JPH05162700A - Regenerator integrated heat receiver-accumulator - Google Patents

Regenerator integrated heat receiver-accumulator

Info

Publication number
JPH05162700A
JPH05162700A JP3325454A JP32545491A JPH05162700A JP H05162700 A JPH05162700 A JP H05162700A JP 3325454 A JP3325454 A JP 3325454A JP 32545491 A JP32545491 A JP 32545491A JP H05162700 A JPH05162700 A JP H05162700A
Authority
JP
Japan
Prior art keywords
heat
regenerator
heat storage
accumulator
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3325454A
Other languages
Japanese (ja)
Inventor
Toshihiro Yoshii
敏浩 吉井
Masayoshi Inoue
雅賀 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3325454A priority Critical patent/JPH05162700A/en
Publication of JPH05162700A publication Critical patent/JPH05162700A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

PURPOSE:To reduce the heat loss of a heat receiver-accumulator and pressure loss in piping in a space orbit power plant so as to make the plant compact and lightweight. CONSTITUTION:On the outside of the drum 8 of a heat receiver-accumulator, a radiant plate 21, a regenerator 22 and heat insulating material 23 are provided in regular succession in such a way as to have the axis of a heat receiver- accumulator in common.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は宇宙基地等に搭載される
宇宙軌道用発電プラントに使用される受蓄熱器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage / storage device used in a power plant for space orbit mounted on a space station or the like.

【0002】[0002]

【従来の技術】宇宙基地等の宇宙軌道上にある設備に電
力を供給するための発電方式として太陽光により流体を
加熱し、ガスタービン等の熱機関を駆動して発電を行う
ものがある。この発電方式が特に低軌道上の宇宙基地等
に適用されるケースでは太陽が地球の影に隠れてしまう
時、つまり日蝕時には太陽から輻射熱を得ることができ
なくなり、発電が一時的に停止してしまう。このため、
必要な熱を予め蓄熱材に蓄えておき、太陽光の入射がな
い時に放熱して流体を加熱するようにした熱交換器、す
なわち受蓄熱器が使用される。
2. Description of the Related Art As a power generation method for supplying electric power to facilities on a space orbit such as a space station, there is one that heats a fluid by sunlight and drives a heat engine such as a gas turbine to generate electric power. Especially in the case where this power generation method is applied to space stations in low orbits, when the sun is hidden behind the earth, that is, during solar eclipse, radiant heat cannot be obtained from the sun, and power generation temporarily stops. End up. For this reason,
A heat exchanger in which necessary heat is stored in a heat storage material in advance and heats a fluid by radiating heat when sunlight is not incident, that is, a heat receiving and storing device is used.

