JPH0230988A - Power plant on spatial orbit - Google Patents

Power plant on spatial orbit

Info

Publication number
JPH0230988A
JPH0230988A JP17921388A JP17921388A JPH0230988A JP H0230988 A JPH0230988 A JP H0230988A JP 17921388 A JP17921388 A JP 17921388A JP 17921388 A JP17921388 A JP 17921388A JP H0230988 A JPH0230988 A JP H0230988A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage material
heat exchanger
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17921388A
Other languages
Japanese (ja)
Inventor
Yoshio Mochida
芳雄 餅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17921388A priority Critical patent/JPH0230988A/en
Publication of JPH0230988A publication Critical patent/JPH0230988A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

PURPOSE:To reduce the temperature gradient in the circumferential direction by comprising a heat receiving heat exchanger of a device having a heat receiving function and a device having a heat exchanging function independently respectively, and further by arranging the heat receiving function side device on the upstream side of the heat exchanging function side device. CONSTITUTION:In a power plant on a spatial orbit, the high-temperature side heat source of a turbine 3 is comprised of a latent-heat type heat accumulator 30, which is separated from a heat receiver 31 on the upstream side. Since the heat receiver 31 retains no heat accumulating material around the heat exchanger tubes, the sun's rays falling through the opening when the sun shines are transmitted to the operating fluid inside the tubes directly from a reflector 2 to raise the temperature, and is introduced into the latent-heat type heat accumulator 30. In this case, the temperature gradient in the circumferential direction to be caused in the heat exchanger tubes 42 of the heat receiver 31 and in the heat exchanger tubes in the heat accumulator 30 is small. At the time of solar eclipse, the operating fluid is not heated in the heat receiver 31, but receives latent heat from the heat accumulating material in the heat accumulator 30 to raise its temperature, and circulates to a turbine 3 and a compressor 4. Thus, the periodical circumferential temperature gradient of heat exchanger tubes or the like can be reduced, and the reduction in fatigue life can be prevented.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) 本発明は宇宙基地等に搭載される宇宙軌道上発電プラン
トに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a space orbit power generation plant installed in a space base or the like.

(従来の技術) 宇宙基地等軌道上にある設備に電力を供給するための発
電方式として太陽光による熱輻射により流体を加熱し、
ガスタービン等の熱機関を駆動して発電を行なうものが
ある。この発電方式が特に低軌道上の宇宙基地等に適用
されるケースでは太陽が地球の陰に隠れてしまう時、つ
まり日蝕時には太陽光から熱輻射を得ることができなく
なり、発電が一時的に停止してしまう。このため、必要
な熱を予め蓄熱材に蓄えておき、太陽光の入射がない時
に放熱して流体が加熱されるように構成した熱交換器、
すなわち、受蓄熱器が使用される。
(Prior technology) As a power generation method for supplying power to facilities in orbit such as space bases, fluid is heated by thermal radiation from sunlight.
Some devices generate electricity by driving a heat engine such as a gas turbine. In cases where this power generation method is particularly applied to space bases in low orbit, when the sun is hidden behind the earth, that is, during a solar eclipse, it is no longer possible to obtain heat radiation from the sunlight, and power generation temporarily stops. Resulting in. For this reason, a heat exchanger configured to store the necessary heat in a heat storage material in advance and radiate the heat to heat the fluid when there is no sunlight,
That is, a heat storage device is used.

