束は光源
1の発光部から外れてしまい、代って、光束l22の一部
に相当する逆トレース光束の領域を光源1からの光束が
満たすことになる。図4と従来例で示した図11とを比
較すると投影レンズ8の入射瞳上を満たす光源像の面積
に殆ど変化はないが、光源像のメリディオナル断面内で
の径が大きくなり、結果的に軸外光束の有効F値が小さ
くなる。
FIG. 4 shows a light source image when the lens 2'shown in FIG. 3 is added. Shaded areas l 22 , l 211 , non-shaded areas l
212 corresponds to the luminous fluxes l 22 , l 211 and l 212 , respectively. The reverse trace light flux corresponding to the light flux l 212 of the light flux l 21 is deviated from the light emitting part of the light source 1, and instead, the light flux from the light source 1 passes through a region of the reverse trace light flux corresponding to a part of the light flux l 22. Will be satisfied. Comparing FIG. 4 with FIG. 11 showing the conventional example, there is almost no change in the area of the light source image that fills the entrance pupil of the projection lens 8, but the diameter of the light source image in the meridional section becomes large, and as a result, The effective F value of the off-axis light beam becomes small.

【0025】本実施例ではレンズ2′を光束l22に対応
するメリディオナル断面内での領域を覆う様に設定した
が、完全に一致しなくても本実施例の効果は失われな
い。
[0025] was set to cover the area in the meridional cross section of the corresponding lens 2 'to the light beam l 22 in this embodiment, the effect of the present embodiment is not lost even without complete agreement.

【0026】また本実施例に於て、図10で示した軸上
点P1 からの逆トレース光のうちリフレクタ2上の光軸
近傍を介する光束はレンズ2′を通過する為、この一部
の光束はレンズ2′で屈折されて、従来高輝度領域αに
収斂していたのが、高輝度領域α、α′の中間部分へシ
フトしてしまい、多少の輝度の低下を招くはずである。
しかしながら、図8に示した様に光源1の管球部表面或
いはリフレクタ底部のランプ保持部等の存在の為、実際
には光源1から光軸方向へ出射する光は殆ど存在しな
い。よって、前述したような、レンズ2′を設けたこと
による軸上光束の輝度低下は殆ど問題とならない。より
好ましくは光源1の管球部サイズ等を考慮してレンズ
2′のサイズ・形状等を決定することが望ましい。
Further, in the present embodiment, of the inverse trace light from the on-axis point P 1 shown in FIG. 10, the light flux passing through the vicinity of the optical axis on the reflector 2 passes through the lens 2 ', so that part of this The beam of light is refracted by the lens 2'and converges in the high-luminance region α in the past, but it shifts to the intermediate portion between the high-luminance regions α and α ', which should cause a slight decrease in luminance. ..
However, as shown in FIG. 8, due to the presence of the surface of the bulb portion of the light source 1 or the lamp holding portion at the bottom of the reflector, there is practically no light emitted from the light source 1 in the optical axis direction. Therefore, the decrease in the brightness of the axial light flux due to the provision of the lens 2'as described above causes almost no problem. More preferably, it is desirable to determine the size and shape of the lens 2'in consideration of the tube size of the light source 1.

【0027】図1のコンデンサ4は液晶パネル6上の任
意の点に達する照明光束を投影レンズ8の入射瞳方向へ
有効に向ける機能を有するのものであり、球面形状をな
す単レンズに限らず、非球面形状或いは複数枚のレンズ
の組み合わせを含めた1つのレンズ群で構成しても構わ
ない。またアクリル等のプラスチックレンズも使用でき
る。重要なことは、被照明体上の中心部を前記光源の第
1の高輝度発光領域からの光束で照明し、被照明体上の
周辺部を前記光源の第1、第2双方の高輝度発光領域か
らの光束で照明できるように、逆トレース光を用いて説
明すると、コンデンサ4で光束l21とl22に分離し、レ
ンズ2′で光束l22を高輝度発光領域αに導いてやるこ
とである。
The condenser 4 in FIG. 1 has a function of effectively directing an illumination light flux reaching an arbitrary point on the liquid crystal panel 6 toward the entrance pupil of the projection lens 8, and is not limited to a spherical single lens. Alternatively, one lens group including an aspherical shape or a combination of a plurality of lenses may be used. A plastic lens such as acrylic can also be used. What is important is that the central part on the illuminated object is illuminated by the light flux from the first high-intensity light emitting region of the light source, and the peripheral part on the illuminated object is illuminated by both the first and second high-intensity light sources. In order to be able to illuminate with the light flux from the light emitting area, an explanation will be given using reverse trace light. The condenser 4 separates the light flux l 21 and l 22 and the lens 2 ′ guides the light flux l 22 to the high brightness light emitting region α. That is.