【0003】図3はこのような受蓄熱器を組み込んだ宇
宙軌道用発電プラントの一例を示すもので、例えば、ヘ
リウム、キセノンの混合ガスからなる作動流体は、受蓄
熱器1においてリフレクタ2によって集光された太陽光
によって加熱され、タービン3に導かれて膨張を遂げ
る。このため、タービン3が駆動されてこれに直結され
ている圧縮機4および発電機5が回される。タービン3
内で仕事を終えた作動流体は、再生器6に導入され、こ
こで圧縮機4から導かれる作動流体を予熱して温度降下
し、さらにラジエータ7を通って宇宙空間に熱を放出し
てより低温となり、圧縮機4に導入されて加圧された
後、再生器6に送られる。再生器6には上述したタービ
ン3の排気が流れており、ここで低温の作動流体は高温
の作動流体によって予熱され、その後受蓄熱器1に供給
される。再生器6には宇宙軌道用発電プラントには必須
の小型、軽量化が実現可能なストリップフィン・プレー
トフィンを用いたカウンターフロー方式のプレートフィ
ン型熱交換器が用いられている。 図4はかかる発電プ
ラントに用いられる受蓄熱器1の一例を示している。す
なわち、図において、受蓄熱器1の胴8の一端に設けら
れた作動流体入口9から胴8内に導かれた作動流体は、
環状のマニホールド10に流れてそこから各蓄熱材付伝
熱管11に分配される。この蓄熱材付伝熱管11は全体
形状がU字状に形成され、作動流体は初めに蓄熱材付伝
熱管11の入口側に流れ、この間に胴8の他端に設けら
れたアパーチャ12を経て胴8内に導かれる太陽光から
輻射熱を受取り、温度が上昇する。
FIG. 3 shows an example of a power generation plant for a space orbit incorporating such a heat storage / storage device. For example, a working fluid composed of a mixed gas of helium and xenon is collected by a reflector 2 in the heat storage / storage device 1. It is heated by the shining sunlight and guided to the turbine 3 to expand. Therefore, the turbine 3 is driven and the compressor 4 and the generator 5 directly connected to the turbine 3 are rotated. Turbine 3
The working fluid that has finished its work inside is introduced into the regenerator 6, where the working fluid introduced from the compressor 4 is preheated to lower the temperature, and further passes through the radiator 7 to release heat to outer space, The temperature becomes low, and after being introduced into the compressor 4 and pressurized, it is sent to the regenerator 6. The exhaust gas of the turbine 3 described above flows through the regenerator 6, where the low-temperature working fluid is preheated by the high-temperature working fluid, and then supplied to the heat storage / storage device 1. The regenerator 6 is a counter-flow type plate fin type heat exchanger using strip fins and plate fins, which can be reduced in size and weight, which is essential for a power plant for space orbit. FIG. 4 shows an example of the heat storage / storage device 1 used in such a power generation plant. That is, in the figure, the working fluid introduced from the working fluid inlet 9 provided at one end of the body 8 of the heat storage / storage device 1 into the body 8 is
It flows into the annular manifold 10 and is distributed from there to the heat transfer tubes with heat storage material 11. The heat transfer tube with heat storage material 11 is formed in a U shape as a whole, and the working fluid first flows to the inlet side of the heat transfer tube with heat storage material 11 and, during this time, passes through an aperture 12 provided at the other end of the body 8. Radiant heat is received from the sunlight guided into the body 8, and the temperature rises.

【0004】一方、蓄熱材付伝熱管11の出口側には環
状の出口マニホールド13が接続されており、各蓄熱材
付伝熱管11内を流れた作動流体は、この出口マニホー
ルド13に集められて作動流体出口14を介して外部に
送気される。なお、図中符号15は蓄熱材付伝熱管11
を支持する支持リングを、また符号16は断熱材をそれ
ぞれ示している。
On the other hand, an annular outlet manifold 13 is connected to the outlet side of the heat transfer tube with heat storage material 11, and the working fluid flowing through each heat transfer tube with heat storage material 11 is collected in this outlet manifold 13. Air is sent to the outside through the working fluid outlet 14. In addition, the code | symbol 15 in the figure is the heat transfer tube 11 with a heat storage material.
The reference numeral 16 indicates a support ring for supporting the heat insulating material, and the reference numeral 16 indicates a heat insulating material.

【0005】[0005]

【発明が解決しようとする課題】上記したように、太陽
光はアパーチャ12から入射し、蓄熱材付伝熱管11に
照射されるが、照射された熱の一部は断熱材16を経て
胴8の外表面に至り、宇宙空間へと放熱される。この放
熱量はリフレクタ2からの照射熱の10%程度であり、
この放熱量を低減できればリフレクタ2の集光面積の削
減につながり、宇宙軌道用発電プラントのコンパクト
化、軽量化に大きく寄与する。また、各機器をつなぐ配
管内での作動流体の圧力損失は、発電効率に大きな影響
を与えるので圧力損失をできるだけ小さくすることが肝
要である。すなわち、圧力損失の低減が可能であれば、
タービン3での熱落差が大きくなり、発電出力を増大さ
せることができる。
As described above, sunlight enters from the aperture 12 and is radiated to the heat transfer tube with heat storage material 11. However, a part of the radiated heat passes through the heat insulating material 16 and the body 8 It reaches the outer surface of the and is radiated to outer space. This amount of heat radiation is about 10% of the heat radiated from the reflector 2,
If this amount of heat radiation can be reduced, it leads to a reduction in the light-collecting area of the reflector 2 and greatly contributes to the compactness and weight reduction of the power generation plant for space orbit. Further, the pressure loss of the working fluid in the pipes connecting the respective devices greatly affects the power generation efficiency, so it is important to minimize the pressure loss. That is, if it is possible to reduce the pressure loss,
The heat drop in the turbine 3 becomes large, and the power generation output can be increased.

