JPH05156312A - Production of sintered aluminum alloy powder - Google Patents

Production of sintered aluminum alloy powder

Info

Publication number
JPH05156312A
JPH05156312A JP32079091A JP32079091A JPH05156312A JP H05156312 A JPH05156312 A JP H05156312A JP 32079091 A JP32079091 A JP 32079091A JP 32079091 A JP32079091 A JP 32079091A JP H05156312 A JPH05156312 A JP H05156312A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy powder
sintering
sintered
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32079091A
Other languages
Japanese (ja)
Inventor
Tadahiko Wakechigai
忠彦 輪違
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP32079091A priority Critical patent/JPH05156312A/en
Publication of JPH05156312A publication Critical patent/JPH05156312A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To sinter an aluminum alloy powder to high density with good dimensional accuracy. CONSTITUTION:An aluminum alloy powder is injection-molded using an org. binder. The dewaxed molded body is dipped for 10min in a 3% soln. of borate- base brazing flux as the sintering assistant, dried and sintered in the atmosphere, then in vacuum and finally in the atmosphere. Consequently, the sintered body having 85% relative density is inexpensively obtained with good dimensional accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム合金粉末
の焼結体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered body of aluminum alloy powder.

【0002】[0002]

【従来の技術】従来、アルミニウム合金粉末の焼結は、
その粉末表面の酸化物のために、高密度の焼結をするこ
とが困難な粉末であった。このため従来アルミニウム合
金粉末の焼結は、プレス方式により成形されたもののみ
が行われていた。これはプレスにより成形加圧する際
に、粉末どうしの擦れあう力により、表皮を強制的に互
いに傷つけあって酸化膜を部分的に除き、新生面どうし
の接触により焼結を進めることができていた。
2. Description of the Related Art Conventionally, the sintering of aluminum alloy powder is
Due to the oxide on the surface of the powder, it was a powder that was difficult to sinter at high density. For this reason, conventional aluminum alloy powders have only been sintered by pressing. This is because when the powder is pressed and pressed by a press, the skins are forcibly damaged by the rubbing force of the powders to partially remove the oxide film, and the sintering can be promoted by the contact between the new surfaces.

【0003】しかし、焼結体では酸化物の一部が残留
し、しかも、プレス方式の持つ粉末充填量の部分的な不
均一さに起因する焼結時の収縮率の不均一さの為に、焼
結体の嵩密度を真密度近くまで、高めることが出来ない
というような欠点があった。
However, in the sintered body, a part of the oxide remains, and moreover, the shrinkage ratio at the time of sintering is uneven due to the partial unevenness of the powder filling amount of the pressing method. However, there is a drawback that the bulk density of the sintered body cannot be increased to near the true density.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、残留酸化物の量を減らすことと、焼結体の
嵩密度を高める点である。
The problems to be solved by the present invention are to reduce the amount of residual oxide and to increase the bulk density of the sintered body.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は粉末充填の部分的な不均一さに対しては、
金属粉末射出成形法を用い、残留酸化物を減少させるこ
とに対しては、焼結助材を用い、還元を真空と雰囲気の
複合焼結によりこれを実現した。
In order to solve the above-mentioned problems, the present invention is directed to the partial non-uniformity of powder filling.
Regarding the reduction of residual oxides by using the metal powder injection molding method, this was achieved by using a sintering aid and reducing by combined sintering of vacuum and atmosphere.

【0006】[0006]

【作用】上記のように、金属粉末の射出成形法により3
次元の複雑な形状の焼結体が得られ、焼結助材を用いた
ので良い組織状態の焼結体が得られる。
As described above, the injection molding method of the metal powder 3
A sintered body having a complicated dimension can be obtained, and since a sintering aid is used, a sintered body in a good texture state can be obtained.

【0007】[0007]

【実施例】平均粒径10ミクロンのアルミニウム−シリ
コン−マグネシウム(JIS 6063)合金粉末を1
1.0パーツのポリスチレン−エチレンビニルアセテー
ト−ワックス−ヂブチルフタレート系バインダーとで混
練後造粒し、射出成形機により成形し、この成形体を不
活性雰囲気中370℃中で2時間加熱脱脂し脱脂体を得
た。
[Example] One aluminum-silicon-magnesium (JIS 6063) alloy powder having an average particle size of 10 microns was used.
After kneading with 1.0 part of polystyrene-ethylene vinyl acetate-wax-dibutyl phthalate-based binder, granulating and molding with an injection molding machine, this molded body is heated and degreased for 2 hours at 370 ° C. in an inert atmosphere. A defatted body was obtained.

