JPH0515517B2 - - Google Patents

Info

Publication number
JPH0515517B2
JPH0515517B2 JP13100888A JP13100888A JPH0515517B2 JP H0515517 B2 JPH0515517 B2 JP H0515517B2 JP 13100888 A JP13100888 A JP 13100888A JP 13100888 A JP13100888 A JP 13100888A JP H0515517 B2 JPH0515517 B2 JP H0515517B2
Authority
JP
Japan
Prior art keywords
anaerobic
contact material
sewage
chamber
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13100888A
Other languages
Japanese (ja)
Other versions
JPH01299689A (en
Inventor
Takeshi Nishiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIHARA KANKYO EISEI KENKYUSHO KK
Original Assignee
NISHIHARA KANKYO EISEI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIHARA KANKYO EISEI KENKYUSHO KK filed Critical NISHIHARA KANKYO EISEI KENKYUSHO KK
Priority to JP63131008A priority Critical patent/JPH01299689A/en
Publication of JPH01299689A publication Critical patent/JPH01299689A/en
Priority to JP4288099A priority patent/JPH0757352B2/en
Publication of JPH0515517B2 publication Critical patent/JPH0515517B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、汚水の脱燐処理方法に関し、特に、
汚水中に溶解した鉄イオンを汚水中の燐分と結合
させて、汚水の燐除去を行う汚水処理方法及び装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for dephosphorizing wastewater, and in particular,
The present invention relates to a wastewater treatment method and apparatus for removing phosphorus from wastewater by combining iron ions dissolved in the wastewater with phosphorus in the wastewater.

〔従来の技術〕[Conventional technology]

近時、湖沼等の富栄養化対策の一つとして、汚
水中の、ポリ燐酸、オルト燐酸、メタ燐酸、ピロ
燐酸等の燐酸或いはこれらの塩類等の燐を除去す
ることが必要となつてきている。
Recently, as one measure against eutrophication of lakes and marshes, it has become necessary to remove phosphorus from wastewater, such as phosphoric acids such as polyphosphoric acid, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, or their salts. There is.

その場合、燐除去については、金属塩又は石灰
等による凝集沈殿法、金属塩凝集浮上法、生物学
的脱燐法、晶析脱燐法及び酸化池法等の方法が行
われている。
In this case, methods for removing phosphorus include coagulation precipitation using metal salts or lime, metal salt coagulation flotation, biological dephosphorization, crystallization dephosphorization, and oxidation pond method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような燐除去方法において、凝集沈殿法
は、専ら凝集剤の凝集作用によるために、凝集剤
の注入が不可欠であるが、排水の流入量が一定し
ないため、凝集剤の適量注入が難しく、凝集処理
が不安定となり、燐の除去率も低くなるので、多
量の凝集剤を必要とし、ランニングコトスが増加
し、運転管理も面倒となるので問題である。ま
た、多量の凝集剤の使用は、凝集沈殿による汚泥
の発生量を多くし、しかも、その脱水性も悪いの
で問題である。
Among the above phosphorus removal methods, the coagulation-sedimentation method relies exclusively on the flocculating action of the flocculant, so injection of the flocculant is essential, but since the amount of inflow of wastewater is not constant, it is difficult to inject the appropriate amount of flocculant. This is a problem because the flocculation process becomes unstable and the phosphorus removal rate decreases, requiring a large amount of flocculant, increasing running cost, and making operational management troublesome. Further, the use of a large amount of flocculant is problematic because it increases the amount of sludge generated due to flocculation and sedimentation, and also has poor dewatering properties.

また、活性汚泥法又は生物膜法等による生物学
的脱燐法の場合は、一見経済的なようにみえる
が、汚水の流入変動により条件が変化すると、脱
燐が効果的に行われず、また、最終的な燐除去を
行うためには、微生物によつて過剰攝取された余
剰汚泥中から再放出を防ぐために、化学的凝集手
段による脱燐を行う必要があるので、処理工程が
複雑となり、経済的ではない。
In addition, biological dephosphorization methods such as the activated sludge method or the biofilm method appear to be economical at first glance, but if conditions change due to fluctuations in the inflow of wastewater, dephosphorization may not be performed effectively. In order to finally remove phosphorus, it is necessary to perform dephosphorization using chemical flocculation means to prevent re-release from surplus sludge that has been excessively collected by microorganisms, which complicates the treatment process. It's not economical.