第4図はこのような受蓄熱器を組込んだ宇宙軌道上発電
プラントの一例を示すもので、例えば、ヘリウム、キセ
ノン混合ガスからなる作動流体は、受蓄熱器1において
リフレクタ2によって集光された太陽光による熱輻射に
より加熱され、タービン3に導かれて膨張を遂げる。こ
のためタービン3が駆動されてこれに直結されている圧
縮機4および発電機5が回される。タービン3内で仕事
を終えた作動流体は、再生器6に導入され、ここで圧縮
機4から導かれる作動流体を予熱して温度降下]7、さ
らにラジェータ7を通って宇宙空間に熱を放出してより
低温となり、圧縮機4に導入されて加圧されて後、再生
器6に送られる。再生器6には上述したタービン3の排
気が流ねており、ここで低温の作動流体は高温の作動流
体によって予熱され、その後置蓄熱器1に供給される。
FIG. 4 shows an example of a power generation plant in space orbit incorporating such a heat receiver and storage device. For example, a working fluid consisting of a helium and xenon mixed gas is condensed by a reflector 2 in the heat receiver 1. It is heated by thermal radiation from sunlight and is guided to the turbine 3 where it expands. Therefore, the turbine 3 is driven, and the compressor 4 and generator 5, which are directly connected to the turbine 3, are rotated. The working fluid that has completed its work in the turbine 3 is introduced into the regenerator 6, where it preheats the working fluid led from the compressor 4 to lower its temperature] 7, and then passes through the radiator 7 to release heat into space. The temperature becomes lower, and after being introduced into the compressor 4 and pressurized, it is sent to the regenerator 6. The exhaust gas of the turbine 3 described above flows through the regenerator 6, where the low-temperature working fluid is preheated by the high-temperature working fluid and supplied to the downstream heat storage 1.

第5図はかかる発電プラントに用いられる受蓄熱器1の
一例を示している。すなわち、図において、受蓄熱器コ
の胴11の一端に設置jられた作動流体人口]2から胴
11内に導かれた作動流体は、環状の人口マニホールド
13に流れてそこから各蓄熱材付伝熱管14に分配され
る。この蓄熱材付伝熱管14は全体形状がU字状に形成
され、作動流体は初めに蓄熱材付伝熱管〕4内を入口側
から胴11の他端に置かれるU7端部に向かって流れ、
その後反転して蓄熱材付伝熱管14の出口側に流れ、こ
の間に胴]1の他端に設けられた開口部15を経て胴1
1内に導かれる太陽光から熱輻射を吸収して温度が上昇
する。
FIG. 5 shows an example of a heat storage device 1 used in such a power generation plant. That is, in the figure, the working fluid introduced into the body 11 from the working fluid manifold 2 installed at one end of the body 11 of the heat receiving and storage device flows into the annular artificial manifold 13 and from there flows into each heat storage material attached. It is distributed to the heat exchanger tubes 14. The overall shape of the heat exchanger tube 14 with heat storage material is formed into a U-shape, and the working fluid first flows inside the heat exchanger tube with heat storage material 4 from the inlet side toward the end U7 placed at the other end of the shell 11. ,
Thereafter, it is reversed and flows to the outlet side of the heat exchanger tube 14 with heat storage material, and during this time, the body 1 passes through the opening 15 provided at the other end of the body 1.
The temperature rises by absorbing thermal radiation from sunlight guided into the interior.

一方、蓄熱材付伝熱管]、4の出口側には環状の出口マ
ニホールド]6が接続されており、各蓄熱材付伝熱管1
4内を流れた作動流体は、この出口マニホールド16に
集められて作動流体出口17を介して外部に送気される
。なお、図中符号]8は蓄熱材付伝熱管14を支持する
支持リングを、また、符号1つは断熱材をそれぞれ示し
ている。
On the other hand, an annular outlet manifold 6 is connected to the outlet side of each heat exchanger tube 1 with heat storage material.
The working fluid that has flowed through the pump 4 is collected in the outlet manifold 16 and sent to the outside via the working fluid outlet 17. Note that the reference numeral [8] in the figure represents a support ring that supports the heat exchanger tube 14 with heat storage material, and the reference numeral 1 represents a heat insulating material.

また、第6図は上述した蓄熱材付伝熱管14の配列状態
を改めて示すもので、蓄熱材付伝熱管14は胴11の内
壁面に沿って置かれる断熱材19と接17、かつ円周方
向に等間隔に配置されている。
Moreover, FIG. 6 shows again the arrangement state of the heat exchanger tubes 14 with heat storage material mentioned above, and the heat exchanger tubes 14 with heat storage material are in contact 17 with the heat insulating material 19 placed along the inner wall surface of the shell 11, and the circumference They are spaced evenly apart in the direction.