【0008】この脱脂体をほう酸塩系ろう付用フラック
スの3%溶液に10分間浸漬し乾燥させた。ふっ化物、
ほうふっ化物、塩化物系はすべて腐食性が強く、この雰
囲気に接触する焼結炉及び残留による製品の腐食の為に
使用しない。なお、フラックスの溶液は3%から上限3
0%程度まで適用することができる。
The degreased body was dipped in a 3% solution of borate-based brazing flux for 10 minutes and dried. Fluoride,
Borofluoride and chloride are all highly corrosive and should not be used because of the corrosion of the product due to the sintering furnace and residues that come into contact with this atmosphere. In addition, the flux solution is from 3% to the upper limit of 3
It can be applied up to about 0%.

【0009】次にこの乾燥体を真空炉に挿入し、常温で
10-2Torrオーダーまで排気して雰囲気を空気からアル
ゴンに置換した。これはフラックスによる還元反応中に
蒸発するのを防止する為である。置換後もアルゴンガス
を流し炉内雰囲気の置換を継続させた。この際、真空排
気系統を使用せずに、炉体より別系統を使用して直接炉
外に排出した。
Next, the dried body was inserted into a vacuum furnace and evacuated to 10 -2 Torr order at room temperature to replace the atmosphere with air by argon. This is to prevent evaporation during the reduction reaction by the flux. After the replacement, argon gas was flown to continue the replacement of the atmosphere in the furnace. At this time, instead of using the vacuum exhaust system, the system was directly discharged from the furnace using another system from the furnace body.

【0010】その後、昇温し400℃で1時間保持した
後、排気し高真空中にて真空還元する。この時点でマグ
ネシウムをゲッター材として使用した。ゲッター材の使
用は次の反応にてAl2 3 +3Mg=2Al+3Mg
O 還元反応には効果は大であった。粒子間が開孔状態
の内に内部まで反応を進行させる目的で、490℃まで
毎分2℃の速度で加熱した。490℃では殆どがすでに
閉孔となっていた。
After that, the temperature is raised and the temperature is kept at 400 ° C. for 1 hour, and then exhausted and vacuum reduced in a high vacuum. At this point, magnesium was used as a getter material. The use of getter material is the following reaction: Al 2 O 3 + 3Mg = 2Al + 3Mg
The effect was great for the O 2 reduction reaction. The particles were heated to 490 ° C. at a rate of 2 ° C. per minute for the purpose of advancing the reaction to the inside of the open state. At 490 ° C, most of the holes were already closed.

【0011】毎分2℃の加熱速度は、真空による還元を
完全に進行させる為に必要なもので、これより早い速度
での加熱は、還元が未完了の状態で焼結の大部分を終了
させることとなり良い組織状態とはならない。還元と部
分的な焼結反応終了後、アルミ合金の蒸気圧を抑える目
的で、直ちにアルゴンガスを300Torr導入し、昇温し
520℃で2時間保持し焼結を終了させた。得られた焼
結体の密度は、相対密度85%で、また、焼結状態で機
械的特性は抗張力8.05kg/mm2 であった。な
お、焼結温度の520℃は焼結優先であるが、溶体化処
理をも兼ねた温度でもある。この焼結温度は500〜5
40℃とするのが望ましい。
A heating rate of 2 ° C. per minute is necessary for completely proceeding the reduction by vacuum, and heating at a faster rate than this completes most of the sintering with the reduction being incomplete. It will not be a good organizational condition. After the reduction and the partial sintering reaction were completed, argon gas was immediately introduced at 300 Torr for the purpose of suppressing the vapor pressure of the aluminum alloy, the temperature was raised, and the temperature was maintained at 520 ° C. for 2 hours to complete the sintering. The density of the obtained sintered body was 85% relative density, and the mechanical properties in the sintered state were a tensile strength of 8.05 kg / mm 2 . Although the sintering temperature of 520 ° C. is prioritized for sintering, it is also a temperature that also serves as a solution treatment. This sintering temperature is 500-5
The temperature is preferably 40 ° C.

