JPH05159800A - Hydrogen storage alloy electrode and alkaline secondary cell using it - Google Patents

Hydrogen storage alloy electrode and alkaline secondary cell using it

Info

Publication number
JPH05159800A
JPH05159800A JP3348245A JP34824591A JPH05159800A JP H05159800 A JPH05159800 A JP H05159800A JP 3348245 A JP3348245 A JP 3348245A JP 34824591 A JP34824591 A JP 34824591A JP H05159800 A JPH05159800 A JP H05159800A
Authority
JP
Japan
Prior art keywords
battery
storage alloy
hydrogen storage
support
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3348245A
Other languages
Japanese (ja)
Inventor
Keiichiro Uenae
苗 圭 一 郎 植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP3348245A priority Critical patent/JPH05159800A/en
Publication of JPH05159800A publication Critical patent/JPH05159800A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the discharge characteristic and the cycle characteristic of a cell and restrict rise-up of the internal pressure of the cell by applying metallic plating where water repellent resin is dispersed in the carrier surface. CONSTITUTION:Metallic plating 2 where such water repellent resin 3 as polyterafluoroethylene is dispersed is applied to the surface of a carrier 1 used for a hydrogen storage alloy electrode. Resultantly, the conductivity of the carrier 1 is increased by a metal making the matrix of metallic plating 2, and high water repellency is provided on the carrier 1 by the water repellent resin 3 dispersed in the metallic plating 2, so that the conductivity and water repellency of the carrier 1 can be improved. It is thereby possible to improve the discharge characteristic and the cycle characteristic of an alkaline secondary cell and also control rise-up of the internal pressure of the cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金電極およ
びそれを用いたアルカリ二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode and an alkaline secondary battery using the same.

【0002】[0002]

【従来の技術】ニッケル−水素電池や二酸化マンガン−
水素電池などのアルカリ二次電池の負極としては、水素
吸蔵合金を支持体に支持させることによって作製された
水素吸蔵合金電極が用いられている。
2. Description of the Related Art Nickel-hydrogen batteries and manganese dioxide-
A hydrogen storage alloy electrode produced by supporting a hydrogen storage alloy on a support is used as a negative electrode of an alkaline secondary battery such as a hydrogen battery.

【0003】この水素吸蔵合金電極を負極に用い、ニッ
ケル酸化物を活物質とするニッケル電極を正極に用いた
ニッケル−水素電池や、二酸化マンガンを活物質とする
二酸化マンガン電極を正極に用いた二酸化マンガン−水
素電池などのアルカリ二次電池においては、その充放電
における電気化学的反応により、下記の反応式に示すよ
うに、過充電時に正極で酸素ガスが発生し、それが負極
に到達する。 OH- →1/2H2 O+1/4O2 +e-
A nickel-hydrogen battery using this hydrogen storage alloy electrode as the negative electrode and a nickel electrode using nickel oxide as the active material for the positive electrode, and a dioxide using the manganese dioxide electrode using manganese dioxide as the active material for the positive electrode. In an alkaline secondary battery such as a manganese-hydrogen battery, due to an electrochemical reaction during charge / discharge, oxygen gas is generated at the positive electrode during overcharge and reaches the negative electrode as shown in the following reaction formula. OH - → 1 / 2H 2 O + 1 / 4O 2 + e -

【0004】この時、負極では下記の式(式中のMは水
素吸蔵合金を示す)で示す反応 O2 +4MH→4M+2H2 O が生じるため、本来は、正極で発生した酸素が負極で消
費されるはずであるが、負極が親水性であると、負極の
表面が電解液で密接に覆われるため、酸素が負極の水素
吸蔵合金電極の表面に到達できず、その結果、消費され
なかった酸素が電池内圧を上昇させたり、電解液を電池
上部に移動させ、電解液が電池外部に漏出する原因にな
る。
At this time, in the negative electrode, the reaction O 2 + 4MH → 4M + 2H 2 O represented by the following formula (M in the formula represents a hydrogen storage alloy) occurs, so that oxygen generated in the positive electrode is originally consumed in the negative electrode. However, if the negative electrode is hydrophilic, the surface of the negative electrode is closely covered with the electrolyte, so that oxygen cannot reach the surface of the hydrogen storage alloy electrode of the negative electrode, and as a result, the oxygen that has not been consumed is consumed. May increase the internal pressure of the battery or move the electrolytic solution to the upper part of the battery, causing the electrolytic solution to leak to the outside of the battery.