さらに、晶析脱燐法は、その処理を効果的に行
うために、脱炭酸や石灰投入等の多くの前処理を
必要とし、これらの前処理に多くの費用を費し、
また、複雑な操作に手間がかかるという問題点等
があつた。
Furthermore, the crystallization dephosphorization method requires many pretreatments such as decarboxylation and lime addition in order to be effective, and these pretreatments cost a lot of money.
In addition, there was a problem that complicated operations were time-consuming.

酸化池法は、汚泥の急激負荷変動により影響を
受けることが少なく、汚泥の生成量が少ない上に
構造が簡単で、維持管理が容易であるなどの点で
優れているが、広い敷地面積を要するので、都市
周辺の設置が難しく、また、処理能力が季節によ
り影響を受けるなどの問題がある。
The oxidation pond method is superior in that it is less affected by sudden changes in sludge load, produces less sludge, has a simple structure, and is easy to maintain. This makes it difficult to install in urban areas, and processing capacity is affected by the seasons.

本発明は、従来の金属塩又は石灰等による凝集
沈殿法及び金属塩凝集浮上法、生物学的脱燐法、
晶析脱燐法及び酸化池法等による排水処理を行う
場合の脱燐に係る問題点を解決することを目的と
している。
The present invention is based on the conventional coagulation-precipitation method and metal salt coagulation flotation method using metal salts or lime, biological dephosphorization method,
The purpose is to solve problems related to dephosphorization when wastewater treatment is performed using crystallization dephosphorization method, oxidation pond method, etc.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、安定した効果的な脱燐が行える生物
学的脱燐法を行うことができる汚水処理方法を提
供することを目的とする。
An object of the present invention is to provide a wastewater treatment method that can perform a biological dephosphorization method that can perform stable and effective dephosphorization.

