JPH05113605A - Projection type display device - Google Patents

Projection type display device

Info

Publication number
JPH05113605A
JPH05113605A JP3272699A JP27269991A JPH05113605A JP H05113605 A JPH05113605 A JP H05113605A JP 3272699 A JP3272699 A JP 3272699A JP 27269991 A JP27269991 A JP 27269991A JP H05113605 A JPH05113605 A JP H05113605A
Authority
JP
Japan
Prior art keywords
light
light source
reflector
brightness
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3272699A
Other languages
Japanese (ja)
Inventor
Hideaki Mitsutake
英明 光武
Kazumi Kimura
一己 木村
Shigeru Kawasaki
茂 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3272699A priority Critical patent/JPH05113605A/en
Priority to EP92117925A priority patent/EP0545052B1/en
Priority to DE69207362T priority patent/DE69207362T2/en
Publication of JPH05113605A publication Critical patent/JPH05113605A/en
Priority to US08/403,549 priority patent/US5692819A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

PURPOSE:To enable increasing of the brightness at both the center and periphery of a screen by illuminating the peripheral part of a body to be illuminated with the luminous fluxes from two high-brightness light emitting regions. CONSTITUTION:The reverse tracing light from the axial point on the screen is nearly converged to the focus of a reflector 2 by the shape on the exit side of the reflector 2 and a condenser 2'. Then, the illuminating luminous flux having the highest brightness is obtd. on the axial point by disposing the 1st high-brightness region alpha of a light source into the focus of the reflector 2. On the other hand, the partial luminous flux l221 falling to a part of the reverse tracing light from the off-axial point is refracted by a curved surface 2'-b and is converged to the high-brightness region alpha of the light source and the partial luminous flux l221 is made into the illuminating luminous flux of the high brightness. On the other hand, the partial luminous flux l221 does not pass the curved surface 2'-b of the condenser 2' and, therefore, the convergence to the other high-brightness region alpha' of the light source is maintained. The high-brightness region of the illuminating luminous flux of the reverse tracing light from the off-axial point is increased in this way and the illuminance of the image plane is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は投写表示装置、特に液晶
プロジェクタの光源及び照明系を含めた光学系に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection display device, and more particularly to an optical system including a light source and an illumination system of a liquid crystal projector.

【0002】[0002]

【従来の技術】液晶ライトバルブを用いた液晶プロジェ
クタは大画面・高精細表示のための装置として近年注目
されている。液晶プロジェクタの特徴としては、大画面
投影時に重要な表示像の明るさ、及び解像力を各々光源
の高輝度化、液晶ライトバルブの画素数に対して独立に
担わせることが可能な点にあり、CRT投写型に比べ、
装置のコンパクトさと相まって今後優位な位置を占める
と予想されている。
2. Description of the Related Art A liquid crystal projector using a liquid crystal light valve has recently attracted attention as a device for large-screen / high-definition display. As a feature of the liquid crystal projector, the brightness of the display image, which is important when projecting a large screen, and the resolving power can be independently assigned to the high brightness of the light source and the number of pixels of the liquid crystal light valve, Compared to CRT projection type
Combined with the compactness of the device, it is expected to occupy an advantageous position in the future.

【0003】図11は液晶プロジェクタの基本形態を示
す装置構成例である。メタルハライドランプやハロゲン
ランプ等からなる光源1から発光した光束は、光源位置
或いはその近傍に焦点を有する回転放物面からなるリフ
レクタ2で平行光束となり、カットフィルター3で不要
な赤外・紫外光を除去した後、液晶パネル6への照明光
となる。液晶パネル6の前後には各々1枚ずつ偏光板が
配置され、偏光子5、検光子7の機能を持つ。コンデン
サ4は液晶パネル6の照明光を投影レンズ8の入射瞳へ
向けて集光し、光源或いはリフレクタ出射開口部の像を
投影レンズ8の入射瞳上に結像させるものであり、主と
してフィールドレンズとしての役割を果たすものであ
る。ツイステッド・ネマチック液晶(以下TN液晶と記
す)及びアクティブマトリクス等から構成される液晶パ
ネル6、偏光子5及び検光子7は、周知のように液晶ラ
イトバルブを構成するものである。上記液晶ライトバル
ブを通過した照明光は上記液晶ライトバルブに入力され
る表示信号に応じて変調され、投影レンズ8によって不
図示のスクリーン上に拡大投影される。
FIG. 11 is an example of a device configuration showing a basic form of a liquid crystal projector. A light beam emitted from a light source 1 composed of a metal halide lamp or a halogen lamp becomes a parallel light beam by a reflector 2 composed of a paraboloid of revolution having a focal point at or near the light source position, and unnecessary infrared / ultraviolet light is cut off by a cut filter 3. After the removal, it becomes the illumination light for the liquid crystal panel 6. One polarizing plate is provided in front of and behind the liquid crystal panel 6, and functions as a polarizer 5 and an analyzer 7. The condenser 4 condenses the illumination light of the liquid crystal panel 6 toward the entrance pupil of the projection lens 8 and forms an image of the light source or the exit aperture of the reflector on the entrance pupil of the projection lens 8, and is mainly a field lens. To play a role as. The liquid crystal panel 6, which includes a twisted nematic liquid crystal (hereinafter, referred to as TN liquid crystal) and an active matrix, the polarizer 5 and the analyzer 7, constitutes a liquid crystal light valve as is well known. Illumination light that has passed through the liquid crystal light valve is modulated in accordance with a display signal input to the liquid crystal light valve, and is enlarged and projected by a projection lens 8 onto a screen (not shown).

【0004】また、カラー表示を行う液晶プロジェクタ
としては、液晶パネル6の各画素上に赤・緑・青いずれ
かの色光のみ透過するフィルタをモザイク状に配置した
ものや、上記液晶ライトバルブの前後に色分解・色合成
のためのダイクロイックミラーを配し、各色光に各々1
組の液晶ライトバルブを用いるものが知られている。
Further, as a liquid crystal projector for displaying a color, a liquid crystal panel 6 in which a filter for transmitting only red, green, or blue color light is arranged on each pixel in a mosaic shape, or before and after the liquid crystal light valve is used. A dichroic mirror for color separation and color synthesis is placed on each side, and one for each color light.
It is known to use a set of liquid crystal light valves.