【0005】そこで、水素吸蔵合金電極に使用される支
持体に導電性金属粉末と撥水性有機高分子材料粉末との
混合物を被覆して、支持体の導電性を高めると共に、支
持体に撥水性を付与しようとする試みがなされている
(たとえば、特開平1−267955号公報)。
Therefore, the support used for the hydrogen storage alloy electrode is coated with a mixture of a conductive metal powder and a water-repellent organic polymer material powder to enhance the conductivity of the support and to make the support water-repellent. Has been made (for example, Japanese Patent Laid-Open No. 1-267955).

【0006】しかし、上記方法による場合は、粉体によ
って被覆を行うため、その充填密度が低く、エネルギー
密度が問われる二次電池では、撥水性が充分とはいえ
ず、充分に満足すべきものとはいえなかった。また、導
電性接触は金属粉末の点接触によるものであるため、充
分な導電性が得られなかった。
However, in the case of the above-mentioned method, since the coating is performed with powder, the filling density is low and the secondary battery, which is required to have an energy density, cannot be said to have sufficient water repellency and should be sufficiently satisfied. I couldn't say. Further, since the conductive contact is due to the point contact of the metal powder, sufficient conductivity cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
に従来の支持体の表面状態の改善方法では、支持体の導
電性および撥水性を充分に向上させることができなかっ
たという問題点を解決し、支持体の導電性および撥水性
を充分に向上させ、それによって電池の放電特性やサイ
クル特性を向上させ、かつ電池の内圧上昇を抑制するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention, as described above, has a problem that the conventional method for improving the surface condition of a support cannot sufficiently improve the conductivity and water repellency of the support. It is an object of the present invention to sufficiently improve the conductivity and water repellency of a support, thereby improving the discharge characteristics and cycle characteristics of a battery and suppressing an increase in internal pressure of the battery.

【0008】[0008]

【課題を解決するための手段】本発明は、水素吸蔵合金
電極に使用される支持体の表面に、ポリテトラフルオロ
エチレンなどの撥水性を有する樹脂を分散させた金属メ
ッキを施すことによって、上記目的を達成したものであ
る。
According to the present invention, the surface of a support used for a hydrogen storage alloy electrode is subjected to metal plating in which a resin having water repellency such as polytetrafluoroethylene is dispersed. It has achieved its purpose.

【0009】すなわち、支持体の表面に撥水性を有する
樹脂を分散させた金属メッキを施すと、図1に示すよう
に、支持体1の表面は撥水性を有する樹脂3を分散させ
た金属メッキ2によって被覆される。
That is, when the surface of the support is subjected to metal plating in which a resin having water repellency is dispersed, as shown in FIG. 1, the surface of the support 1 is plated with metal in which the resin 3 having water repellency is dispersed. It is covered by 2.

【0010】その結果、支持体1の導電性は金属メッキ
2のマトリックスを構成する金属によって高められ、か
つ金属メッキ2中に分散させた撥水性を有する樹脂3に
よって支持体1に強力な撥水性が付与されて、支持体1
の導電性および撥水性が向上する。
As a result, the conductivity of the support 1 is enhanced by the metal constituting the matrix of the metal plating 2, and the resin 3 having water repellency dispersed in the metal plating 2 gives the support 1 strong water repellency. Is added to the support 1
The electrical conductivity and water repellency of are improved.

【0011】本発明において、金属メッキ中に分散させ
る撥水性を有する樹脂としては、上記例示したポリテト
ラフルオロエチレン以外にも、たとえば、ポリクロロト
リフルオロエチレン、テトラフルオロエチレン・へキサ
フルオロプロピレン共重合体、ポリビニリデンフルオラ
イド、テトラフルオロエチレン・エチレン共重合体、ク
ロロトリフルオロエチレン・エチレン共重合体、テトラ
フルオロエチレン・パーフルオロアルキルビニルエーテ
ル共重合体、ポリビニルフルオライドなどのフッ素系樹
脂、さらには、ポリエチレン、ポリプロピレン、ポリ塩
化ビニル、ポリスチレンなどのポリオレフィン系樹脂な
どの相対的に金属よりも高い撥水性を有する樹脂を用い
ることができる。特にフッ素系樹脂は撥水性が高く、本
発明において好適に用いられる。
In the present invention, as the water-repellent resin dispersed in the metal plating, in addition to the polytetrafluoroethylene exemplified above, for example, polychlorotrifluoroethylene or tetrafluoroethylene / hexafluoropropylene copolymer is used. Fluorine resins such as coalesce, polyvinylidene fluoride, tetrafluoroethylene / ethylene copolymer, chlorotrifluoroethylene / ethylene copolymer, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, and the like. Resins having relatively higher water repellency than metals, such as polyolefin resins such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene, can be used. Particularly, the fluorine-based resin has high water repellency and is preferably used in the present invention.