さらに、第7図に示されるように蓄熱材付伝熱管14は
伝熱管2〕と、この伝熱管21の外側を覆う蓄熱材容器
22とから構成される。蓄熱材容器22内には蓄熱材2
3が11人されており、この蓄熱材23は固液の相変化
の潜熱を利用し、て蓄熱を行なう相変化蓄熱材である。
Furthermore, as shown in FIG. 7, the heat exchanger tube 14 with heat storage material is composed of a heat exchanger tube 2] and a heat storage material container 22 that covers the outside of the heat exchanger tube 21. The heat storage material 2 is inside the heat storage material container 22.
The heat storage material 23 is a phase change heat storage material that stores heat by utilizing the latent heat of solid-liquid phase change.

太陽光は蓄熱材容器22の外表面24から入射し、その
一部は蓄熱材23に蓄えられ、残りは伝熱管21の内表
面25から内部を入口26から出口27に向かって流れ
る作動流体に伝達されるようになっている。
Sunlight enters from the outer surface 24 of the heat storage material container 22 , a part of it is stored in the heat storage material 23 , and the rest enters the working fluid flowing inside from the inner surface 25 of the heat transfer tube 21 from the inlet 26 to the outlet 27 . It is meant to be transmitted.

(発明が解決しようとする課題) ところで、このような受蓄熱器1に用いられている蓄熱
材付伝熱管14では大腸からの熱輻射を蓄熱材23に蓄
える時に太陽光の入射方向に向いている側、つまり正射
面側と、その反対側つまり反対面側との間で入熱の不均
一が生じている。
(Problem to be Solved by the Invention) By the way, in the heat exchanger tube 14 with heat storage material used in such a heat storage device 1, when the heat radiation from the large intestine is stored in the heat storage material 23, it is oriented in the direction of incidence of sunlight. There is non-uniformity in heat input between the side on which the light is directed, that is, the side of the normal incident surface, and the side that is opposite, that is, the opposite side.

すなわち、開口部]5を経て胴11内に入射した太陽光
は入射方向に面した蓄熱材付伝熱管14の正射面側には
大量に投射されるが、反射面側には直接投射される太陽
光はなく、僅かに反射光のみが投射されるだけであり、
円周方向に入熱の著しい偏りが生じる。この入熱の偏り
に起因して蓄熱材23がどのような影響を受けるかを調
べた結果か第8図に示されている。ここで、第8図(a
)は太陽光入射開始時(蓄熱開始)における固液の分布
状態を、同(b)は太陽光入射終了時(蓄熱終了)にお
ける同じ分布状態をそれぞれ示している。図から明らか
なように正射面側の蓄熱材23は蓄熱開始と終了との間
で多くの部分が固相Xから液相yへと変化し、相変化蓄
熱材として有効に機能しているのに対し、反射面側の蓄
熱材23は同様な時間が経過しても固相Xのままであり
、有効に働くまでに至らない。このように蓄熱材23の
相変化が全周にわたらず局部に限られると、蓄熱材と接
している伝熱管21と蓄熱材容器23には周期的に大き
な熱応力が発生する。すなわち、第9図には蓄熱材23
の第8図に示される正射面側の頂部Aから反射面側の頂
部Bにかけての平均温度の分布を調べた結果が示されて
いる。図に示されるように蓄熱開始時には円周方向に約
290℃、蓄熱終了時には約1.30℃の温度勾配が発
生し、これらが円周的に繰り返される。この円周方向の
温度勾配により蓄熱材容器22には繰り返し大きな熱応
力が発生し、これが疲労となって蓄積され、短時間の内
に破損が生じて受蓄熱器1の働きが停止してしまう危険
性がある。
In other words, a large amount of the sunlight that has entered the shell 11 through the opening 5 is projected onto the normal surface of the heat exchanger tube 14 with heat storage material facing the direction of incidence, but is not directly projected onto the reflective surface. There is no sunlight and only a small amount of reflected light is projected.
A significant deviation in heat input occurs in the circumferential direction. FIG. 8 shows the results of investigating how the heat storage material 23 is affected by this uneven heat input. Here, Fig. 8 (a
) shows the solid-liquid distribution state at the start of sunlight incidence (heat storage start), and (b) shows the same distribution state at the end of sunlight incidence (heat storage end). As is clear from the figure, many parts of the heat storage material 23 on the side of the orthogonal surface change from solid phase X to liquid phase y between the start and end of heat storage, and function effectively as a phase change heat storage material. On the other hand, the heat storage material 23 on the reflective surface side remains in the solid phase X even after a similar period of time has elapsed, and does not work effectively. If the phase change of the heat storage material 23 is limited to a local area rather than over the entire circumference, large thermal stress is periodically generated in the heat transfer tubes 21 and the heat storage material container 23 that are in contact with the heat storage material. That is, in FIG. 9, the heat storage material 23
The results of examining the average temperature distribution from the top A on the orthogonal surface side to the top B on the reflective surface side shown in FIG. 8 are shown. As shown in the figure, a temperature gradient of about 290° C. occurs in the circumferential direction at the start of heat storage and about 1.30° C. at the end of heat storage, and these are repeated circumferentially. Due to this temperature gradient in the circumferential direction, large thermal stress is repeatedly generated in the heat storage material container 22, which accumulates as fatigue, causing damage within a short time and stopping the function of the heat storage device 1. There is a risk.