【0005】[0005]

【発明が解決しようとする課題】液晶プロジェクタの特
徴を生かして明るい大画面表示をするためには、先にも
触れた様に発光部の輝度の高い光源が必要である。可視
波長域での発光効率の高い光源として、近年メタルハラ
イドランプが使用される様になっているが、製品例から
見ると150Wクラスのメタルハライドランプで対角サ
イズ3インチの液晶ライトバルブを照明し、F4.5の
投影レンズで50インチに投影した場合、投影像面中心
照度で200ルクス前後、100インチに投影した場合
は50ルクス前後に留まり一般照明下の明るい周囲環境
に於ては未だ不十分な値である。
In order to make use of the characteristics of the liquid crystal projector to display a bright large screen, it is necessary to use a light source having a light emitting portion with high brightness as mentioned above. In recent years, metal halide lamps have been used as a light source with high luminous efficiency in the visible wavelength range, but from a product example, a 150W class metal halide lamp illuminates a liquid crystal light valve with a diagonal size of 3 inches. When projected to 50 inches with a F4.5 projection lens, the projected image plane center illuminance is around 200 lux, and when projected to 100 inches, it stays around 50 lux and is still insufficient in a bright ambient environment under general lighting. Value.

【0006】図12は代表的なメタルハライドランプの
構造を示したものである。
FIG. 12 shows the structure of a typical metal halide lamp.

【0007】石英からなる透明な管球部11には両端に
電極12、12′が設けられ、リード線14、14′を
介して電源と接続される。管内部13には水銀、ハロゲ
ン化金属等の放電・発光ガスが封入されている。電源か
らは駆形パルス波形をなす交流電流が供給される。
Electrodes 12 and 12 'are provided at both ends of a transparent tube portion 11 made of quartz, and are connected to a power source through lead wires 14 and 14'. A discharge / luminescent gas such as mercury or a metal halide is sealed in the tube interior 13. An alternating current having a driving pulse waveform is supplied from the power supply.

【0008】図13は上記メタルハライドランプの放電
発光状態を模式的に表したものであり、(a)は上記メ
タルハライドランプの2つの電極に対して垂直な方向か
らみた輝度分布を等輝度線で表したもの、(b)は点
a、a′を結ぶ線分上での輝度分布を表したものであ
る。同図(a)に於て、両電極を結ぶ軸a、a′上及び
その近傍が輝度の高い領域をなし、この軸から離れるに
従って輝度は急速に低下する。同図(b)に示すように
輝度の高い軸領域のうち、両電極端に近接して特に輝度
の高い2つの高輝度域α、α′が存在する。
FIG. 13 schematically shows the discharge light emission state of the metal halide lamp, and FIG. 13 (a) shows the luminance distribution viewed from the direction perpendicular to the two electrodes of the metal halide lamp by isoluminance lines. 2B shows the luminance distribution on the line segment connecting the points a and a '. In FIG. 6A, the areas a and a'around the axes a and a'connecting the two electrodes form a high brightness area, and the brightness rapidly decreases as the distance from this axis increases. As shown in FIG. 6B, in the high-luminance axis region, two high-luminance regions α and α ′ having particularly high luminance exist near both electrode ends.

【0009】図14は現状の代表的照明系における光線
の集光状況を示すものであり、光学系全体の概略構成図
を示し、投影スクリーン9上の点から投影レンズ8の瞳
を満たす光線を逆方向に追跡した光線(以下逆トレース
光と記す)を示しており、図15はスクリーン9上の点
1 からのメリディオナル断面内での逆トレース光に
ついて光源1近傍での収斂状況を示したものである。
FIG. 14 shows the state of light collection in a typical illumination system at present, and shows a schematic configuration diagram of the entire optical system, in which a light beam that fills the pupil of the projection lens 8 from a point on the projection screen 9 is shown. FIG. 15 shows a ray traced in the opposite direction (hereinafter referred to as “inverse trace light”), and FIG. 15 shows a convergence state in the vicinity of the light source 1 with respect to the inverse trace light in the meridional section from the point P 1 on the screen 9. It is a thing.

【0010】図15からも分かるように、スクリーン9
上の点P1 へは光源1の発光域全体からの光が集光して
いる、つまり2つの高輝度域α、α′だけでなくその周
辺の低輝度域からの光も利用している。このような照明
方法はランプの輝度分布の影響を受けにくいという点は
あるが、投影像面の照度の低下を招く。
As can be seen from FIG. 15, the screen 9
The light from the entire light emitting area of the light source 1 is condensed to the upper point P 1 , that is, not only the two high brightness areas α and α ′ but also the light from the surrounding low brightness area is used. .. Although such an illumination method is less susceptible to the influence of the luminance distribution of the lamp, it causes a decrease in illuminance on the projection image plane.

【0011】また、スクリーン9上の周辺部の点P2
は、高輝度領域α、α′のうち片方からしか光は集光し
ておらず、かつ光源1の発光部からはずれた、つまり実
際には発光していない領域からの光も集光している。従
って、スクリーン9上軸外部(画面周辺部)において像
面照度の著しい低下を生じ、画面上の明るさムラが目立
ってしまう。
At the peripheral point P 2 on the screen 9, light is collected from only one of the high-brightness areas α and α'and is deviated from the light emitting portion of the light source 1, that is, The light from the area that does not actually emit light is also collected. Therefore, the image plane illuminance is significantly reduced outside the upper axis of the screen 9 (the peripheral portion of the screen), and the uneven brightness on the screen becomes noticeable.

【0012】[0012]

【課題を解決するための手段】本発明は上記問題に鑑み
てなされたものであり、メタルハライドランプ等の放電
型ランプの特に輝度の高い発光部を有効に利用する照明
光学系、ひいては画面の中心・周辺共に明るい大画面表
示のできる投写表示装置を提供することを目的とし、本
発明は、第1、第2の高輝度発光領域を有する光源と、
該光源からの光束を被照明体へ向ける照明光学系と、前
記被照明体の像を投影する投影光学系とを有する投写型
表示装置において、前記光源の第1、第2の高輝度発光
領域を前記照明光学系の光軸上に配置し、前記被照明体
上の中心部を前記光源の第1の高輝度発光領域からの光
束で照明し、前記被照明体上の周辺部を前記光源の第
1、第2双方の高輝度発光領域からの光束で照明するよ
うに前記照明光学系を構成したことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an illumination optical system that effectively uses a particularly bright light emitting portion of a discharge type lamp such as a metal halide lamp, and thus a center of a screen. An object of the present invention is to provide a projection display device capable of a large-screen display with bright surroundings, and the present invention provides a light source having first and second high-luminance light emitting regions,
In a projection display device having an illumination optical system for directing a light flux from the light source to an illuminated object and a projection optical system for projecting an image of the illuminated object, first and second high-luminance light emitting regions of the light source. Is arranged on the optical axis of the illumination optical system, a central portion on the illuminated body is illuminated with a light flux from a first high-intensity light emitting region of the light source, and a peripheral portion on the illuminated body is illuminated by the light source. The illumination optical system is configured to illuminate with light fluxes from both the first and second high-luminance light emitting regions.