【0006】そこで、本発明の目的は受蓄熱器の熱損失
および配管内での圧力損失を減少させ、これにより宇宙
軌道用発電プラントのコンパクト化、軽量化を図ること
のできる再生一体型受蓄熱器を提供することにある。
Therefore, an object of the present invention is to reduce the heat loss of the heat storage device and the pressure loss in the piping, thereby making it possible to make the power plant for space orbit compact and lightweight, and to realize the integrated heat storage device with regeneration. To provide a container.

【0007】[0007]

【課題を解決するための手段】本発明は上記の目的を達
成するために、胴の内面に倣い、かつ円周方向に互いの
間隔が一定になるように配置された多数の蓄熱材付伝熱
管を有し、太陽光が胴の一側に設けられたアパーチャか
ら内部に導かれ、各蓄熱材付伝熱管の外表面に直接投射
されるようになっている受蓄熱器において、受蓄熱器の
胴の外側に受蓄熱器本体の軸を共有するように、輻射プ
レート、再生器および断熱材をこの順に設置したことを
特徴とするものである。
In order to achieve the above-mentioned object, the present invention has a large number of heat storage materials arranged along the inner surface of the body and arranged so that the distance between them is constant in the circumferential direction. A heat storage / reception device having a heat pipe, in which sunlight is guided inside through an aperture provided on one side of the body and is directly projected onto the outer surface of each heat transfer pipe with heat storage material. The radiation plate, the regenerator, and the heat insulating material are installed in this order on the outer side of the body of the so as to share the shaft of the heat storage / storage device main body.

【0008】[0008]

【作用】アパーチャを通して受蓄熱器の胴内に入射した
太陽エネルギの大部分は蓄熱材付伝熱管に熱として蓄え
られる。これ以外に蓄熱材付伝熱管で吸収できなかった
熱は受蓄熱器本体の胴表面から再生器に伝導され、ここ
で再生器内を流れる作動流体に吸収される。従来の受蓄
熱器は受蓄熱器本体の外周に受蓄熱器の中心軸を共有す
る形で断熱材を設置するようにしていたが、断熱材だけ
では宇宙空間への放熱が止められない。本発明はこの熱
を再生器で吸収するようにしたので、宇宙空間への放熱
量を大幅に削減することが可能になる。なお、多層の金
属泊により構成される輻射プレートは蓄熱材付伝熱管に
入射する太陽光および高温の蓄熱材付伝熱管からの輻射
熱を遮断する。さらに、このように構成することにより
再生器で熱交換を行って加熱された作動流体を受蓄熱器
に導く配管の長さを短縮することができる。
Most of the solar energy entering the shell of the heat storage device through the aperture is stored as heat in the heat transfer tube with the heat storage material. In addition to this, the heat that cannot be absorbed by the heat transfer tube with the heat storage material is transferred from the body surface of the heat storage / storage device main body to the regenerator, where it is absorbed by the working fluid flowing in the regenerator. In the conventional heat storage / storage device, the heat insulating material is installed on the outer periphery of the heat storage / storage device body so as to share the central axis of the heat storage / storage device. However, the heat insulating material alone cannot stop heat radiation to outer space. According to the present invention, this heat is absorbed by the regenerator, so that the amount of heat released to outer space can be significantly reduced. In addition, the radiant plate constituted by a multi-layered metal plate blocks sunlight entering the heat transfer tube with the heat storage material and radiant heat from the high temperature heat transfer tube with the heat storage material. Further, with such a configuration, it is possible to shorten the length of the pipe that conducts heat exchange in the regenerator and guides the heated working fluid to the heat storage / storage device.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は本発明による再生器一体型の受蓄熱器を
示すもので、受蓄熱器の胴8の外側に受蓄熱器本体の軸
を共有するように輻射プレート21、再生器22および
断熱材23を順次設けている。蓄熱材付伝熱管11にお
いてリフレクタ2(図3参照)によって集光された太陽
光によって加熱された作動流体は、伝熱管ガス出口24
によりタービン3へ流れ膨張した後、タービンガス入口
25により再生器22に流れ、圧縮機4から導かれた作
動流体を予熱して温度降下し、再生器ガス出口26より
圧縮機4で圧縮され、再び圧縮機ガス入口27より再生
器22に流入した後、蓄熱材付伝熱管11に流れて再加
熱される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a regenerator-integrated heat storage / accumulation unit according to the present invention. A radiation plate 21, a regenerator 22, and a heat insulating material 23 are provided outside the body 8 of the heat storage / storage unit so as to share the axis of the heat storage / storage unit. Are provided in sequence. The working fluid heated by the sunlight collected by the reflector 2 (see FIG. 3) in the heat transfer tube with heat storage material 11 is heated by the heat transfer tube gas outlet 24.
And then expands to the turbine 3 by the turbine gas inlet 25, flows into the regenerator 22 through the turbine gas inlet 25, preheats the working fluid introduced from the compressor 4, lowers the temperature, and is compressed in the compressor 4 through the regenerator gas outlet 26. After flowing into the regenerator 22 from the compressor gas inlet 27 again, it flows into the heat transfer tube with heat storage material 11 and is reheated.