したがって、本発明の目的は受蓄熱器の伝熱管、蓄熱材
容器が周期的に受ける円周方向の温度勾配を小さくして
伝熱管、蓄熱材容器の疲労寿命の低下を防止するように
17た宇宙軌道上発電プラントを提供することにある。
Therefore, an object of the present invention is to reduce the temperature gradient in the circumferential direction that the heat exchanger tubes and the heat storage material container of the heat receiver and the heat storage material container periodically experience, thereby preventing a decrease in the fatigue life of the heat transfer tube and the heat storage material container. The purpose is to provide a power generation plant in space orbit.

[発明の構成] (課題を解決するための手段) 本発明は上記した目的を達成するために閉じた経路内に
順次設けられた受蓄熱用熱交換器、タービン、放熱用熱
交換器および圧縮機を備え、作動流体がこの経路内を流
れてそれぞれの装置内で受熱、膨張、放熱および圧縮を
繰り返し行なうようになっている宇宙軌道上発電プラン
トにおいて、受蓄熱用熱交換器を受熱機能を担う装置と
、熱交換機能を担う装置とに各々独立せしめて構成し、
かつ受熱機能を担う装置を熱交換器を担う装置の上流側
に配置するようにしたことを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides a heat exchanger for receiving and storing heat, a turbine, a heat exchanger for heat radiation, and a compression heat exchanger, which are sequentially provided in a closed path. In a power generation plant in space orbit, where the working fluid flows through this path and repeatedly receives heat, expands, radiates heat, and compresses heat within each device, the heat exchanger for heat receiving and storage is equipped with a heat receiving function. The device that performs the heat exchange function and the device that performs the heat exchange function are configured independently,
In addition, it is characterized in that the device that performs the heat receiving function is arranged upstream of the device that performs the heat exchanger.

(作用) 受蓄熱用熱交換器を受熱機能を担う装置と熱交換機能を
担う装置とに各々独立せしめて構成し、かつ受熱機能を
担う装置を熱交換機能を担う装置の上流側に配置するな
らば、受熱機能を担う装置、例えば受熱器は伝熱管の周
囲に蓄熱材を保持していないので、日射、日蝕時におい
ても円周方向の温度勾配はほとんど発生しない。また、
日射時に受熱器で作動流体が受けた太陽エネルギーの一
部は、後流に位置する熱交換機能を担う装置、例えば潜
熱形蓄熱装置内の蓄熱材に吸収され、このエネルギーに
より日蝕時の作動流体の加熱を行うことが可能になる。
(Function) The heat exchanger for heat reception and storage is constructed into a device that performs a heat receiving function and a device that performs a heat exchange function, and the device that performs a heat receiving function is arranged upstream of the device that performs a heat exchange function. In that case, since the device responsible for the heat receiving function, such as the heat receiver, does not hold a heat storage material around the heat transfer tube, almost no temperature gradient occurs in the circumferential direction even during solar radiation or solar eclipse. Also,
A part of the solar energy received by the working fluid in the heat receiver during solar irradiation is absorbed by the device responsible for the heat exchange function located downstream, such as the heat storage material in the latent heat storage device, and this energy is used to cool the working fluid during the solar eclipse. It becomes possible to perform heating.