【0013】[0013]

【実施例】図1は本発明の実施例を表す投写表示装置の
光学系の概略構成図を示したものである。光源1は図1
2に示したメタルハライドランプである。リフレクタ2
は回転放物面形状の反射面を有し、コンデンサ2′は後
述する如き複合形状をなす。3は不要な赤外・紫外光を
除去するカットフィルター、4は照明光束を投影レンズ
8の入射瞳上へ向けるコンデンサ、6はTN液晶及びア
クティブマトリクス等から構成される液晶パネル、5、
7は偏光子及び検光子の機能をなす偏光板である。液晶
パネル6及び偏、検光子5、7は周知のように液晶ライ
トバルブを構成するものである。上記ライトバルブを通
過した光束は投影レンズ8によって不図示のスクリーン
上に拡大投影される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic configuration diagram of an optical system of a projection display apparatus showing an embodiment of the invention. The light source 1 is shown in FIG.
It is the metal halide lamp shown in 2. Reflector 2
Has a reflecting surface in the shape of a paraboloid of revolution, and the capacitor 2'has a complex shape as will be described later. 3 is a cut filter for removing unnecessary infrared / ultraviolet light, 4 is a condenser for directing the illumination light beam onto the entrance pupil of the projection lens 8, 6 is a liquid crystal panel composed of TN liquid crystal, active matrix, etc.
Reference numeral 7 is a polarizing plate that functions as a polarizer and an analyzer. The liquid crystal panel 6 and the polarizing and analyzers 5 and 7 constitute a liquid crystal light valve as is well known. The light flux passing through the light valve is enlarged and projected by a projection lens 8 onto a screen (not shown).

【0014】光源1は図13に示した如く両電極12、
12′の近傍に非常に輝度の高い領域α、α′を有して
おり、この高輝度領域α、α′が光学系の光軸上にくる
ように光源1は配置される。リフレクタ2は光源1の片
方の高輝度点αに焦点をもつ。一方コンデンサ2′の出
射側は液晶パネル位置に焦点を有する球面或いは非球面
形レンズをなす曲面2′−aが形成されている。またコ
ンデンサ2′の入射側面は平面をなしており、その中央
には正のパワーをもつ曲面2′−bが形成されている。
ライトバルブに近いコンデンサ4はコンデンサ2′から
出射された照明光束を投影レンズ8の入射瞳へ向ける機
能をもち、主としてフィールドレンズの役割を果たす。
The light source 1 has both electrodes 12, as shown in FIG.
The light source 1 is arranged so as to have very high brightness regions α and α ′ in the vicinity of 12 ′ and the high brightness regions α and α ′ to be on the optical axis of the optical system. The reflector 2 has a focus on one high-intensity point α of the light source 1. On the output side of the condenser 2 ', on the other hand, a curved surface 2'-a forming a spherical or aspherical lens having a focal point at the position of the liquid crystal panel is formed. The incident side surface of the capacitor 2'is a flat surface, and a curved surface 2'-b having a positive power is formed in the center thereof.
The condenser 4 close to the light valve has a function of directing the illumination light flux emitted from the condenser 2'to the entrance pupil of the projection lens 8, and mainly serves as a field lens.

【0015】本構成に於て、光源1の高輝度領域α、
α′を有効に利用して高輝度の照明光束を得る機能をリ
フレクタ2、コンデンサ2′、コンデンサ4の組み合わ
せによって得るわけだが、以下にその詳細な説明を行な
う。
In this structure, the high brightness area α of the light source 1,
The function of effectively utilizing α ′ to obtain a high-luminance illumination luminous flux is obtained by the combination of the reflector 2, the condenser 2 ′, and the condenser 4, which will be described in detail below.

【0016】図2は比較のためコンデンサ2′の入射側
の正のパワーをもつ曲面がなく出射側にのみパワーをも
つ場合の光線の集光状況を示したものであり、光学系全
体の概略図を示し、投影スクリーン9上の点から投影レ
ンズ8の瞳を満たす光線を逆方向に追跡した逆トレース
光を示しており、図3はスクリーン上の点P2 からのメ
リディオナル断面内での逆トレース光について光源1近
傍での収斂状況を示したものである。
FIG. 2 shows, for comparison, the state of light collection when there is no curved surface having positive power on the incident side of the condenser 2'and power is present only on the outgoing side. The figure shows an inverse trace light obtained by tracing a ray that fills the pupil of the projection lens 8 from a point on the projection screen 9 in the opposite direction, and FIG. 3 shows an inverse trace in the meridional section from the point P 2 on the screen. It shows the convergence of trace light near the light source 1.

【0017】スクリーン上の軸上点P1 からの逆トレー
ス光はリフレクタ2及びコンデンサ2′の出射側の形状
の定義から明らかな様にリフレクタ2の焦点1点にほぼ
収斂する。従って、リフレクタ2の焦点上に光源1の第
1の高輝度領域αを配置するこにより、スクリーン軸上
点P1 へは最も輝度の高い照明光束が得られる。一方、
軸外点に対しては図3中の部分光束l21、l22で各々収
斂状況が異なる。部分光束l21は高輝度領域αよりもリ
フレクタ2の底部に近い高輝度領域α′の近傍に収斂し
ている。また部分光束l22は高輝度領域αよりもリフレ
クタ2の出射開口側にシフトして集光していることがわ
かる。
The reverse trace light from the on-axis point P 1 on the screen is substantially converged on one focal point of the reflector 2 as is clear from the definition of the shapes of the reflector 2 and the condenser 2'on the emitting side. Therefore, by arranging the first high-intensity region α of the light source 1 on the focal point of the reflector 2, the illumination luminous flux with the highest brightness can be obtained at the on-axis point P 1 of the screen. on the other hand,
With respect to the off-axis point, the partial light beams l 21 and l 22 in FIG. 3 have different convergence conditions. The partial luminous flux l 21 is converged in the vicinity of the high-intensity region α ′ closer to the bottom of the reflector 2 than in the high-intensity region α. Further, it can be seen that the partial luminous flux l 22 is condensed and shifted to the exit opening side of the reflector 2 rather than the high brightness area α.