【0028】図5は本発明の第2の実施例を表す投写表
示装置の光学系の概略構成図を示したものである。図1
の第1の実施例と同じ部分には同符号を付した。
FIG. 5 is a schematic block diagram of the optical system of the projection display apparatus showing the second embodiment of the present invention. Figure 1
The same parts as those in the first embodiment are designated by the same reference numerals.

【0029】本実施例に於ては、リフレクタ焦点位置の
異なる2つの回転楕円面或いはそれに近い形状の反射面
502、502′から構成されており、反射面502′
が本発明に於ける光学素子である。リフレクタ502は
光源1の片方の高輝度点αに第1の焦点をもち、液晶パ
ネル6の軸上点に第2の焦点をもつ。一方リフレクタ5
02′はリフレクタ502の第1焦点よりもリフレクタ
502の出射開口側と反対側にずれた光軸上に片方の焦
点をもつ回転楕円面或いはそれに近い面形状である。コ
ンデンサ504はリフレクタ502、502′から出射
された照明光束を投影レンズ8の入射瞳へ向ける機能を
もち、主としてフィールドレンズの役割を果たす。
In this embodiment, the reflecting surface 502 'is composed of two spheroidal surfaces having different focal positions of the reflector or reflecting surfaces 502, 502' having a shape close to that.
Is an optical element in the present invention. The reflector 502 has a first focus at one high-intensity point α of the light source 1 and a second focus at an on-axis point of the liquid crystal panel 6. On the other hand, reflector 5
Reference numeral 02 'denotes a spheroidal surface having one focus on the optical axis, which is displaced from the first focus of the reflector 502 to the side opposite to the exit opening side of the reflector 502, or a surface shape close thereto. The condenser 504 has a function of directing the illumination light flux emitted from the reflectors 502 and 502 'to the entrance pupil of the projection lens 8, and mainly serves as a field lens.

【0030】本構成に於て、光源1の高輝度領域α、
α′を有効に利用して、特に軸外光の解像度の改善され
た照明光束を得る機能をリフレクタ502、502′及
びコンデンサ504の組み合わせによって得る訳だが以
下にその説明を行なう。
In this structure, the high-luminance region α of the light source 1,
The function of effectively utilizing α ′ to obtain an illumination light flux with improved resolution of off-axis light is obtained by the combination of the reflectors 502 and 502 ′ and the condenser 504, which will be described below.

【0031】図5に示す様に本実施例はリフレクタ50
2の光軸近傍に焦点位置がリフレクタ502の焦点位置
よりもリフレクタ底部側にあるリフレクタ502′を有
しており、図6はその場合のスクリーン上の軸外点P2
からの逆トレース光について光源1近傍での収斂状況を
示したものである。
As shown in FIG. 5, this embodiment uses a reflector 50.
2 has a reflector 502 'whose focal position is on the reflector bottom side of the reflector 502 in the vicinity of the optical axis, and FIG. 6 shows an off-axis point P 2 on the screen in that case.
3 shows the convergence state of the reverse trace light from the light source 1 near the light source 1.

【0032】部分光束l22はリフレクタ502′により
光源1の高輝度点αに収斂しており、部分光束l22は輝
度の高い照明光束となる。一方、部分光束l21のうち、
リフレクタ502で反射される光束l211 は図2と同様
に光源1の他方の高輝度領域α′への収斂が維持されて
いる。リフレクタ502′で反射される光束l212 は光
源1の高輝度領域α′よりもリフレクタの底部側へシフ
トする為、この光束は光源1の発光部から外れる。
The partial luminous flux l 22 is converged on the high-luminance point α of the light source 1 by the reflector 502 ', and the partial luminous flux l 22 becomes an illumination luminous flux with high luminance. On the other hand, of the partial luminous flux l 21 ,
The light flux l 211 reflected by the reflector 502 is maintained to be converged on the other high-luminance region α ′ of the light source 1 as in FIG. The light flux l 212 reflected by the reflector 502 ′ shifts to the bottom side of the reflector with respect to the high-luminance region α ′ of the light source 1, so that this light flux deviates from the light emitting portion of the light source 1.