(実施例) 以下、本発明の一実施例を第1図ないし第3図を参照し
て説明する。なお、第1図中、第4図に示される構成と
同一のものには同一の符号を付しており、これらについ
ては説明を省略する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 to 3. In FIG. 1, the same components as those shown in FIG. 4 are denoted by the same reference numerals, and the explanation thereof will be omitted.

第1図において、本実施例の宇宙軌道上発電プラントは
従来受蓄熱器1から占めていたタービン3に対する高温
側熱源を次に述べる潜熱形蓄熱装置30により構成し、
受熱器31から独立した装置としている。
In FIG. 1, in the space orbit power generation plant of this embodiment, the high-temperature side heat source for the turbine 3, which was conventionally occupied by the heat receiver 1, is constituted by a latent heat type heat storage device 30, which will be described below.
It is a device independent from the heat receiver 31.

第2図はこの潜熱形蓄熱装置30の実施例を示している
。すなわち、両端を鏡板32a、32bにより閉じられ
円筒状の胴33内には鏡板32a、32bと対峙して管
板34a、34bが設けられ、人口および出口プレナム
35.56とそれらの間に位置する熱交換部37が形成
されている。
FIG. 2 shows an embodiment of this latent heat type heat storage device 30. That is, tube plates 34a and 34b are provided in the cylindrical body 33, which is closed at both ends by end plates 32a and 32b, facing the end plates 32a and 32b, and are located between the inner and outer plenums 35 and 56. A heat exchange section 37 is formed.

これらの入口および出口プレナム35.36は鏡板32
a、32bを貫いて設けられる作動流体人口38および
出口39によって外部と連絡させ、さらに熱交換部37
には入口および出口ブレナム35.36を連通している
複数の伝熱管40が設けられている。そして、これらの
伝熱管40の周囲には蓄熱材41が充填されている。
These inlet and outlet plenums 35,36
A, 32b are connected to the outside by a working fluid port 38 and an outlet 39 provided through them, and a heat exchange section 37
A plurality of heat transfer tubes 40 are provided in communication with the inlet and outlet blemishes 35,36. A heat storage material 41 is filled around these heat transfer tubes 40 .

一方、受熱器31は次の構成を備えている。すなわち、
第3図に示されるように胴11内には周方向に一定の間
隔を保持して蓄熱材容器を持たない伝熱管42が配置さ
れており、それ以外の点では第5図に示される手段をす
べて備えたものとして(R成される。
On the other hand, the heat receiver 31 has the following configuration. That is,
As shown in FIG. 3, heat transfer tubes 42 without a heat storage material container are arranged in the shell 11 at a constant interval in the circumferential direction, and in other respects, the means shown in FIG. (R is formed.

次に、上記構成によるところの作用を説明する。Next, the effect of the above configuration will be explained.

受熱器31は伝熱管42の周囲に蓄熱材を保持していな
いので、日射時に開口部15から入射した太陽光は直接
伝熱管42内を流れる作動流体に伝達され、作動流体の
温度は上昇するが、蓄熱材を保持していないので、伝熱
管円周方向に生じる温度勾配は比較的小さい。受熱器3
1で温度上昇した作動流体は、後流に位置する潜熱形蓄
熱装置30に導かれ、作動流体人口38を通って入口ブ
レナム34に流入し、さらに伝熱管40内を流動して出
口ブレナム35に達する。この間に作動流体の保有する
熱エネルギーの一部は蓄熱材41に伝えられ、伝熱管4
0の周囲の蓄熱材41を固相から液相へと相変化させる
。このさい、作動流体は伝熱管40の周囲の蓄熱材41
を均一に加熱するので、円周方向に温度勾配は生じない
。この後、作動流体は出口ブレナム35から作動流体出
口39を経てタービン3に導かれる。
Since the heat receiver 31 does not hold a heat storage material around the heat transfer tube 42, sunlight that enters through the opening 15 during solar radiation is directly transmitted to the working fluid flowing inside the heat transfer tube 42, and the temperature of the working fluid increases. However, since no heat storage material is held, the temperature gradient that occurs in the circumferential direction of the heat exchanger tube is relatively small. Heat receiver 3
The working fluid whose temperature has increased in step 1 is guided to the latent heat type heat storage device 30 located downstream, flows through the working fluid port 38 into the inlet blennium 34, and further flows through the heat transfer tube 40 to the outlet blennium 35. reach During this time, a part of the thermal energy possessed by the working fluid is transferred to the heat storage material 41 and the heat transfer tube 4
The phase of the heat storage material 41 around 0 is changed from a solid phase to a liquid phase. At this time, the working fluid is the heat storage material 41 around the heat transfer tube 40.
Since it is heated uniformly, there is no temperature gradient in the circumferential direction. After this, the working fluid is directed from the outlet brenum 35 to the turbine 3 via the working fluid outlet 39.