【0018】本実施例に於けるコンデンサ2′は実際に
は図1で示される様にコンデンサ2′の入射側に正のパ
ワーをもつ曲面2′−bが形成されており、図4はその
場合のスクリーン上点P2 からの逆トレース光について
光源1近傍での収斂状況を示したものである。
In the capacitor 2'in this embodiment, a curved surface 2'-b having a positive power is actually formed on the incident side of the capacitor 2'as shown in FIG. 1, and FIG. In the case of the reverse trace light from the point P 2 on the screen in the case, the convergence state in the vicinity of the light source 1 is shown.

【0019】部分光束l22の更に一部に当たる部分光束
221 は曲面2′−bで屈折され、光源1の高輝度領域
αに収斂しており、部分光束l221 は輝度の高い照明光
束となる。一方、部分光束l21はコンデンサの入射側の
曲面部2′−bを通過しないので、図3と同様に光源1
の他方の高輝度領域α′への収斂が維持されている。
The partial light fluxes l 221 further hits the part of the partial light beams l 22 is refracted by a curved surface 2'-b, which converge in the high luminance area of the light source 1 alpha, partial light fluxes l 221 is the high illumination light beams having brightness Become. On the other hand, since the partial luminous flux l 21 does not pass through the curved surface portion 2'-b on the incident side of the condenser, the light source 1 is similar to FIG.
Convergence to the other high-intensity region α ′ is maintained.

【0020】以上示した様に、スクリーン上の軸外点P
2 からの逆トレース光のうち光源の高輝度点から外れる
光束の一部にのみ作用する屈折部をコンデンサに付加す
ることにより、照明光束の高輝度領域を増加させること
ができ、像面照度を高めることができる。
As indicated above, the off-axis point P on the screen
By adding to the condenser a refraction part that acts only on a part of the light flux that deviates from the high-brightness point of the light source in the reverse trace light from 2, it is possible to increase the high-brightness area of the illumination light flux, and to increase the image plane illuminance. Can be increased.

【0021】本実施例において、軸上点P1 からの逆ト
レース光のうち、一部はコンデンサ入射側の曲面部2′
−bへ入射するため、この一部光束は光源1の高輝度領
域α、α′の中間部分へシフトしてしまい、多少の輝度
の低下を招くはずである。しかしながら、図12に示す
ように光源1の管球部表面或いはリフレクタ底部のラン
プ保持部等の存在の為、従来においても光軸近傍の光束
はケラレてしまい、照明光として有効に作用していない
ので、曲面部2′−b付加による軸上点P1 を照明する
光の実質的な輝度低下は殆どない。より好ましくは本実
施例では光源1の管球部サイズ等を考慮して曲面部2′
−bのサイズ・形状を決定することが望ましい。
In this embodiment, a part of the reverse trace light from the on-axis point P 1 is a curved surface portion 2'on the condenser incident side.
Since it is incident on -b, this partial light flux shifts to the intermediate portion between the high-brightness areas α and α'of the light source 1, which should cause a slight decrease in brightness. However, as shown in FIG. 12, since the surface of the bulb of the light source 1 or the lamp holding portion at the bottom of the reflector exists, the light flux near the optical axis is eclipsed even in the conventional case, and it does not act effectively as illumination light. since, there is little substantial reduction in luminance of light illuminating the on-axis point P 1 by the curved portion 2'-b added. More preferably, in this embodiment, the curved surface portion 2 ′ is considered in consideration of the size of the bulb portion of the light source 1.
It is desirable to determine the size and shape of -b.

【0022】本実施例に於ては、軸上の点P1 及び軸外
点P2(又は光軸周りの輪帯)にのみ着目して説明した
が、それ以外の軸外点或いは輪帯は光源1の高輝度領域
α、α′の中間領域からの光束を中心に照明されること
になる。従って、スクリーン面全体の照度均一化をより
効果的に行なう為には、従来方式に於ては急激に照度低
下を生じる軸外点近傍に上記P2 に相当する点が存在す
る様に系を構成することが望ましい。
In the present embodiment, description has been made focusing only on the on-axis point P 1 and the off-axis point P 2 (or the ring zone around the optical axis), but other off-axis points or ring zones. Will be illuminated around the light flux from the intermediate region between the high brightness regions α and α ′ of the light source 1. Therefore, in order to more effectively make the illuminance uniform on the entire screen surface, in the conventional method, the system is arranged so that the point corresponding to P 2 exists near the off-axis point where the illuminance sharply decreases. It is desirable to configure.

【0023】図1のコンデンサ4は液晶パネル6上の任
意の点に達する照明光束を投影レンズ8の入射瞳方向へ
有効に向ける機能を有するのもであり、球面形状をなす
単レンズに限らず、非球面形状或いは複数枚のレンズの
組み合わせを含めた1つのレンズ群で構成しても構わな
い。またアクリル等のプラスチックレンズも使用でき
る。またコンデンサ2′についてもレンズ群や非球面形
状等必要に応じて導入して構わない。重要なことは、被
照明体上の中心部を前記光源の第1の高輝度発光領域か
らの光束で照明し、被照明体上の周辺部を前記光源の第
1、第2双方の高輝度発光領域からの光束で照明できる
ように、逆トレース光で説明すると、コンデンサ4で光
束l21とl22に分離し、コンデンサ2′で光束l22の中
の光束l221 を高輝度発光領域αに導いてやることであ
る。
The condenser 4 of FIG. 1 has a function of effectively directing an illumination light flux reaching an arbitrary point on the liquid crystal panel 6 toward the entrance pupil of the projection lens 8, and is not limited to a single lens having a spherical shape. Alternatively, one lens group including an aspherical shape or a combination of a plurality of lenses may be used. A plastic lens such as acrylic can also be used. Also, the condenser 2'may be introduced as needed, such as a lens group and an aspherical shape. What is important is that the central part on the illuminated object is illuminated with the light flux from the first high-intensity light emitting region of the light source, and the peripheral part on the illuminated object is illuminated by high brightness of both the first and second light sources. as can be illuminated with light beams from the light emitting region, describing a reverse trace light is separated into light fluxes l 21 and l 22 in the capacitor 4, a high-brightness light-emitting region light flux l 221 in the light beam l 22 in the capacitor 2 'alpha It is to lead to.