すなわち、本発明は、嫌気室内に汚水を流入さ
せ、流入した汚水内に、105乃至106個/ミリリツ
トルの硫酸塩還元細菌及び嫌気性微生物の存在下
に、表面積に対する燐の負荷が0.2乃至0.3グラ
ム/平方メートル・日で、金属鉄接触材を浸漬さ
せ、該汚水中の溶存酸素濃度が0ミリグラム/リ
ツトルの条件で、金属鉄接触材表面に嫌気室内液
の10乃至20センチメートル/秒の範囲の攪拌流速
の流れを形成して、金属鉄接触材面より微生物腐
食を利用して鉄イオンを溶出させ、かくして、溶
出した鉄イオンを汚水中の燐酸イオンと結合させ
て、汚水中の燐酸イオンを不溶性燐酸鉄塩として
沈殿分離し、次いで、この燐酸イオンが分離され
た汚水を、金属鉄接触材を備える好気処理室内に
流入させ、この流入した汚水に活性汚泥を加え
て、溶存酸素濃度が1乃至3ミリグラム/リツト
ル及び金属鉄接触材表面に与えられる好気処理室
内液の攪拌流速が10乃至20センチメートル/秒の
範囲の条件で、金属鉄接触材面から鉄イオンを溶
出させ、かくして、この溶出した鉄イオンを前記
汚水中の残余の燐酸イオンと結合させ、不溶性の
燐酸鉄塩として沈殿分離して、さらに汚水中の燐
除去を行うと共に活性汚泥法による汚水処理を行
うことを特徴とする汚水処理方法であり、また、
本発明は、汚水流入管路及び嫌気処理水排出管路
を備える嫌気室、前記嫌気処理水排出管路に接続
する流入管路及び好気処理水排出管路を備える好
気処理室及び前記好気処理水排出管路に接続する
流入管路及び排出管路を備える沈殿槽を具備する
汚水処理装置において、嫌気室内は、夫々、上方
に、嫌気処理水排出用の流出管を備える仕切壁を
以て内部か複数の区画室に仕切られ、この仕切ら
れた夫々の区画室には底部に沈殿汚泥排出管路が
設けられており、嫌気処理水排出管路を介して好
気処理室に接続している嫌気室の最終段の区画室
内には、金属鉄接触材と、攪拌装置又は超音波振
動装置が設けられると共に、硫酸塩還元細菌投入
装置が設けられており、前記嫌気室の最終段の区
画室に接続する好気処理室には、金属鉄接触材
と、攪拌装置又は超音波振動装置が設けられてい
ることを特徴とする汚水処理装置である。
That is, the present invention allows wastewater to flow into an anaerobic chamber, and in the presence of 10 5 to 10 6 sulfate-reducing bacteria and anaerobic microorganisms in the inflowing wastewater, the phosphorus load relative to the surface area is 0.2 to 0.2. The metal iron contact material is immersed at a rate of 0.3 g/m2/day, and the anaerobic indoor liquid is applied to the surface of the metal iron contact material at a rate of 10 to 20 cm/sec under conditions where the dissolved oxygen concentration in the wastewater is 0 mg/liter. By forming a flow with a stirring flow rate within a range, iron ions are eluted from the surface of the metal iron contact material using microbial corrosion, and the eluted iron ions are combined with phosphate ions in the wastewater to remove the phosphoric acid in the wastewater. The ions are precipitated and separated as insoluble iron phosphate salts, and the wastewater from which the phosphate ions have been separated is then flowed into an aerobic treatment chamber equipped with a metal iron contact material, and activated sludge is added to the inflowing wastewater to remove dissolved oxygen. Iron ions are eluted from the surface of the metallic iron contacting material under conditions where the concentration is 1 to 3 milligrams per liter and the stirring flow rate of the aerobically treated indoor liquid applied to the surface of the metallic iron contacting material is in the range of 10 to 20 cm/sec. In this way, the eluted iron ions are combined with the remaining phosphate ions in the sewage, and are precipitated and separated as insoluble iron phosphate salts, and phosphorus is further removed from the sewage, and the sewage is treated by an activated sludge method. It is a sewage treatment method characterized by:
The present invention provides an anaerobic chamber including a sewage inflow pipe and an anaerobic treated water discharge pipe, an aerobic treatment chamber including an inflow pipe and an aerobic treated water discharge pipe connected to the anaerobic treated water discharge pipe, and the preferred embodiments of the present invention. In a sewage treatment equipment equipped with a settling tank having an inflow pipe and a discharge pipe connected to an air-treated water discharge pipe, each of the anaerobic chambers has a partition wall provided with an outflow pipe for discharging the anaerobic-treated water above. The interior is divided into multiple compartments, and each compartment is equipped with a settled sludge discharge pipe at the bottom, which is connected to the aerobic treatment chamber via an anaerobic treatment water discharge pipe. The final stage compartment of the anaerobic chamber is provided with a metal iron contact material, a stirring device or an ultrasonic vibration device, and a sulfate-reducing bacteria input device. This sewage treatment apparatus is characterized in that an aerobic treatment chamber connected to the chamber is provided with a metal iron contact material and a stirring device or an ultrasonic vibration device.

本発明においては、嫌気室内に浸漬される金属
鉄接触材の形状は、鉄製板状体、鉄製粒状体、鉄
製網状体、鉄製管状体、鉄製棒状体、鉄製円板等
の適宜の形状とすることができる。鉄イオンの溶
出は、金属鉄接触材の表面積に比例するので、金
属鉄接触材としては、接触表面積ができる限り大
きい形状のものを使用するのが好ましい。
In the present invention, the metal iron contact material to be immersed in the anaerobic chamber has an appropriate shape such as an iron plate, iron granules, iron net, iron tubular, iron rod, or iron disk. be able to. Since the elution of iron ions is proportional to the surface area of the metal iron contact material, it is preferable to use a metal iron contact material having a shape with as large a contact surface area as possible.