一方、日蝕時には受熱器31に太陽光は入射しないので
、受熱器31では作動流体は加熱されない。受熱器31
を出た作動流体は潜熱形蓄熱装置30に導かれ、作動流
体人口44を通って入口ブレナム34に流入し、さらに
伝熱管40内を流動して出口プレナム35に達する。こ
の間に周囲の蓄熱材41から熱を吸収して蓄熱材41を
液相から同相へと相変化させる。・この際、作動流体は
伝熱管40の周囲の蓄熱材41を均一に冷却するので、
円周方向に温度勾配は生じない。この後、蓄熱材41と
熱交換して温度上昇した作動流体は、出口プレナム35
から作動流体出口39を経てタービン3に導かれる。
On the other hand, since sunlight does not enter the heat receiver 31 during a solar eclipse, the working fluid is not heated in the heat receiver 31. Heat receiver 31
The working fluid exiting the is directed to the latent heat storage device 30 , flows through the working fluid port 44 into the inlet plenum 34 , and then flows through the heat transfer tubes 40 to the outlet plenum 35 . During this time, heat is absorbed from the surrounding heat storage material 41 to change the phase of the heat storage material 41 from the liquid phase to the same phase. - At this time, since the working fluid uniformly cools the heat storage material 41 around the heat transfer tube 40,
No temperature gradient occurs in the circumferential direction. After that, the working fluid whose temperature has increased by exchanging heat with the heat storage material 41 is transferred to the outlet plenum 35.
The working fluid is introduced into the turbine 3 via the working fluid outlet 39 .

かくして、従来の受蓄熱器1の蓄熱材付伝熱管14では
不可避であった蓄熱材容器22および伝熱管21の円周
方向の温度勾配がすべて解消される。
In this way, the temperature gradient in the circumferential direction of the heat storage material container 22 and the heat transfer tube 21, which was unavoidable in the heat exchanger tube 14 with heat storage material of the conventional heat storage device 1, is completely eliminated.