【0024】図5は本発明の第2の実施例を表す投写表
示装置の光学系の概略構成図を示したものである。図1
の第1の実施例と同じ部分には同符号を付した。
FIG. 5 is a schematic block diagram of an optical system of a projection display apparatus showing a second embodiment of the present invention. Figure 1
The same parts as those in the first embodiment are designated by the same reference numerals.

【0025】本実施例に於ては、リフレクタ502、5
02′は焦点位置の異なる2つの回転楕円面或いはそれ
に近い形状の反射面から構成されている。リフレクタ5
02は光源1の片方の高輝度領域αに第1の焦点をも
ち、液晶パネル6の軸上点に第2の焦点をもつ。一方リ
フレクタ502′はリフレクタ502の第1焦点よりも
リフレクタ502の出射開口側にずれた光軸上に片方の
焦点をもつ回転楕円面或いはそれに近い面形状である。
コンデンサ504はリフレクタ502、502′から出
射された照明光束を投影レンズ8の入射瞳へ向ける機能
をもち、主としてフィールドレンズの役割を果たす。
In the present embodiment, the reflectors 502, 5
Reference numeral 02 'is composed of two spheroids having different focal positions or a reflecting surface having a shape close to that. Reflector 5
Reference numeral 02 has a first focus on one high-intensity region α of the light source 1, and has a second focus on an axial point of the liquid crystal panel 6. On the other hand, the reflector 502 ′ has a spheroidal surface having one focus on the optical axis, which is displaced from the first focus of the reflector 502 to the exit opening side of the reflector 502, or a surface shape close thereto.
The condenser 504 has a function of directing the illumination light flux emitted from the reflectors 502 and 502 'to the entrance pupil of the projection lens 8, and mainly serves as a field lens.

【0026】本構成に於て、光源1の高輝度領域α、
α′を有効に利用して高輝度の照明光束を得る機能をリ
フレクタ502、502′及びコンデンサ504の組み
合わせによって得る訳だが以下にその詳細な説明を行な
う。
In this structure, the high brightness area α of the light source 1,
A function of effectively utilizing α ′ to obtain a high-luminance illumination luminous flux is obtained by combining the reflectors 502 and 502 ′ and the condenser 504, but a detailed description thereof will be given below.

【0027】図6は比較のためリフレクタ502の回転
楕円面に相当するリフレクタをリフレクタ502′の領
域まで延長した場合の光線の集光状況を示したものであ
り、光学系全体の概略構成図を示し、更に投影スクリー
ン9上の点から投影レンズ8の瞳を満たす光線を逆方向
に追跡した逆トレース光を示しており、図7はスクリー
ン上の点P2 からのメリディオナル断面内での逆トレー
ス光について光源1近傍での収斂状況を示したものであ
る。
FIG. 6 shows, for comparison, the state of light collection when a reflector corresponding to the ellipsoid of revolution of the reflector 502 is extended to the area of the reflector 502 ', and a schematic configuration diagram of the entire optical system is shown. In addition, FIG. 7 shows an inverse trace light in which a ray filling the pupil of the projection lens 8 is traced in the opposite direction from a point on the projection screen 9, and FIG. 7 shows an inverse trace in the meridional section from the point P 2 on the screen. It shows the convergence state of light near the light source 1.

【0028】スクリーン上の軸上点P1 からの逆トレー
ス光はリフレクタ502の形状の定義から明らかな様に
リフレクタ502の第1焦点1点に収斂する。従って、
リフレクタ502の第1焦点上に光源1の第1の高輝度
領域α′を配置することにより、スクリーンの軸上点P
1 へは最も輝度の高い照明光束が得られる。一方軸外点
に対しては図7中の部分光束l21、l22で各々収斂状況
が異なる。部分光束l22は高輝度領域α′よりもリフレ
クタ出射開口部に近い高輝度点αの近傍に収斂している
ことがわかる。また、部分光束l21は高輝度領域α′よ
りもリフレクタ502の底部側にシフトして集光してい
る事がわかる。
The reverse trace light from the on-axis point P 1 on the screen converges on one point of the first focal point of the reflector 502, as is clear from the definition of the shape of the reflector 502. Therefore,
By disposing the first high-intensity region α ′ of the light source 1 on the first focal point of the reflector 502, the on-axis point P of the screen is set.
The illumination light flux with the highest brightness is obtained for 1. On the other hand, with respect to the off-axis point, the partial light beams l 21 and l 22 in FIG. 7 have different convergence states. It can be seen that the partial luminous flux l 22 is converged in the vicinity of the high-intensity point α closer to the reflector exit opening than in the high-intensity region α ′. Further, it can be seen that the partial luminous flux l 21 is condensed and shifted to the bottom side of the reflector 502 rather than the high brightness area α ′.

【0029】本実施例におけるリフレクタは実際には図
5で示される様にリフレクタ502の外側に、焦点位置
がリフレクタ502の焦点位置よりもリフレクタ出射開
口側にあるリフレクタ502′を有しており、図8はそ
の場合のスクリーン上点P2からの逆トレース光につい
て光源1近傍での収斂状況を示したものである。
As shown in FIG. 5, the reflector in this embodiment actually has a reflector 502 'on the outside of the reflector 502, the focal position of which is on the reflector exit opening side of the focal position of the reflector 502, FIG. 8 shows the convergence state in the vicinity of the light source 1 for the reverse trace light from the point P 2 on the screen in that case.

【0030】光源1の高輝度領域α′よりもリフレクタ
底部へ向かう逆トレース光束l21の一部の光束l211
リフレクタ502′により高輝度領域α′へ収斂する。
よって、軸外点P2 へ到達する照明光束の輝度は向上す
る。また、軸上点P1 からの逆トレース光はリフレクタ
の周縁部502′へは到達しないため、リフレクタ50
2′による軸上光束への影響はない。
The high luminance area of the light source 1 alpha 'part of the light beam l 211 reverse trace beam l 21 towards the reflector bottom portion than the reflector 502' converge to the high luminance region alpha 'by.
Therefore, the brightness of the illumination light flux reaching the off-axis point P 2 is improved. Further, since the reverse trace light from the on-axis point P 1 does not reach the peripheral portion 502 ′ of the reflector, the reflector 50
The 2'has no effect on the axial luminous flux.