また、嫌気室内の金属鉄接触材表面に間欠的に
室内液を循環させる代わりに、金属鉄接触材に超
音波振動を与えることにより金属鉄接触材を微振
動させて、金属鉄接触材表面の硫化鉄、酸化鉄、
燐酸鉄塩等の被膜をとり除き、該鉄接触材から鉄
イオンが溶出し易くさせることもできる。
In addition, instead of intermittently circulating indoor liquid on the surface of the metal ferrocontact material in the anaerobic chamber, the metal ferrocontact material is slightly vibrated by applying ultrasonic vibration to the metal ferrous contact material. iron sulfide, iron oxide,
It is also possible to remove a coating of iron phosphate or the like to facilitate the elution of iron ions from the iron contact material.

さらに、この金属鉄接触材を浸漬させる嫌気室
の位置は、2室以上、望ましくは3室に分割され
た沈殿分離領域の第3室に設けられる。嫌気室の
数は処理水中に残留する燐分の濃度を目的の値以
下にするように決定される。例えば、第3室の嫌
気室による燐の除去が不十分の場合には、先行す
る沈殿分離領域の第2室も溶存酸素濃度を零に近
くして、適宜嫌気室とし金属鉄接触材を浸漬させ
るものとすることができる。尚、沈殿分離領域の
第1室は流入汚水中の浮遊物質を沈殿浮上分離で
きる構造とし、金属鉄接触材を浸漬させる嫌気室
とはしない。
Furthermore, the position of the anaerobic chamber in which the metallic iron contact material is immersed is provided in the third chamber of the precipitation separation area which is divided into two or more chambers, preferably three chambers. The number of anaerobic chambers is determined so as to reduce the concentration of phosphorus remaining in the treated water to a target value or less. For example, if the removal of phosphorus by the anaerobic chamber in the third chamber is insufficient, the dissolved oxygen concentration in the second chamber of the preceding precipitation separation area is brought close to zero, and the metal iron contact material is immersed in the anaerobic chamber. It is possible to do so. The first chamber of the sedimentation separation area has a structure in which suspended solids in the inflowing wastewater can be separated by sedimentation and flotation, and is not an anaerobic chamber in which the metallic iron contact material is immersed.

したがつて、本発明においては、汚水中の燐含
量の多寡に応じて、例えば沈殿分離領域内の嫌気
室の数は適宜増減されることになる。
Therefore, in the present invention, for example, the number of anaerobic chambers in the sedimentation separation area is appropriately increased or decreased depending on the phosphorus content in the wastewater.

本発明において、嫌気室内の被処理水は、硫酸
塩還元細菌を積極的に活用させて鉄イオンを溶出
させることができるように、無酸素状態で、金属
鉄接触材表面に間欠的に室内液を循環攪拌流させ
て、かつ硫酸塩還元細菌を概略105乃至106個/ml
嫌気性微生物と共存させるのが好ましい。この場
合、金属鉄接触材の表面積に対する燐の負荷を、
0.2乃至0.3g/m2日の範囲内にすると、効果的な
燐除去が行えるので好ましい。
In the present invention, the water to be treated in the anaerobic chamber is intermittently poured onto the surface of the metal iron contact material in an oxygen-free condition so that sulfate-reducing bacteria can be actively used to elute iron ions. The sulfate-reducing bacteria are approximately 105 to 106 bacteria/ml.
It is preferable to coexist with anaerobic microorganisms. In this case, the phosphorus loading on the surface area of the metallic iron contact material is
It is preferable to set the amount within the range of 0.2 to 0.3 g/m 2 days because phosphorus can be effectively removed.