【0012】[0012]

【発明の効果】以上説明したように本発明のアルミニウ
ム合金粉末の焼結方法は、従来の粉末プレス法の場合の
形状制限と密度限界の制限を取外すことが出来、3次元
の複雑な形状のアルミニウム合金の高精度焼結体で、し
かも高密度の焼結体を得る事ができる。従来複雑形状品
については、機械加工を加えていたものが不用になり、
安価に各種の部品を製造することができるようになっ
た。
As described above, the aluminum alloy powder sintering method of the present invention can remove the shape limitation and the density limitation of the conventional powder pressing method, and can remove the three-dimensional complex shape. It is possible to obtain a high-precision sintered body of aluminum alloy, which has a high density. As for the complicated shape products, the ones that have been machined are no longer needed.
It has become possible to manufacture various parts at low cost.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム合金粉末に有機物バインダ
ーを混練し、射出成形機により成形して成形体とし、上
記成形体を加熱脱脂して脱脂体を得て、さらに上記脱脂
体をほう酸塩系フラックス溶液に浸漬し、乾燥後、焼結
したことを特徴とするアルミニウム合金粉末の焼結体の
製造方法。
1. An aluminum alloy powder is kneaded with an organic binder and molded by an injection molding machine to obtain a molded body, the molded body is heated and degreased to obtain a degreased body, and the degreased body is further borate-based flux solution. A method for producing a sintered body of an aluminum alloy powder, which comprises immersing in aluminum, drying and sintering.
JP32079091A 1991-12-04 1991-12-04 Production of sintered aluminum alloy powder Pending JPH05156312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32079091A JPH05156312A (en) 1991-12-04 1991-12-04 Production of sintered aluminum alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32079091A JPH05156312A (en) 1991-12-04 1991-12-04 Production of sintered aluminum alloy powder

Publications (1)

Publication Number Publication Date
JPH05156312A true JPH05156312A (en) 1993-06-22

Family

ID=18125275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32079091A Pending JPH05156312A (en) 1991-12-04 1991-12-04 Production of sintered aluminum alloy powder

Country Status (1)

Country Link
JP (1) JPH05156312A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511771A (en) * 2002-12-20 2006-04-06 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー Honeycomb type sealing material
CN111673085A (en) * 2020-06-30 2020-09-18 同济大学 3D printing process method of high-strength aluminum-magnesium-silicon alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511771A (en) * 2002-12-20 2006-04-06 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー Honeycomb type sealing material
CN111673085A (en) * 2020-06-30 2020-09-18 同济大学 3D printing process method of high-strength aluminum-magnesium-silicon alloy

Similar Documents

Publication Publication Date Title
US3839540A (en) Method of manufacturing silicon nitride products
JPS6350402A (en) Coating method for wear-resistant material
JPH03173706A (en) Manufacture of the compact body consisting of a plurality of intermetallic compounds by sintering
JPS63183103A (en) Sintering method for injection molding
JPH06142822A (en) Production of casting mold for casting high melting active metal
JPH05156312A (en) Production of sintered aluminum alloy powder
JPH0211703A (en) Method for degreasing metal powder injection green compact
JPS60145966A (en) Method of dewaxing ceramic injection formed body
JP3788929B2 (en) Method for sintering metal powder compact
JP2868889B2 (en) Manufacturing method of aluminum powder press molded product
JP2001098302A (en) Metal powder injection molding method and medical treatment implement composed of metallic sintered body
CN116871514A (en) Curing process of easily-oxidized metal material and post-treatment process of 3D printed product of easily-oxidized metal material
JPS59205404A (en) Powder solidifying method
JPH01294806A (en) Production of degreased body and jig for degreasing
JP3471858B2 (en) Manufacturing method of metal sintered member
FR2288585A1 (en) Hot isostatic pressing of titanium alloy or superalloy - castings or powder-metal parts, to close and reduce voids
JPH05186808A (en) Method for sintering plastic composition containing pure silver powder
JPH06346105A (en) Titanium material compact, apparatus for producing the same and method therefor
JPH0953102A (en) Production of sintered compact
JPH06345544A (en) Method for dewaxing molded body
JPH0892606A (en) Production of sintered compact of metal powder
JPH05320712A (en) Method for sintering metal-powder compact
JP2004091803A (en) Manufacturing method of platinum material
JP2004063177A (en) Method of manufacturing electron gun component
JPH04251653A (en) Manufacture of intermetallic compound