【0031】以上の様に、軸上点P1 からの逆トレース
光束が及ばない範囲に、リフレクタ502よりもリフレ
クタの出射開口側に焦点をもつリフレクタ502′を配
置することによって軸外光束の輝度アップを図ることが
できる。
As described above, by arranging the reflector 502 'having a focal point closer to the exit opening side of the reflector than the reflector 502, in the range where the reverse traced light flux from the on-axis point P 1 does not reach, the brightness of the off-axis light flux is increased. You can improve.

【0032】図9及び図10は本実施例と同等の機能を
もつ光学素子を構成する変形例である、まず、図9に於
ては、図8のリフレクタ502′の代わりにリフレクタ
502を周縁部までのばし、出射開口側にコンデンサ4
02を付加したものであり、コンデンサ402の周縁部
502′に負のパワーをもたせてある。これにより、光
束l21の一部l211 が光源1の高輝度領域α′に収斂
し、軸外光束P2 の輝度アップが図れる。
FIG. 9 and FIG. 10 are modified examples of constructing an optical element having the same function as this embodiment. First, in FIG. 9, the reflector 502 is replaced by a peripheral edge of the reflector 502 'in FIG. Capacitor 4 on the exit side
02 is added, and the peripheral portion 502 'of the capacitor 402 has negative power. As a result, a part l 211 of the light flux l 21 converges on the high-luminance region α ′ of the light source 1, and the brightness of the off-axis light flux P 2 can be increased.

【0033】一方、図10の例は、図8のリフレクタ5
02′の代わりにリフレクタ502を周縁部までのば
し、その出射開口側周縁部に、周縁にいくほど厚みのあ
る屈折素子502′を付加したものであり、光束l21
一部l211 が光源1の高輝度領域α′に収斂し、軸外光
束P2 の輝度アップが図れる。
On the other hand, in the example of FIG. 10, the reflector 5 of FIG.
'Extended to the peripheral edge portion of the reflector 502 instead of at its exit opening side peripheral edge, refractive elements 502 a thick toward the periphery' 02 is obtained by adding a part l 211 of the light beam l 21 is the light source 1 Of the off-axis light beam P 2 and the brightness of the off-axis light beam P 2 can be increased.

【0034】以上、第2の実施例は、回転楕円体をなす
リフレクタをベースにしているが、回転放物または球面
リフレクタとコンデンサレンズの組合せをベースにして
も本実施例と同様の機能をもつ光学素子を付加すること
は可能である。さらには回転放物体、回転楕円体に近い
曲面やその他の非球面による回転面からなるリフレクタ
についても同様である。
As described above, the second embodiment is based on the spheroidal reflector, but the combination of a paraboloidal or spherical reflector and a condenser lens has the same function as this embodiment. It is possible to add optical elements. Further, the same applies to a reflector having a paraboloid of revolution, a curved surface close to a spheroid, or any other aspherical surface of revolution.

【0035】また、第1の実施例で説明した様にコンデ
ンサ504は必要に応じて非球面形状を含んだり、レン
ズ群で置き換えることができる。またアクリル等のプラ
スチックレンズも使用できる。
Further, as described in the first embodiment, the condenser 504 can include an aspherical shape or can be replaced with a lens group, if necessary. A plastic lens such as acrylic can also be used.

【0036】第1、第2の実施例共、軸上点に対しては
光源1の片方の高輝度領域αと被照明体上の中心部が互
いに共役となり、軸外点に対しては光源1の高輝度領域
α、α′双方と被照明体上の周辺部が互いに共役、つま
り、クリティカル照明系を構成する。しかし実際には、
軸外点についてはサジタル光線等も考えた場合、残存収
差の為、光源1の高輝度領域α、α′だけでなくその近
傍の発光部からも集光される為、厳密にはクリティカル
照明ではなくなる。
In both the first and second embodiments, one high-intensity region α of the light source 1 and the center of the object to be illuminated are conjugate with each other for the on-axis point, and the light source is for the off-axis point. Both the high-intensity areas α and α ′ of No. 1 and the peripheral portion on the illuminated body are conjugated with each other, that is, constitute a critical illumination system. But in reality,
When considering a sagittal ray or the like for the off-axis point, the residual aberration causes the light to be focused not only from the high-brightness areas α and α ′ of the light source 1 but also from the light-emitting portion in the vicinity thereof, so strictly speaking, in critical illumination. Disappear.

【0037】前述したような共役関係は本発明の必須要
件ではなく、例えば第1の実施例に於いては、コンデン
サ2′の出射側面2′−aの焦点を液晶パネル6上から
ずらしてもよいし、第2の実施例に於ては、リフレクタ
502の第2焦点を液晶パネル6上からずらしてもよ
い。この場合、軸上、軸外共ケーラー照明的になる。
The conjugate relationship as described above is not an essential requirement of the present invention. For example, in the first embodiment, even if the focal point of the emission side surface 2'-a of the condenser 2'is shifted from the liquid crystal panel 6. Alternatively, in the second embodiment, the second focus of the reflector 502 may be deviated from the liquid crystal panel 6. In this case, on-axis and off-axis co-Kehler illumination is provided.

【0038】また、第1の実施例では回転放物面、第2
の実施例では回転楕円面でリフレクタを構成したが、軸
外光束の逆トレース光の光源近傍での収斂域が2分割さ
れる様などんな照明系についても本発明の考え方を適用
することが可能である。その場合、適切なコンデンサ、
或いはコンデンサ群を付加することが必要である。
In the first embodiment, the paraboloid of revolution and the second paraboloid are used.
In the embodiment described above, the reflector is constituted by the spheroidal surface, but the idea of the present invention can be applied to any illumination system in which the converging region near the light source of the reverse trace light of the off-axis light flux is divided into two. Is. In that case, a suitable capacitor,
Alternatively, it is necessary to add a capacitor group.

【0039】また、光源の2つの高輝度部の間隔と軸
上、軸外収斂点の位置関係がマッチングするように、照
明系の構成及びサイズ、光源の電極間距離を選択するこ
とも重要である。
It is also important to select the configuration and size of the illumination system and the distance between the electrodes of the light source so that the distance between the two high-intensity portions of the light source matches the positional relationship of the on-axis and off-axis convergence points. is there.