【0012】支持体としては、たとえば発泡金属、金
網、エキスパンドメタル、パンチングメタルなどが用い
られる。
As the support, for example, foam metal, wire mesh, expanded metal, punching metal or the like is used.

【0013】金属メッキに使用される金属としては、た
とえば銅、ニッケル、マンガン、コバルト、鉄、モリブ
デンなどがあげられ、これらの金属は、メッキに際し
て、それぞれ単独でまたは2種以上の合金として使用さ
れる。これら例示の金属は電気伝導度が高く、支持体の
導電性を向上させるのに特に適している。
Examples of the metal used for metal plating include copper, nickel, manganese, cobalt, iron, molybdenum, etc. These metals are used alone or as alloys of two or more kinds at the time of plating. It These exemplified metals have high electric conductivity and are particularly suitable for improving the conductivity of the support.

【0014】金属メッキは、通常の無電解メッキによれ
ばよく、ポリテトラフルオロエチレンは金属メッキ中に
2〜30容量%程度分散させることが好ましい。
The metal plating may be performed by ordinary electroless plating, and polytetrafluoroethylene is preferably dispersed in the metal plating in an amount of about 2 to 30% by volume.

【0015】上記金属メッキの厚みは、特に限定される
ものではなく、通常、2〜20μm程度にされる。
The thickness of the above-mentioned metal plating is not particularly limited, and is usually about 2 to 20 μm.

【0016】そして、上記支持体を用いて作製された水
素吸蔵合金電極は、ニッケル−水素電池、二酸化マンガ
ン−水素電池などのアルカリ二次電池の負極として使用
される。
The hydrogen storage alloy electrode produced by using the above support is used as a negative electrode of an alkaline secondary battery such as a nickel-hydrogen battery or a manganese dioxide-hydrogen battery.

【0017】[0017]

【実施例】つぎに実施例をあげて本発明をより具体的に
説明する。
EXAMPLES Next, the present invention will be described more specifically with reference to examples.

【0018】実施例1 水素吸蔵合金としてMmNi3.85Co0.65Mn0.3 Al
0.2 を用い、これに水素の吸脱蔵を1回行って微粉化さ
せ、100μm以下の微粉末にした。上記水素吸蔵合金
の組成を示すMmNi3.85Co0.65Mn0.3 Al0.2
おいて、Mmはミッシュメタルであり、その組成はLa
23Ce46Pr19Nd11Sm1 である。
Example 1 MmNi 3.85 Co 0.65 Mn 0.3 Al as a hydrogen storage alloy
0.2 was used, and hydrogen was adsorbed and desorbed once to finely pulverize it into fine powder of 100 μm or less. In MmNi 3.85 Co 0.65 Mn 0.3 Al 0.2 showing the composition of the above hydrogen storage alloy, Mm is misch metal and its composition is La.
23 Ce 46 Pr 19 Nd 11 Sm 1 .

【0019】支持体には、空孔率70体積%で厚み1.
2mmの発泡ニッケルを用い、メッキ液としては、塩化
ニッケル30g/l、次亜リン酸ナトリウム24g/
l、酢酸ナトリウム16g/lおよびポリテトラフルオ
ロエチレン5g/lを含むニッケルメッキ液を用意し
た。
The support has a porosity of 70% by volume and a thickness of 1.
2 mm foamed nickel was used, and the plating solution was nickel chloride 30 g / l, sodium hypophosphite 24 g / l.
1, a nickel plating solution containing 16 g / l of sodium acetate and 5 g / l of polytetrafluoroethylene was prepared.

【0020】このメッキ液を90℃に加温し、その中に
上記支持体を入れ、20分間攪拌を続けて、支持体の表
面にポリテトラフルオロエチレンを分散させたニッケル
メッキを施した。メッキ厚みは約5μmであった。
The plating solution was heated to 90 ° C., the support was placed therein, and stirring was continued for 20 minutes to perform nickel plating in which polytetrafluoroethylene was dispersed on the surface of the support. The plating thickness was about 5 μm.