【0010】図2(a)(b)は図1において再生器2
2をA矢視およびB矢視方向からそれぞれ見た図であ
る。再生器22は宇宙軌道用発電プラントには必須の小
型、軽量化が可能なストリップ・プレートフィンを用い
たカウンターフロー方式の熱交換器を用いており、プレ
ート間を交互に高温流体と低温流体を流すため、入口お
よび出口において流路を交互に塞いだ構造となってい
る。タービン3を出た高温の作動流体はタービンガス入
口28より再生器22に流入し、再生器ガス出口29よ
り圧縮機4へ流れ、圧縮機4を出た作動流体は圧縮機ガ
ス入口30より再生器22に入り、伝熱管ガス入口31
より蓄熱材付伝熱管11に流入する。
2A and 2B are regenerators 2 shown in FIG.
FIG. 2 is a view of 2 viewed from the direction of arrow A and the direction of arrow B, respectively. The regenerator 22 uses a counter-flow type heat exchanger that uses strip / plate fins, which are indispensable for power generation plants for space orbit, and can be made compact and lightweight. In order to flow, the flow path is alternately closed at the inlet and the outlet. The high-temperature working fluid that has exited the turbine 3 flows into the regenerator 22 from the turbine gas inlet 28, flows from the regenerator gas outlet 29 to the compressor 4, and the working fluid that exits the compressor 4 is regenerated from the compressor gas inlet 30. Enter the vessel 22 and heat transfer tube gas inlet 31
It flows into the heat transfer tube with heat storage material 11.

【0011】[0011]

【発明の効果】以上説明したように本発明によれば、受
蓄熱器の胴の外側に受蓄熱器本体の軸を共有するように
輻射プレート、再生器および断熱材をこの順に設置する
ようにしたので、受蓄熱器本体からの熱損失を防ぎ、配
管内での圧力損失を減少させることができ、宇宙軌道用
発電プラントのコンパクト化、軽量化を図ることができ
るという優れた効果を奏する。
As described above, according to the present invention, the radiation plate, the regenerator, and the heat insulating material are installed in this order outside the body of the heat storage / storage device so as to share the shaft of the main body of the heat storage / storage device. Therefore, it is possible to prevent the heat loss from the main body of the heat storage / storage device, reduce the pressure loss in the pipe, and achieve an excellent effect that the power plant for space orbit can be made compact and lightweight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による再生器一体型の受蓄熱器の一実施
例を示す斜視図。
FIG. 1 is a perspective view showing an embodiment of a regenerator-integrated heat storage / storage device according to the present invention.

【図2】図1に示される再生器の作動流体出入口面を示
す図。
2 is a view showing a working fluid inlet / outlet surface of the regenerator shown in FIG. 1. FIG.

【図3】従来の宇宙軌道用発電プラントの一例を示す構
成図。
FIG. 3 is a configuration diagram showing an example of a conventional space orbit power generation plant.