【0040】第3の実施例を以下に示す。第1の実施例
のリフレクタ2と液晶パネルの間の任意の部分、或いは
第2の実施例のリフレクタ502と液晶パネルの間の任
意の部分に図16に示す如き光学素子を挿入した投写表
示装置である。図16の161は光学多層膜161aを
挟んだプリズムからなる偏光ビームスプリッタである。
A third embodiment will be shown below. A projection display device in which an optical element as shown in FIG. 16 is inserted in an arbitrary portion between the reflector 2 and the liquid crystal panel of the first embodiment or an arbitrary portion between the reflector 502 and the liquid crystal panel of the second embodiment. Is. Reference numeral 161 in FIG. 16 denotes a polarization beam splitter composed of prisms sandwiching the optical multilayer film 161a.

【0041】本実施例の好ましい形態としては、偏光ビ
ームスプリッタで分離された不要光が熱に変換すること
を考慮して、偏光ビームスプリッタをなるべく液晶パネ
ルから離して、例えばリフレクタの出射側近傍に置くの
が望ましい。
As a preferred form of this embodiment, considering that the unnecessary light separated by the polarization beam splitter is converted into heat, the polarization beam splitter is separated from the liquid crystal panel as much as possible, for example, near the exit side of the reflector. It is desirable to put it.

【0042】リフレクタから出射される照明光束は偏光
ビームスプリッタ161で互いに直交する偏光成分に分
離され、片方の直線偏光成分はそのまま液晶パネル6へ
向かう。つまり、本素子の作用は偏光板5へ入射する前
に偏光光を生成することにあり、偏光板の発熱を防ぐ。
本実施例では、偏光板5は必ずしも必要ではないが、偏
光板5を置くことによって、偏光光の偏光比を更に上げ
ることができる。
The illuminating light beam emitted from the reflector is separated into polarization components orthogonal to each other by the polarization beam splitter 161, and one linear polarization component goes to the liquid crystal panel 6 as it is. That is, the function of this element is to generate polarized light before entering the polarizing plate 5, and prevents the polarizing plate from generating heat.
In this embodiment, the polarizing plate 5 is not always necessary, but by disposing the polarizing plate 5, the polarization ratio of polarized light can be further increased.

【0043】また、偏光ビームスプリッタから出射する
照明光束の偏光方向と偏光板の透過軸をそろえる必要が
あるので、その場合は必要に応じて波長板等を挿入すれ
ばよい。
Further, since it is necessary to align the polarization direction of the illumination light beam emitted from the polarization beam splitter with the transmission axis of the polarizing plate, a wavelength plate or the like may be inserted if necessary.

【0044】以上透過型液晶ライトバルブを用いた投写
型表示装置の例で実施例を述べてきたが、反射型ライト
バルブを用いた投写型表示装置や、またスライドプロジ
ェクターにも本発明は適用できる。
Although the embodiment has been described above by taking the example of the projection type display device using the transmissive liquid crystal light valve, the present invention can be applied to the projection type display device using the reflection type light valve and also the slide projector. ..

【0045】[0045]

【発明の効果】以上説明したように、本発明は、第1、
第2の高輝度発光領域を有する光源と、該光源からの光
束を被照明体へ向ける照明光学系と、前記被照明体の像
を投影する投影光学系とを有する投写型表示装置におい
て、前記光源の第1、第2の高輝度発光領域を前記照明
光学系の光軸上に配置し、前記被照明体上の中心部を前
記光源の第1の高輝度発光領域からの光束で照明し、前
記被照明体上の周辺部を前記光源の第1、第2双方の高
輝度発光領域からの光束で照明するように前記照明光学
系を構成したので、拡大投影される画面の輝度、特に周
辺部の輝度のアップした照明光学系及びそれを用いた投
写型表示装置が得られ、スクリーン軸上点(中心部)を
照明する光束の輝度を低下させることなく、光源の輝度
分布の特徴を生かして、スクリーン軸外点(周辺部)を
照明する光束の輝度を高めることができる。また、偏光
板の発熱防止ひいては、液晶パネルの熱による特性劣化
が防止できる。
As described above, according to the present invention,
A projection type display device comprising: a light source having a second high-intensity light emitting region; an illumination optical system that directs a light flux from the light source toward an illuminated object; and a projection optical system that projects an image of the illuminated object. The first and second high-intensity light emitting regions of the light source are arranged on the optical axis of the illumination optical system, and the central portion of the illuminated object is illuminated with the light flux from the first high-intensity light emitting region of the light source. Since the illumination optical system is configured to illuminate the peripheral portion on the illuminated object with the luminous fluxes from both the first and second high-luminance light emitting regions of the light source, the luminance of the screen to be enlarged and projected, in particular, An illumination optical system with increased brightness in the peripheral portion and a projection display device using the same can be obtained, and the characteristics of the brightness distribution of the light source can be determined without lowering the brightness of the luminous flux illuminating the on-axis point (center part) of the screen. Brightness of the luminous flux that illuminates the off-axis point (peripheral part) of the screen It can be increased. Further, it is possible to prevent the heat generation of the polarizing plate and thus prevent the characteristic deterioration due to the heat of the liquid crystal panel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を表す光学系構成図FIG. 1 is a block diagram of an optical system showing an embodiment of the present invention.

【図2】比較例による逆トレース光線図FIG. 2 is an inverse trace ray diagram according to a comparative example.

【図3】比較例による光源近傍の逆トレース光線図FIG. 3 is an inverse trace ray diagram near a light source according to a comparative example.

【図4】本発明の実施例を表す光源近傍の逆トレース光
線図
FIG. 4 is an inverse trace ray diagram in the vicinity of a light source showing an embodiment of the present invention.

【図5】本発明の他の実施例を表す光学系構成図FIG. 5 is an optical system configuration diagram showing another embodiment of the present invention.

【図6】本発明の他の実施例による逆トレース光線図FIG. 6 is an inverse trace ray diagram according to another embodiment of the present invention.

【図7】比較例による光源近傍の逆トレース光線図FIG. 7 is an inverse trace ray diagram near a light source according to a comparative example.

【図8】本発明の他の実施例を表す光源近傍の逆トレー
ス光線図
FIG. 8 is an inverse trace ray diagram in the vicinity of a light source showing another embodiment of the present invention.