【0021】この支持体に、上記水素吸蔵合金と濃度2
重量%のカルボキシメチルセルロース水溶液とを混合し
て作製した水素吸蔵合金ペーストを充填し、90℃で乾
燥した後、プレスし、Ar−H2 混合ガス雰囲気で30
0℃で熱処理して厚み0.5mmの水素吸蔵合金電極を
作製した。
On this support, the above hydrogen storage alloy and a concentration of 2 were added.
A hydrogen-absorbing alloy paste prepared by mixing with an aqueous solution of carboxymethylcellulose in an amount of wt% was filled, dried at 90 ° C., pressed, and then subjected to 30 minutes in an Ar—H 2 mixed gas atmosphere.
It heat-processed at 0 degreeC, and produced the hydrogen storage alloy electrode of thickness 0.5mm.

【0022】この水素吸蔵合金電極を負極として用い、
ニッケル酸化物を活物質とする公知の終結式ニッケル電
極を正極として用い、電解液には30重量%水酸化カリ
ウム水溶液(ただし、水酸化リチウムを17g/l溶解
させている)を用いて、単3形のニッケル−水素電池を
製造した。
Using this hydrogen storage alloy electrode as a negative electrode,
A known termination type nickel electrode using nickel oxide as an active material was used as a positive electrode, and a 30 wt% potassium hydroxide aqueous solution (provided that lithium hydroxide was dissolved in 17 g / l) was used as an electrolytic solution. A Type 3 nickel-hydrogen battery was manufactured.

【0023】比較例1 発泡ニッケルからなる支持体にメッキを施さなかったほ
かは、実施例1と同様に水素吸蔵合金電極を作製し、単
3形のニッケル−水素電池を製造した。
Comparative Example 1 A hydrogen storage alloy electrode was prepared in the same manner as in Example 1 except that the support made of foamed nickel was not plated, and an AA nickel-hydrogen battery was manufactured.

【0024】上記実施例1の電池および比較例1の電池
を充電条件0.1C、130%充電で、放電条件0.2
Cで充放電させ、放電特性を調べた。その結果を図2に
示す。
The battery of Example 1 and the battery of Comparative Example 1 were charged under conditions of 0.1 C, 130% charge and 0.2 discharge conditions.
The battery was charged and discharged at C and the discharge characteristics were examined. The result is shown in FIG.

【0025】図2に示すように、実施例1の電池は比較
例1の電池に比べて放電容量が大きく、支持体の表面に
ポリテトラフルオロエチレンを分散させたニッケルメッ
キを施した効果が明らかにされていた。
As shown in FIG. 2, the battery of Example 1 had a larger discharge capacity than the battery of Comparative Example 1, and the effect of nickel plating in which polytetrafluoroethylene was dispersed on the surface of the support was clarified. I was told.

【0026】また、上記実施例1の電池および比較例1
の電池に対して充電電流を変化させて充電したときの飽
和後の電池の内圧を測定した。その結果を図3に示す。
The battery of Example 1 and Comparative Example 1
The internal pressure of the saturated battery was measured when the battery was charged by changing the charging current. The result is shown in FIG.

【0027】図3に示すように、実施例1の電池は比較
例1の電池より内圧が低かった。これは、実施例1の電
池ではニッケルメッキ中に分散させたポリテトラフルオ
ロエチレンによる撥水作用によって負極の水素吸蔵合金
電極での酸素ガスの消費能力が向上したためであると考
えられる。
As shown in FIG. 3, the battery of Example 1 had a lower internal pressure than the battery of Comparative Example 1. It is considered that this is because in the battery of Example 1, the water repellency of polytetrafluoroethylene dispersed in the nickel plating improved the oxygen gas consumption capacity of the hydrogen storage alloy electrode of the negative electrode.

【0028】実施例2 水素吸蔵合金としてV33Ti17Zr17Ni33を用い、こ
れに水素の吸脱蔵を1回行って微粉化させ、100μm
以下の微粉末にした。
Example 2 V 33 Ti 17 Zr 17 Ni 33 was used as a hydrogen storage alloy, and hydrogen was absorbed and desorbed once to obtain a fine powder having a particle size of 100 μm.
The following fine powder was used.