【図4】従来の受蓄熱器の一例を示す斜視図。FIG. 4 is a perspective view showing an example of a conventional heat storage / storage device.

【符号の説明】[Explanation of symbols]

1…受蓄熱器、11…蓄熱材付伝熱管、21…輻射プレ
ート、22…再生器 23…断熱材
DESCRIPTION OF SYMBOLS 1 ... Heat storage device, 11 ... Heat transfer tube with heat storage material, 21 ... Radiation plate, 22 ... Regenerator 23 ... Thermal insulation material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 胴の内面に倣い、かつ円周方向に互いの
間隔が一定になるように配置された多数の蓄熱材付伝熱
管を有し、太陽光が前記胴の一側に設けられたアパーチ
ャから内部に導かれ、前記各蓄熱材付伝熱管の外表面に
直接投射されるようになっている受蓄熱器において、受
蓄熱器の胴の外側に受蓄熱器本体の軸を共有するよう
に、輻射プレート、再生器および断熱材をこの順に設置
したことを特徴とする再生器一体型受蓄熱器。
1. A plurality of heat transfer tubes with a heat storage material arranged along the inner surface of the body and having a constant interval in the circumferential direction, and sunlight is provided on one side of the body. In the heat receiver which is guided from the aperture to the inside and is projected directly onto the outer surface of each heat transfer tube with heat storage material, the axis of the heat receiver body is shared outside the body of the heat receiver. As described above, the regenerator-integrated heat storage device is characterized in that the radiation plate, the regenerator, and the heat insulating material are installed in this order.
JP3325454A 1991-12-10 1991-12-10 Regenerator integrated heat receiver-accumulator Pending JPH05162700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3325454A JPH05162700A (en) 1991-12-10 1991-12-10 Regenerator integrated heat receiver-accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3325454A JPH05162700A (en) 1991-12-10 1991-12-10 Regenerator integrated heat receiver-accumulator

Publications (1)

Publication Number Publication Date
JPH05162700A true JPH05162700A (en) 1993-06-29

Family

ID=18177050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3325454A Pending JPH05162700A (en) 1991-12-10 1991-12-10 Regenerator integrated heat receiver-accumulator

Country Status (1)

Country Link
JP (1) JPH05162700A (en)

Similar Documents

Publication Publication Date Title
US11242843B2 (en) Concentrated solar power generation using solar receivers
US6668555B1 (en) Solar receiver-based power generation system
US4945731A (en) Absorbing fluid receiver for solar dynamic power generation and solar dynamic power system
JP6280275B2 (en) Solar thermal power generation method and apparatus by gas endotherm based on characteristic absorption spectrum
EP2909547B1 (en) Solar receiver
US20090308072A1 (en) Solar Energy Conversion Using Brayton Cycle System
CN111968764A (en) Liquid nuclear fuel heat pipe reactor power supply system and method for recompression Brayton cycle
AU2020422038B2 (en) Solar gas turbine power generation system employing photothermal principle
CN102356284A (en) Solar collector, and power-generating plant including such solar collectors
US20090261592A1 (en) Solar Energy Conversion Using Brayton System
CN116557244A (en) Photo-thermal energy storage power generation system
US6290185B1 (en) Solar thermal rocket
JPH0230988A (en) Power plant on spatial orbit
CN210087413U (en) Amino solar thermochemical cycle power generation system
US10266739B2 (en) Compositions, devices, systems and methods for concentrating solar power
WO2011055307A2 (en) Apparatus for storage and transmission of thermal energy
JPH05162700A (en) Regenerator integrated heat receiver-accumulator
CN110030049B (en) Amino solar thermochemical cycle power generation system and working method thereof
WO2011055305A2 (en) System for storage of thermal energy
US4081965A (en) Solar operated turbine power generator
JPH0230987A (en) Power plant on spatial orbit
WO2001096791A1 (en) High temperature solar radiation heat converter
RU2802305C1 (en) Nuclear power plant for spacecraft for scientific and socio-economic purpose
CN220353987U (en) Photo-thermal energy storage power generation system
CN210949003U (en) Fused salt sleeve pipeline and fused salt disc type solar thermal power generation system comprising same