本発明において、金属鉄の腐食による鉄イオン
の溶出を促進させるために、嫌気性微生物と共に
特に高濃度の硫酸塩還元細菌、例えば、105ない
し106個/ml硫酸塩還元細菌を共存させて行われ
る。
In the present invention, in order to promote the elution of iron ions due to corrosion of metal iron, a particularly high concentration of sulfate-reducing bacteria, for example, 10 5 to 10 6 cells/ml, is allowed to coexist with anaerobic microorganisms. It will be done.

硫酸塩還元細菌は、十分馴養させて使用するの
が好ましい。硫酸塩還元細菌は、水田の土等に多
量に存在しているので、これらを、例えば、運転
初期に、嫌気室内に混入するなどして馴養するこ
とが好ましい。
It is preferable to use the sulfate-reducing bacteria after sufficiently acclimatizing them. Since sulfate-reducing bacteria exist in large quantities in the soil of paddy fields, it is preferable to introduce them into the anaerobic chamber at the beginning of operation, for example, to acclimatize them.

金属鉄接触材表面の室内液による循環攪拌流速
が適切でない状態では、金属鉄接触材面に硫化
鉄、酸化鉄、燐酸鉄塩等の被膜を形成し、鉄イオ
ンの溶出反応を阻害するので、金属鉄接触材表面
に、間欠的に室内液による循攪拌流等の攪拌流を
与えると、金属鉄接触材の腐食が進み、該接触材
から鉄イオンが溶出し易くなり、同時にこの攪拌
流により室内全体も攪拌されるので、溶出した鉄
イオンと汚水中の燐酸イオンとが速やかに反応す
ることになつて、不溶性燐酸鉄塩の形成を促進さ
せるので好ましい。この場合、1サイクルの静止
工程と循環攪拌工程の比を、4〜1:1とするの
が好ましい。例えば、生活排水の場合、30分の静
止と15分の循環攪拌を1サイクルとするのが好ま
しい。
If the circulating agitation flow rate of the indoor liquid on the surface of the metal iron contact material is not appropriate, a film of iron sulfide, iron oxide, iron phosphate, etc. will be formed on the surface of the metal iron contact material, inhibiting the elution reaction of iron ions. When an agitation flow such as a circulating agitation flow caused by indoor liquid is applied intermittently to the surface of the metal iron contact material, corrosion of the metal iron contact material progresses and iron ions are easily eluted from the contact material, and at the same time, this agitation flow Since the entire room is also stirred, the eluted iron ions and phosphate ions in the wastewater react quickly, which is preferable because it promotes the formation of insoluble iron phosphate salts. In this case, it is preferable that the ratio of the stationary step to the circulating stirring step in one cycle is 4 to 1:1. For example, in the case of domestic wastewater, it is preferable that one cycle consists of 30 minutes of rest and 15 minutes of circulation stirring.

本発明において、循環攪拌流は、流速が10cm/
秒乃至20cm/秒の循環攪拌流とされる。
In the present invention, the circulating stirring flow has a flow rate of 10 cm/
Circulating stirring flow of 20 cm/sec to 20 cm/sec.

本発明において、嫌気室を分割する仕切壁は、
例えば流出入管を備える従来公知の構造とするこ
とができる。また、循環攪拌ポンプは、金属鉄接
触材が設けられている嫌気室(鉄イオン溶解室)
内の汚水中に循環攪拌流を形成できるものであれ
ば足りる。また、前記鉄イオン溶解室に設けられ
る硫酸塩還元細菌供給装置は、嫌気性雰囲気を損
なわずに、硫酸塩還元細菌又は嫌気性微生物及び
硫酸塩還元細菌を鉄イオン溶解室に供給できるも
のであれば足りる。
In the present invention, the partition wall that divides the anaerobic chamber is
For example, a conventionally known structure including an inflow and outflow pipe may be used. In addition, the circulation stirring pump is used in an anaerobic chamber (iron ion dissolution chamber) where a metal iron contact material is installed.
Any material that can form a circulating agitation flow in the wastewater is sufficient. Further, the sulfate-reducing bacteria supply device provided in the iron ion dissolution chamber may be one that can supply sulfate-reducing bacteria or anaerobic microorganisms and sulfate-reducing bacteria to the iron ion dissolution chamber without impairing the anaerobic atmosphere. That's enough.