〔発明の効果] 以上説明したように本発明においては受蓄熱用熱交換器
を受熱機能を担う装置と、熱交換機能を担う装置とに各
々独立せしめて構成し、かつ受熱機能を担う装置を熱交
換機能を担う装置の上流側に配置するようにしているか
ら、受熱器用伝熱管の円周方向の温度勾配を解消できる
。したがって、本発明によれば、円周方向の温度勾配に
よる伝熱管の疲労寿命の低下がなく、また、熱交換器用
伝熱管を介して蓄熱材との熱のやり取りを行なうように
してので、相変化する蓄熱材の割合いが増加し、蓄熱材
効率の向上といった優れた効果を奏する。
[Effects of the Invention] As explained above, in the present invention, the heat exchanger for receiving and storing heat is configured to have a device responsible for the heat receiving function and a device responsible for the heat exchange function, respectively, and the device responsible for the heat receiving function is configured separately. Since it is arranged upstream of the device that performs the heat exchange function, it is possible to eliminate the temperature gradient in the circumferential direction of the heat exchanger tube for the heat receiver. Therefore, according to the present invention, there is no reduction in the fatigue life of the heat exchanger tubes due to temperature gradients in the circumferential direction, and since heat is exchanged with the heat storage material through the heat exchanger tubes, there is no reduction in the fatigue life of the heat exchanger tubes. The rate of change in the heat storage material increases, resulting in excellent effects such as improved heat storage material efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による宇宙軌道上発電プラントの一実施
例を示す構成図、第2図は本発明による潜熱形蓄熱装置
の一実施例を示す断面図、第3図は本発明による受熱器
の要部を示す断面図、第4図は宇宙軌道上発電プラント
の概略系統図、第5図は従来の受蓄熱器の一例を示す斜
視図、第6図は従来の受蓄熱器の要部を示す断面図、第
7図は従来の蓄熱材付伝熱管の一例を示す断面図、第8
図は従来技術による蓄熱材の相変化状態を示す説明図、
第9図は同蓄熱材の温度分布を示す線図である。 1・・・・・・・・・受蓄熱器 14・・・・・・・・・蓄熱材付伝熱管21.40.4
2・・・伝熱管 22・・・・・・・・・蓄熱材容器 3.41・・・蓄熱材 0・・・・・・・・・潜熱形蓄熱装置 1・・・・・・・・・受熱器 3・・・・・・・・・胴口 5・・・・・・・・・人口ブレナム 6・・・・・・・・・出口ブレナム 7・・・・・・・・・熱交換部 代理人 弁理士 則 近 憲 佑 同    第子丸  健 第1図 第2図 第4図 第3図 第8図 八 (頂@P) 第 図 (1部) 円古 明  細  書
FIG. 1 is a configuration diagram showing an embodiment of a power generation plant on space orbit according to the present invention, FIG. 2 is a sectional view showing an embodiment of a latent heat storage device according to the present invention, and FIG. 3 is a heat receiver according to the present invention. 4 is a schematic system diagram of a power generation plant on space orbit, FIG. 5 is a perspective view showing an example of a conventional heat receiver and storage device, and FIG. 6 is a main part of a conventional heat receiver and storage device. 7 is a sectional view showing an example of a conventional heat exchanger tube with heat storage material, and FIG.
The figure is an explanatory diagram showing the phase change state of a heat storage material according to the conventional technology.
FIG. 9 is a diagram showing the temperature distribution of the heat storage material. 1... Heat storage device 14... Heat exchanger tube with heat storage material 21.40.4
2... Heat transfer tube 22... Heat storage material container 3.41... Heat storage material 0...... Latent heat type heat storage device 1...・Heat receiver 3...Body opening 5...Population Blenheim 6...Outlet Blenheim 7...Heat Exchange Department Agent Patent Attorney Yudo Nori Ken Ken Daishimaru Figure 1 Figure 2 Figure 4 Figure 3 Figure 8 Figure 8 (Top @P) Figure (Part 1) Enko Meiji Book

Claims (1)

【特許請求の範囲】[Claims] 閉じた経路内に順次設けられた受蓄熱用熱交換器、ター
ビン、放熱用熱交換器および圧縮機を備え、作動流体が
この経路内を流れてそれぞれの装置内で受熱、膨張、放
熱および圧縮を繰り返し行なうようになっている宇宙軌
道上発電プラントにおいて、前記受熱用熱交換器を受熱
機能を担う装置と、熱交換機能を担う装置とに各々独立
せしめて構成し、かつ受熱機能を担う装置を熱交換機能
を担う装置の上流側に配置するようにしたことを特徴と
する宇宙軌道上発電プラント。
A heat exchanger for receiving and storing heat, a turbine, a heat exchanger for heat dissipation, and a compressor are provided in sequence in a closed path, and the working fluid flows through this path to receive, expand, radiate, and compress heat within each device. In a space orbit power generation plant that repeatedly performs A power generation plant in space orbit, characterized in that a power generation plant is arranged upstream of a device that performs a heat exchange function.
JP17921388A 1988-07-20 1988-07-20 Power plant on spatial orbit Pending JPH0230988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17921388A JPH0230988A (en) 1988-07-20 1988-07-20 Power plant on spatial orbit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17921388A JPH0230988A (en) 1988-07-20 1988-07-20 Power plant on spatial orbit