【0029】支持体には実施例1と同様の発泡ニッケル
を用い、メッキ液としては、硫酸ニッケル30g/l、
硫酸コバルト34g/l、ジメチルアミンボラン15g
/l、酢酸ナトリウム16g/lおよびポリテトラフル
オロエチレン5g/lを含むコバルト−ニッケル合金メ
ッキ液を用意した。
Foamed nickel similar to that used in Example 1 was used as the support, and the plating solution used was nickel sulfate 30 g / l.
Cobalt sulfate 34g / l, dimethylamine borane 15g
/ L, 16 g / l of sodium acetate and 5 g / l of polytetrafluoroethylene were prepared as a cobalt-nickel alloy plating solution.

【0030】このメッキ液を70℃に加温し、その中に
上記発泡ニッケルからなる支持体を入れ、35分間攪拌
を続けて、支持体の表面にポリテトラフルオロエチレン
を分散させたコバルト−ニッケル合金メッキを施した。
The plating solution was heated to 70 ° C., the support made of the above-mentioned nickel foam was placed therein, and stirring was continued for 35 minutes to obtain cobalt-nickel in which polytetrafluoroethylene was dispersed on the surface of the support. Alloy plated.

【0031】上記メッキ後の支持体を用い、それ以外は
実施例1と同様に水素吸蔵合金電極を作製し、単3形の
ニッケル−水素電池を製造した。
A hydrogen storage alloy electrode was produced in the same manner as in Example 1 except that the above-mentioned plated support was used to produce an AA nickel-hydrogen battery.

【0032】比較例2 発泡ニッケルからなる支持体にメッキを施さなかったほ
かは、実施例2と同様に水素吸蔵合金電極を製造し、単
3形のニッケル−水素電池を作製した。
Comparative Example 2 A hydrogen storage alloy electrode was produced in the same manner as in Example 2 except that the support made of foamed nickel was not plated, and an AA nickel-hydrogen battery was produced.

【0033】上記実施例2の電池および比較例2の電池
を充放電電流0.6A、130%充電、放電終止0.9
Vで充放電させて、サイクル特性を調べた。その結果を
図4に示す。
The battery of Example 2 and the battery of Comparative Example 2 were charged and discharged at a current of 0.6 A, 130% charged, and terminated at discharge 0.9.
After charging and discharging at V, the cycle characteristics were examined. The result is shown in FIG.

【0034】図4に示すように、実施例2の電池は比較
例2の電池に比べてサイクル寿命が長かった。これは、
実施例2の電池では支持体にコバルト−ニッケル合金メ
ッキを施したことにより、充放電に伴なう水素吸蔵合金
の微粉化による内部抵抗の増加が抑制されたことによる
ものと考えられる。
As shown in FIG. 4, the battery of Example 2 had a longer cycle life than the battery of Comparative Example 2. this is,
It is considered that, in the battery of Example 2, the support was plated with the cobalt-nickel alloy, so that the increase in internal resistance due to the pulverization of the hydrogen storage alloy due to the charging and discharging was suppressed.

【0035】また、上記実施例2の電池および比較例2
の電池に対して充電電流を変化させて充電したときの飽
和後の電池の内圧を測定した。その結果を図5に示す。
The battery of Example 2 and Comparative Example 2
The internal pressure of the saturated battery was measured when the battery was charged by changing the charging current. The result is shown in FIG.

【0036】図5に示すように、実施例2の電池は比較
例2の電池に比べて内圧が低かった。これは、実施例2
の電池ではコバルト−ニッケル合金メッキ中に分散させ
たポリテトラフルオロエチレンによる撥水作用によって
負極の水素吸蔵合金電極での酸素ガスの消費能力が向上
したためであると考えられる。
As shown in FIG. 5, the battery of Example 2 had a lower internal pressure than the battery of Comparative Example 2. This is Example 2
It is considered that this is because in the battery (1), the water repellent effect of polytetrafluoroethylene dispersed in the cobalt-nickel alloy plating improved the oxygen gas consumption capacity of the hydrogen storage alloy electrode of the negative electrode.

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
水素吸蔵合金電極の支持体の導電性および撥水性を向上
させることができる。
As described above, according to the present invention,
The conductivity and water repellency of the support of the hydrogen storage alloy electrode can be improved.