また、本発明においては、沈殿分離領域の後段
の嫌気室に金属鉄接触材を浸漬させ、嫌気性微生
物と共に硫酸塩還元細菌を共存させて汚水中の燐
除去を行うのみならず、燐除去率を向上させるた
めに、後置の好気領域内にも、金属鉄接触材を浸
漬させるものである。
In addition, in the present invention, a metal iron contact material is immersed in the anaerobic chamber after the precipitation separation region, and sulfate-reducing bacteria are allowed to coexist with anaerobic microorganisms to not only remove phosphorus from wastewater, but also improve the phosphorus removal rate. In order to improve this, a metallic iron contact material is also immersed in the downstream aerobic region.

この場合の好気領域の条件は、好気槽内の溶存
酸素濃度を1乃至3.2ミリグラム/リツトル、金
属鉄接触材表面の攪拌流速を10乃至20センチメー
トル/秒とする。
The conditions for the aerobic region in this case are that the dissolved oxygen concentration in the aerobic tank is 1 to 3.2 milligrams/liter, and the stirring flow rate on the surface of the metal iron contact material is 10 to 20 cm/sec.

金属鉄接触材の表面に、汚水中の浮遊物、硫化
鉄、酸化鉄又は燐酸鉄塩等が付着して、金属鉄接
触材の表面が被覆されるときは、循環ポンプと共
に、超音波発振装置を並設して、表面に形成され
る汚れ等を取り去ることができる。この場合、超
音波振動のみによつて、金属鉄接触材表面に嫌気
室内液の流れを形成させるようにすることができ
る。
If the surface of the metallic iron contact material is coated with suspended matter in waste water, iron sulfide, iron oxide, or iron phosphate, etc., and the surface of the metallic iron contact material is coated, use an ultrasonic oscillator along with a circulation pump. can be installed in parallel to remove dirt, etc. formed on the surface. In this case, a flow of the anaerobic indoor liquid can be formed on the surface of the metal iron contact material only by ultrasonic vibration.

〔作用〕[Effect]

本発明は、嫌気室内に浸漬した金属鉄接触材及
び嫌気性微生物と共に硫酸塩還元細菌を共存させ
て、嫌気的処理状態化で、金属鉄接触材の最適腐
食条件を保つても硫酸塩還元細菌による微生物腐
食作用により、金属鉄接触材から鉄イオンの溶出
を行わせ、この溶出した鉄イオンと汚水中の燐酸
イオンを反応させて燐酸鉄塩のアモルフアスを形
成して沈殿分離させて汚水中の燐除去を行うこと
ができる。超音波振動装置の超音波発振子を作動
させることによつて、金属鉄接触材の表面に汚れ
等が形成されることなく金属鉄を溶解させること
ができる。
The present invention allows sulfate-reducing bacteria to coexist with the metal-iron contact material and anaerobic microorganisms immersed in an anaerobic chamber. The microbial corrosion action causes iron ions to be eluted from the metal iron contact material, and the eluted iron ions react with phosphate ions in the wastewater to form an amorphous iron phosphate salt, which is precipitated and separated. Phosphorus removal can be performed. By operating the ultrasonic oscillator of the ultrasonic vibrator, the metal iron can be dissolved without forming dirt or the like on the surface of the metal iron contact material.

〔実施例〕〔Example〕

以下に、添付図面を参照して本発明の実施の態
様の一例を説明するが、本発明は、以下の説明及
び例示によつて何ら制限されるものではない。
An example of an embodiment of the present invention will be described below with reference to the accompanying drawings, but the present invention is not limited in any way by the following description and examples.

第1図は、本発明を沈殿分離室と活性汚泥法を
組み合わせた分離曝気方式に適用した一実施例に
係る汚水処理装置の概略的な流れ図であり、説明
の便宜上簡略化して示されている。
FIG. 1 is a schematic flowchart of a sewage treatment apparatus according to an embodiment in which the present invention is applied to a separation aeration system that combines a sedimentation separation chamber and an activated sludge method, and is shown in a simplified manner for convenience of explanation. .