Publications (1)

Publication Number Publication Date
JPH0230988A true JPH0230988A (en) 1990-02-01

Family

ID=16061913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17921388A Pending JPH0230988A (en) 1988-07-20 1988-07-20 Power plant on spatial orbit

Country Status (1)

Country Link
JP (1) JPH0230988A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001546A1 (en) * 2009-06-29 2011-01-06 三菱重工業株式会社 Gas turbine plant, heat receiver, power generating device, and solar concentrating system associated with solar thermal electric generation system
JP2011007149A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Gas turbine plant
JP2011007459A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Solar light collection heat receiver and solar thermal power generation device
JP2011007458A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Solar light collection heat receiver and solar thermal power generation device
JP2011032901A (en) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd Power generating device and drive control method
JP2011032902A (en) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd Sunlight concentrating and heat-receiving device
US9486527B2 (en) 2009-05-08 2016-11-08 Emplicure Ab Composition for sustained drug delivery comprising geopolymeric binder
US9622972B2 (en) 2009-03-04 2017-04-18 Emplicure Ab Abuse resistant formula
US10060418B2 (en) 2011-11-25 2018-08-28 Mitsubishi Heavy Industries, Ltd. Solar heat receiver and solar heat power generation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622972B2 (en) 2009-03-04 2017-04-18 Emplicure Ab Abuse resistant formula
US9486527B2 (en) 2009-05-08 2016-11-08 Emplicure Ab Composition for sustained drug delivery comprising geopolymeric binder
WO2011001546A1 (en) * 2009-06-29 2011-01-06 三菱重工業株式会社 Gas turbine plant, heat receiver, power generating device, and solar concentrating system associated with solar thermal electric generation system
JP2011007149A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Gas turbine plant
JP2011007459A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Solar light collection heat receiver and solar thermal power generation device
JP2011007458A (en) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd Solar light collection heat receiver and solar thermal power generation device
AU2009349048B2 (en) * 2009-06-29 2013-07-04 Mitsubishi Heavy Industries, Ltd. Gas turbine plant, heat receiver, power generating device, and sunlight collecting system associated with solar thermal electric generation system
JP2011032901A (en) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd Power generating device and drive control method
JP2011032902A (en) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd Sunlight concentrating and heat-receiving device
US10060418B2 (en) 2011-11-25 2018-08-28 Mitsubishi Heavy Industries, Ltd. Solar heat receiver and solar heat power generation device

Similar Documents

Publication Publication Date Title
US4945731A (en) Absorbing fluid receiver for solar dynamic power generation and solar dynamic power system
US4815443A (en) Solar energy focusing assembly and storage unit
US4135489A (en) Solar energy conversion system
US4262484A (en) Gas turbine engine power plant using solar energy as a heat source
US3931532A (en) Thermoelectric power system
US5428653A (en) Apparatus and method for nuclear power and propulsion
JPH0230988A (en) Power plant on spatial orbit
US20130133324A1 (en) Hybrid solar power plant
US20120222415A1 (en) Thermal energy storage apparatus, arrangement and method
JPH11240499A (en) Satellite having east-west battery radiator
AU2020422038B2 (en) Solar gas turbine power generation system employing photothermal principle
WO2011055307A2 (en) Apparatus for storage and transmission of thermal energy
JPH0230987A (en) Power plant on spatial orbit
JPH0252953A (en) Heat receiver-accumulator
WO2011055305A2 (en) System for storage of thermal energy
GB2058935A (en) Solar power generating system
JPH0264230A (en) Receiving regenerator
JPH05162700A (en) Regenerator integrated heat receiver-accumulator
GB2225059A (en) Gas turbine electricity generation
RU2802305C1 (en) Nuclear power plant for spacecraft for scientific and socio-economic purpose
JPH0225662A (en) Heat storage device
US4222369A (en) Solar radiant energy heat exchanger
JPH0268454A (en) Thermal conducting pipe with thermal accumulation material for thermal receiver
JPH0491325A (en) High temperature gas furnace type heat-electricity compound generating system
CN210949003U (en) Fused salt sleeve pipeline and fused salt disc type solar thermal power generation system comprising same