【0038】その結果、ニッケル−水素電池などのアル
カリ二次電池における放電特性やサイクル特性を向上さ
せることができ、かつ電池の内圧上昇を抑制することが
できた。
As a result, it was possible to improve discharge characteristics and cycle characteristics in an alkaline secondary battery such as a nickel-hydrogen battery and to suppress an increase in internal pressure of the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において、撥水性を有する樹脂を分散さ
せた金属メッキを表面に施した支持体の要部を模式的に
示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a main part of a support having a surface plated with a metal having a water-repellent resin dispersed therein in the present invention.

【図2】実施例1の電池および比較例1の電池の放電特
性を示す図である。
2 is a diagram showing discharge characteristics of the battery of Example 1 and the battery of Comparative Example 1. FIG.

【図3】実施例1の電池および比較例1の電池の充電電
流と電池内圧との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a charging current and a battery internal pressure of a battery of Example 1 and a battery of Comparative Example 1.

【図4】実施例2の電池および比較例2の電池のサイク
ル特性を示す図である。
FIG. 4 is a diagram showing cycle characteristics of a battery of Example 2 and a battery of Comparative Example 2.

【図5】実施例2の電池および比較例2の電池の充電電
流と電池内圧との関係を示す図である。
5 is a diagram showing the relationship between the charging current and the battery internal pressure of the battery of Example 2 and the battery of Comparative Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 支持体 2 金属メッキ 3 撥水性を有する樹脂 1 Support 2 Metal plating 3 Resin with water repellency

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を支持体に支持させてなる
水素吸蔵合金電極であって、上記支持体1が、その表面
に、撥水性を有する樹脂3を分散させた金属メッキ2を
施したものであることを特徴とする水素吸蔵合金電極。
1. A hydrogen storage alloy electrode in which a hydrogen storage alloy is supported on a support, wherein the support 1 has a metal plating 2 on the surface of which a resin 3 having water repellency is dispersed. A hydrogen storage alloy electrode, characterized in that
【請求項2】 撥水性を有する樹脂が、ポリテトラフル
オロエチレンである請求項1記載の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein the water-repellent resin is polytetrafluoroethylene.
【請求項3】 金属メッキ2の金属が、銅、ニッケル、
コバルト、マンガン、鉄およびモリブデンよりなる群か
ら選ばれた少なくとも1種であることを特徴とする請求
項1記載の水素吸蔵合金電極。
3. The metal of the metal plating 2 is copper, nickel,
The hydrogen storage alloy electrode according to claim 1, which is at least one selected from the group consisting of cobalt, manganese, iron, and molybdenum.
【請求項4】 請求項1記載の水素吸蔵合金電極を負極
に用いたことを特徴とするアルカリ二次電池。
4. An alkaline secondary battery using the hydrogen storage alloy electrode according to claim 1 as a negative electrode.
【請求項5】 アルカリ二次電池が、ニッケル−水素電
池である請求項4記載のアルカリ二次電池。
5. The alkaline secondary battery according to claim 4, wherein the alkaline secondary battery is a nickel-hydrogen battery.
JP3348245A 1991-12-03 1991-12-03 Hydrogen storage alloy electrode and alkaline secondary cell using it Withdrawn JPH05159800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3348245A JPH05159800A (en) 1991-12-03 1991-12-03 Hydrogen storage alloy electrode and alkaline secondary cell using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3348245A JPH05159800A (en) 1991-12-03 1991-12-03 Hydrogen storage alloy electrode and alkaline secondary cell using it

Publications (1)

Publication Number Publication Date
JPH05159800A true JPH05159800A (en) 1993-06-25

Family

ID=18395728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3348245A Withdrawn JPH05159800A (en) 1991-12-03 1991-12-03 Hydrogen storage alloy electrode and alkaline secondary cell using it

Country Status (1)

Country Link
JP (1) JPH05159800A (en)

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP2007012572A (en) Nickel hydrogen battery
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
JP3345889B2 (en) Manufacturing method of alkaline storage battery and its negative electrode
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JP2007066697A (en) Manufacturing method of alkaline storage battery
JP3102002B2 (en) Hydrogen storage electrode and method for producing the same
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3429684B2 (en) Hydrogen storage electrode
JPH05159800A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JPH0568828B2 (en)
JP2010010097A (en) Method of manufacturing nickel metal hydride storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH09115519A (en) Alkaline secondary battery
JPH0837022A (en) Alkaline storage battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH09213363A (en) Manufacture of alkali storage battery
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JPH0234433B2 (en)
JPH05159799A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JPH03295177A (en) Sealed alkaline storage battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311