【図9】本発明の他の実施例の変形例を表す光源近傍の
逆トレース光線図
FIG. 9 is an inverse trace ray diagram in the vicinity of a light source showing a modified example of another embodiment of the present invention.

【図10】本発明の他の実施例の変形例を表す光源近傍
の逆トレース光線図
FIG. 10 is an inverse trace ray diagram in the vicinity of a light source showing a modified example of another embodiment of the present invention.

【図11】従来例の光学系構成図FIG. 11 is a block diagram of a conventional optical system.

【図12】メタルハライドランプの構成図FIG. 12 is a block diagram of a metal halide lamp.

【図13】メタルハライドランプの輝度分布図FIG. 13 is a luminance distribution diagram of a metal halide lamp.

【図14】従来例による逆トレース光線図FIG. 14 is a reverse trace ray diagram according to a conventional example.

【図15】従来例による逆トレース光線図FIG. 15 is an inverse trace ray diagram according to a conventional example.

【図16】本発明の他の実施例における光学素子図FIG. 16 is an optical element diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 リフレクタ 2′、4 コンデンサ 3 カットフィルター 5 偏光子 6 液晶パネル 7 検光子 8 投影レンズ 9 スクリーン 1 Light Source 2 Reflector 2 ', 4 Condenser 3 Cut Filter 5 Polarizer 6 Liquid Crystal Panel 7 Analyzer 8 Projection Lens 9 Screen

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1、第2の高輝度発光領域を有する光
源と、該光源からの光束を被照明体へ向ける照明光学系
と、前記被照明体の像を投影する投影光学系とを有する
投写型表示装置において、前記光源の第1、第2の高輝
度発光領域を前記照明光学系の光軸上に配置し、前記被
照明体上の中心部を前記光源の第1の高輝度発光領域か
らの光束で照明し、前記被照明体上の周辺部を前記光源
の第1、第2双方の高輝度発光領域からの光束で照明す
るように前記照明光学系を構成したことを特徴とする投
写型表示装置。
1. A light source having first and second high-luminance light emitting regions, an illumination optical system for directing a light beam from the light source to an illuminated object, and a projection optical system for projecting an image of the illuminated object. In the projection display device having the first and second high-intensity light emitting regions of the light source, the first and second high-intensity light emitting regions of the light source are arranged on the optical axis of the illumination optical system. The illumination optical system is configured to illuminate with a light flux from a light emitting area and illuminate a peripheral portion on the illuminated object with a light flux from both the first and second high brightness light emitting areas of the light source. Projection display device.
【請求項2】 前記照明光学系は、前記被照明体上の前
記中心部と前記光源の第1高輝度発光領域が互いに共役
となり、前記被照明体上の前記周辺部と前記光源の第1
及び第2高輝度発光領域がそれぞれ共役となるように構
成したことを特徴とする請求項1記載の投写型表示装
置。
2. In the illumination optical system, the central portion on the illuminated body and the first high-intensity light emitting region of the light source are conjugate with each other, and the peripheral portion on the illuminated body and the first high-luminance area of the light source.
2. The projection display device according to claim 1, wherein the second high-luminance light emitting region is configured to be conjugate with each other.
【請求項3】 前記被照明体が偏光光束を変調すること
により画像を形成するTN液晶、強誘電性液晶、PLZ
T等のライトバルブからなり、前記照明光学系は前記ラ
イトバルブに入射する以前の不定偏光光を互いに偏光面
が異なる偏光光に分離して一方の偏光光を前記被照明体
へ向ける偏光ビームスプリッタを備えることを特徴とす
る第1又は2項記載の投写型表示装置。
3. A TN liquid crystal, a ferroelectric liquid crystal, and a PLZ which form an image by modulating the polarized light flux by the illuminated body.
The polarization beam splitter is composed of a light valve such as T, and the illumination optical system splits indefinite polarized light before entering the light valve into polarized light having different polarization planes and directs one polarized light toward the illuminated body. The projection display device according to claim 1 or 2, further comprising:
JP3272699A 1991-10-21 1991-10-21 Projection type display device Pending JPH05113605A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3272699A JPH05113605A (en) 1991-10-21 1991-10-21 Projection type display device
EP92117925A EP0545052B1 (en) 1991-10-21 1992-10-20 Illuminating device and projector utilizing the same
DE69207362T DE69207362T2 (en) 1991-10-21 1992-10-20 Lighting device and projector provided with it
US08/403,549 US5692819A (en) 1991-10-21 1995-03-02 Illuminating device and projector utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3272699A JPH05113605A (en) 1991-10-21 1991-10-21 Projection type display device

Publications (1)

Publication Number Publication Date
JPH05113605A true JPH05113605A (en) 1993-05-07

Family

ID=17517563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3272699A Pending JPH05113605A (en) 1991-10-21 1991-10-21 Projection type display device

Country Status (1)

Country Link
JP (1) JPH05113605A (en)

Similar Documents

Publication Publication Date Title
US5692819A (en) Illuminating device and projector utilizing the same
JP3207022B2 (en) Light source, illumination device, and liquid crystal projection display device for projection display device
US6547421B2 (en) Display apparatus
US6464375B2 (en) Lens element and illumination optical apparatus and projection display apparatus
JP3336664B2 (en) Projection display device
JP4479686B2 (en) Lighting device and projector
US6273569B1 (en) Illuminating optical system and projector
JPH0836180A (en) Projection type display device
JPH03111806A (en) Optical illumination system and projector with the same
JPH1195163A (en) Lighting device and projection type display device
JP4644201B2 (en) Efficient illumination device for color video projection device with reduced etendue
JPS63106785A (en) Display device
JPH09185008A (en) Optical device and polygon mirror
JP2000147375A (en) Illumination device and projection device
JPH05113605A (en) Projection type display device
US6705730B2 (en) Picture display device
JP2008234897A (en) Light source device and projector
EP1874063A2 (en) Projection apparatus
JP2006337428A (en) Illuminating optical system, optical engine and projection image display apparatus
EP1627527A1 (en) Illumination system for videoprojector utilizing one or more led diodes matrices
JP3486608B2 (en) Projection display device
JPS63216025A (en) Projection type color display device
JPH05165094A (en) Projection type display device
KR100381265B1 (en) Illumination System in Liquid Crystal Projector
JP3132020B2 (en) Light source device and projection display device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060126

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Effective date: 20070309

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20070403

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070529

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110727

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110727

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120727

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130727