【0033】よって、投影レンズ8の入射瞳上にできる
光源像は図4に示したものと同様のものとなる。
Therefore, the light source image formed on the entrance pupil of the projection lens 8 is the same as that shown in FIG.

【0034】本実施例は、第1の実施例で説明した様に
コンデンサ504は必要に応じて非球面形状を含んだ
り、レンズ群で置き換えることができる。またアクリル
等のプラスチックレンズも使用できる。
In the present embodiment, as described in the first embodiment, the condenser 504 may include an aspherical shape or may be replaced with a lens group as needed. A plastic lens such as acrylic can also be used.

【0035】第1、第2の実施例共、軸上点に対しては
光源1の片方の高輝度領域αと被照明体上の中心部が互
いに共役となり、軸外点に対しては光源1の高輝度領域
α、α′双方と被照明体上の周辺部が互いに共役、つま
りクリティカル照明系を構成する。しかし実際には軸外
点についてはサジタル光線等も考えた場合、残存収差の
為、光源1の高輝度領域α、α′だけでなくその近傍の
発光部からも集光される為、厳密にはクリティカル照明
ではなくなる。このような共役関係は本発明の必須要件
ではなく、例えばリフレクタ2の焦点を液晶パネル6上
からずらせば、軸上、軸外共ケーラー照明的になる。
In both the first and second embodiments, one high-intensity region α of the light source 1 and the center of the object to be illuminated are conjugate with each other for the on-axis point, and the light source is for the off-axis point. Both the high-intensity regions α and α ′ of No. 1 and the peripheral portion on the illuminated body are mutually conjugated, that is, a critical illumination system is formed. However, in reality, when a sagittal ray or the like is considered for the off-axis point, the residual aberration causes light to be condensed not only from the high-brightness regions α and α ′ of the light source 1 but also from the light emitting portion in the vicinity thereof. Is no longer critical lighting. Such a conjugate relation is not an essential requirement of the present invention. For example, if the focal point of the reflector 2 is shifted from the liquid crystal panel 6, it becomes an on-axis and off-axis co-Kehler illumination.

【0036】また、以上の実施例では回転楕円面でリフ
レクタを構成したが、軸外光の逆トレース光の光源近傍
での収斂域がl22、l21のように2分割される様な照明
系なら、放物面リフレクタ、球面リフレクタ、それらに
近い形状の非球面による回転面からなるリフレクタな
ど、どのような照明系についても本発明の考え方を適用
することが可能である。その場合、必要に応じて適切な
コンデンサ、或いはコンデンサ群を付加することが必要
である。
Further, in the above embodiments, the reflector is constituted by the spheroidal surface, but the converging area in the vicinity of the light source of the reverse trace light of the off-axis light is divided into two such as l 22 and l 21. If the system is used, the idea of the present invention can be applied to any illumination system such as a parabolic reflector, a spherical reflector, and a reflector composed of an aspherical surface having a shape similar to those of the parabolic reflector. In that case, it is necessary to add an appropriate capacitor or a capacitor group as needed.

【0037】また、光源の2つの高輝度部の間隔と軸
上、軸外収斂点の位置関係がマッチングするように、照
明系の構成及びサイズ、光源の電極間距離を選択するこ
とも重要である。ただし、リフレクタを介した第1の高
輝度発光領域からの光と、光学素子を介した第2の高輝
度発光領域からの光が、被照明体の周辺部を照明するよ
う構成することが最低限本発明を達成するための要件な
ので、必ずしもリフレクタの焦点位置に高輝度発光領域
がくるとは限らない。
It is also important to select the configuration and size of the illumination system and the distance between the electrodes of the light source so that the distance between the two high-intensity parts of the light source and the positional relationship between the on-axis and off-axis convergence points match. is there. However, it is preferable that the light from the first high-intensity light emitting region via the reflector and the light from the second high-intensity light emitting region via the optical element illuminate the peripheral part of the illuminated object. Since it is a requirement for achieving the present invention, the high-intensity light emitting region does not always come to the focal position of the reflector.