第1図において、槽1内は、流出管2を備える
仕切り壁3により仕切られて、沈澱分離領域4と
好気処理領域5に分けられている。沈殿分離領域
4は、夫々流出管6及び7を備える仕切り壁8及
び9により仕切られて、沈殿物除去の第1室1
0、汚水中の燐含有量により嫌気室ともなりうる
第2室11、嫌気室としての第3室12が形成さ
れている。
In FIG. 1, the inside of a tank 1 is partitioned by a partition wall 3 having an outflow pipe 2, and is divided into a sedimentation separation area 4 and an aerobic treatment area 5. The sediment separation area 4 is partitioned by partition walls 8 and 9 with outflow pipes 6 and 7, respectively, to form a first chamber 1 for sediment removal.
0, a second chamber 11 which can also be an anaerobic chamber depending on the phosphorus content in the wastewater, and a third chamber 12 which is an anaerobic chamber are formed.

本例において、好気処理領域5は、一つの好気
処理室13によつて形成されており、この好気処
理室13は、活性汚泥による汚水処理室として沈
殿分離領域4に後続して設けられている。
In this example, the aerobic treatment area 5 is formed by one aerobic treatment chamber 13, and this aerobic treatment chamber 13 is installed subsequent to the sedimentation separation area 4 as a sewage treatment chamber using activated sludge. It is being

沈殿分離領域4のの第1室10は、汚水中の浮
遊物を沈殿分離するためのものであり、上方に汚
水流入管14が設けられ、底部に浮遊物沈殿汚泥
排出用の汚泥排出管15が設けられている。沈殿
分離領域4の第2室11は、第1室10で分離さ
れない浮遊物を沈殿分離するためものであり、底
部に浮遊物沈殿汚泥排出用の汚泥排出管14が設
けられている。なお、汚水中の燐含有量により、
沈殿分離領域4の第3室12の嫌気室内だけで必
要量の金属鉄接触材が浸漬できない場合、この第
2室11も前記第3室12と同様嫌気室とし金属
鉄接触材を浸漬させることができるものとする。
本例において、前記第3室12は、嫌気室であ
り、鉄イオンを汚水中に溶出させて、汚水中の燐
酸イオンを燐酸鉄塩にして沈殿分離するためのも
のであり、複数の鉄製の平板状接触材17が、
夫々、汚水18中に完全に浸漬する高さで、流れ
方向に多段に配設されると共に、その下方には、
循環攪拌ポンプ19が配設されており、また、底
部には、前記燐酸鉄塩沈殿汚泥排出用の汚泥排出
管20が設けられている。後続の好気処理室13
には、その上部に活性汚泥供給用の汚泥返送管2
1が設けられており、その側壁22には、沈澱槽
23に開口する処理液排出管24が接続されてい
る。沈澱槽23の上部には、処理液放流用の処理
上澄液排出管25が接続されており、底部には、
沈殿活性汚泥排出用の汚泥排出管26が設けられ
ている。この沈殿活性汚泥排出用の汚泥排出管2
6は汚泥返送管21を分岐して、沈殿汚泥排出用
の汚泥排出管15,16及び20を接続する集合
管27に接続している。
The first chamber 10 of the sedimentation separation area 4 is for separating suspended solids in sewage by sedimentation, and is provided with a sewage inflow pipe 14 at the top and a sludge discharge pipe 15 at the bottom for discharging suspended solids and sludge. is provided. The second chamber 11 of the sedimentation separation area 4 is for separating floating substances that are not separated in the first chamber 10 by sedimentation, and a sludge discharge pipe 14 for discharging suspended substances settled sludge is provided at the bottom. In addition, depending on the phosphorus content in wastewater,
If the necessary amount of the metal iron contact material cannot be immersed in the anaerobic chamber of the third chamber 12 of the precipitation separation region 4, this second chamber 11 can also be made an anaerobic chamber like the third chamber 12 and the metal iron contact material can be immersed therein. shall be able to do so.
In this example, the third chamber 12 is an anaerobic chamber, which is used to elute iron ions into wastewater, convert phosphate ions in the wastewater into iron phosphate salts, and perform precipitation separation. The flat contact material 17 is
They are arranged in multiple stages in the flow direction at a height such that they are completely immersed in the wastewater 18, and below them,
A circulation stirring pump 19 is provided, and a sludge discharge pipe 20 for discharging the iron phosphate precipitated sludge is provided at the bottom. Subsequent aerobic treatment room 13
There is a sludge return pipe 2 at the top for supplying activated sludge.
1 is provided, and a processing liquid discharge pipe 24 that opens into a settling tank 23 is connected to a side wall 22 thereof. A treated supernatant liquid discharge pipe 25 for discharging the treated liquid is connected to the upper part of the settling tank 23, and a
A sludge discharge pipe 26 for discharging settled activated sludge is provided. Sludge discharge pipe 2 for discharging this settled activated sludge
6 branches the sludge return pipe 21 and connects it to a collecting pipe 27 that connects the sludge discharge pipes 15, 16, and 20 for discharging settled sludge.