【0038】[0038]

【発明の効果】以上説明したように、本発明は、第1、
第2の高輝度発光領域を有する光源と、該光源からの光
を被照明体へ向ける第1の焦点距離を有するリフレクタ
からなる照明光学系と、前記被照明体の像を投影する投
影光学系とを有する投写型表示装置において、前記光源
の第1、第2の高輝度発光領域を前記照明光学系の光軸
上に配置し、前記リフレクタの前記光軸近傍の領域に、
第1の焦点距離よりも小さな第2の焦点距離を有する光
学素子を設け、前記曲面鏡を介した前記第1の高輝度発
光領域からの光と、前記光学素子を介した前記第2の高
輝度発光領域からの光が、前記被照明体の周辺部を照明
するよう構成したので、画面全域にわたって高解像度の
投影像を得ることができる。
As described above, according to the present invention,
An illumination optical system including a light source having a second high-intensity light emitting region, a reflector having a first focal length for directing light from the light source to an illuminated object, and a projection optical system for projecting an image of the illuminated object. In the projection display device having, the first and second high-intensity light emitting regions of the light source are arranged on the optical axis of the illumination optical system, and in the region near the optical axis of the reflector,
An optical element having a second focal length smaller than the first focal length is provided, and light from the first high-intensity light emitting region through the curved mirror and the second high light through the optical element are provided. Since the light from the luminance light emitting region is configured to illuminate the peripheral portion of the illuminated body, a high-resolution projected image can be obtained over the entire screen.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を表す概略構成図FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】比較例による光源近傍の逆トレース光線図FIG. 2 is an inverse trace ray diagram near a light source according to a comparative example.

【図3】本発明の実施例を表す光源近傍の逆トレース光
線図
FIG. 3 is an inverse trace ray diagram in the vicinity of a light source showing an embodiment of the present invention.

【図4】本発明の実施例による瞳面上の光源像を表す図FIG. 4 is a diagram showing a light source image on a pupil plane according to an embodiment of the present invention.

【図5】本発明の他の実施例を表す概略構成図FIG. 5 is a schematic configuration diagram showing another embodiment of the present invention.

【図6】本発明の他の実施例を表す光源近傍の逆トレー
ス光線図
FIG. 6 is an inverse trace ray diagram in the vicinity of a light source showing another embodiment of the present invention.

【図7】従来例の概略構成図FIG. 7 is a schematic configuration diagram of a conventional example.

【図8】メタルハライドランプの構成図FIG. 8: Schematic diagram of metal halide lamp

【図9】メタルハライドランプの輝度分布図FIG. 9: Luminance distribution diagram of metal halide lamp

【図10】従来例による逆トレース光線図FIG. 10 is an inverse trace ray diagram according to a conventional example.

【図11】従来例の瞳面上の光源像を表す図FIG. 11 is a diagram showing a light source image on a pupil plane of a conventional example.

【符号の説明】[Explanation of symbols]

1 光源 2 リフレクタ 2′ レンズ 3 カットフィルター 4 コンデンサ 5 偏光子 6 液晶パネル 7 検光子 8 投影レンズ 9 スクリーン 11 管球部 12、12′ 電極 13 管内部 14、14′ リード線 1 Light Source 2 Reflector 2'Lens 3 Cut Filter 4 Condenser 5 Polarizer 6 Liquid Crystal Panel 7 Analyzer 8 Projection Lens 9 Screen 11 Tube Sphere 12, 12 'Electrode 13 Tube Inside 14, 14' Lead Wire

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1、第2の高輝度発光領域を有する光
源と、該光源からの光を被照明体へ向ける第1の焦点距
離を有するリフレクタからなる照明光学系と、前記被照
明体の像を投影する投影光学系とを有する投写型表示装
置において、前記光源の第1、第2の高輝度発光領域を
前記照明光学系の光軸上に配置し、前記リフレクタの前
記光軸近傍の領域に、第1の焦点距離よりも小さな第2
の焦点距離を有する光学素子を設け、前記曲面鏡を介し
た前記第1の高輝度発光領域からの光と、前記光学素子
を介した前記第2の高輝度発光領域からの光が、前記被
照明体の周辺部を照明するよう構成したことを特徴とす
る投写型表示装置。
1. An illumination optical system including a light source having first and second high-brightness light emitting regions, a reflector having a first focal length for directing light from the light source to an object to be illuminated, and the object to be illuminated. And a projection optical system for projecting the image of the light source, the first and second high-intensity light emitting regions of the light source are arranged on the optical axis of the illumination optical system, and the vicinity of the optical axis of the reflector is provided. In the area of the second focal length which is smaller than the first focal length
An optical element having a focal length of 1 is provided, and the light from the first high-intensity light emitting area via the curved mirror and the light from the second high-intensity light emitting area via the optical element are A projection display device characterized in that it is configured to illuminate a peripheral portion of an illuminating body.
【請求項2】 前記リフレクタは前記第1の高輝度発光
領域に第1焦点を有し、前記被照明体上に第2焦点を有
する楕円面鏡であり、前記光学素子は前記楕円面鏡に隣
接した正のパワーを持つレンズであることを特徴とする
請求項1記載の投写型表示装置。
2. The reflector is an ellipsoidal mirror having a first focal point in the first high-intensity light emitting region and a second focal point on the object to be illuminated, and the optical element is an ellipsoidal mirror. The projection display device according to claim 1, wherein the lenses are adjacent lenses having positive power.
【請求項3】 前記リフレクタは前記第1の高輝度発光
領域に第1焦点を有し、前記被照明体上に第2焦点を有
する楕円面鏡であり、前記光学素子は前記第1と第2の
高輝度発光領域の間に第1焦点を有する楕円面鏡である
ことを特徴とする請求項1記載の投写型表示装置。
3. The reflector is an ellipsoidal mirror having a first focal point in the first high-intensity light emitting region and a second focal point on the illuminated body, and the optical element is a first and a second ellipsoidal mirror. The projection display device according to claim 1, wherein the projection display device is an ellipsoidal mirror having a first focal point between two high-luminance light emitting regions.
JP3327615A 1991-10-21 1991-12-11 Projection type display device Pending JPH05165094A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3327615A JPH05165094A (en) 1991-12-11 1991-12-11 Projection type display device
DE69207362T DE69207362T2 (en) 1991-10-21 1992-10-20 Lighting device and projector provided with it
EP92117925A EP0545052B1 (en) 1991-10-21 1992-10-20 Illuminating device and projector utilizing the same
US08/403,549 US5692819A (en) 1991-10-21 1995-03-02 Illuminating device and projector utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3327615A JPH05165094A (en) 1991-12-11 1991-12-11 Projection type display device

Publications (1)

Publication Number Publication Date
JPH05165094A true JPH05165094A (en) 1993-06-29

Family

ID=18201036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3327615A Pending JPH05165094A (en) 1991-10-21 1991-12-11 Projection type display device

Country Status (1)

Country Link
JP (1) JPH05165094A (en)

Similar Documents

Publication Publication Date Title
JP3207022B2 (en) Light source, illumination device, and liquid crystal projection display device for projection display device
US5692819A (en) Illuminating device and projector utilizing the same
JP3589225B2 (en) projector
JP2827951B2 (en) Projection display device
US20020048172A1 (en) Lens element and illumination optical apparatus and projection display apparatus
JPH03111806A (en) Optical illumination system and projector with the same
US6799852B2 (en) Image display projector
US7150535B2 (en) Lighting device and projector equipped with the same
JP2001337394A (en) Illumination optical device and projection type display device
US8287138B2 (en) Light source device and projection display device using the same
US7364312B2 (en) Light source lamp and projector
WO2002088842A1 (en) Illuminating optical system and projector
JP2000147375A (en) Illumination device and projection device
EP1136867B1 (en) Optical apparatus and projection type display apparatus using the same
JP2010026260A (en) Lighting optical device and projection type display device
JPH05165094A (en) Projection type display device
JP2002350778A (en) Illumination optical system and projector equipped with the system
JP2008234897A (en) Light source device and projector
JP3486608B2 (en) Projection display device
JPH05113605A (en) Projection type display device
EP1874063A2 (en) Projection apparatus
JP2002373503A (en) Illuminating equipment and projection display equipment
JP2002279823A (en) Lighting device and lighting system using spherical mirror, and lighting method
JP4487484B2 (en) LIGHTING DEVICE AND PROJECTOR HAVING THE SAME
JPH11271881A (en) System for projecting and displaying picture