本例は、以上のように構成されているので、汚
水流入管14から、槽1の沈殿分離領域4の第1
室10に供給された汚水は、ここで、SS(浮遊物
質)が沈降分離される。第1室10でSSが除去
された汚水の上澄液は、仕切り壁8上方の流出管
6から、沈殿分離領域4の第2室11に流入し、
残余のSSの一部が分離される。前記第2室11
の上澄液は、仕切り壁9の流出管7から、嫌気性
微生物と共に硫酸塩還元細菌が共存している沈殿
分離領域4の第3室12の嫌気室に流入する。
Since the present example is configured as described above, from the wastewater inflow pipe 14 to the first
In the wastewater supplied to the chamber 10, SS (suspended solids) are separated by sedimentation. The supernatant liquid of the wastewater from which SS has been removed in the first chamber 10 flows into the second chamber 11 of the sedimentation separation area 4 from the outflow pipe 6 above the partition wall 8,
A portion of the remaining SS is separated. Said second chamber 11
The supernatant liquid flows from the outflow pipe 7 of the partition wall 9 into the anaerobic chamber of the third chamber 12 of the precipitation separation region 4, where sulfate-reducing bacteria coexist with anaerobic microorganisms.

前記第3室12に流入した汚水には、硫酸塩還
元細菌によつて、鉄製の平板状接触材から溶出し
た鉄イオンが混入し、汚水中の燐酸イオンと反応
して、不溶性の燐酸鉄塩を生成し、残余のSSと
共に分離し易い沈澱を形成する。燐酸イオンが除
去された汚水の上澄液は、仕切り壁3の流出管2
を通つて、好気処理室13に流入し、汚泥返送管
21から活性汚泥が供給されて、残余の燐酸イオ
ンが金属鉄接触材から溶出する鉄イオンと結合し
て除去されると共に、活性汚泥法により浄化され
る。
The wastewater that has flowed into the third chamber 12 is contaminated with iron ions eluted from the flat iron contact material by sulfate-reducing bacteria, and reacts with phosphate ions in the wastewater to form insoluble iron phosphate salts. and forms an easy-to-separate precipitate together with the remaining SS. The supernatant liquid of the waste water from which phosphate ions have been removed is sent to the outflow pipe 2 of the partition wall 3.
The activated sludge flows into the aerobic treatment chamber 13 through the sludge return pipe 21, and the remaining phosphate ions are combined with iron ions eluted from the metal iron contact material and removed, and the activated sludge Purified by law.

第1図において、説明の便宜上、好気処理室1
3には、金属鉄接触材をはじめ、活性汚泥法を行
うための設備は省略されて示されていない。
In FIG. 1, for convenience of explanation, aerobic treatment chamber 1
3, the equipment for carrying out the activated sludge method, including the metal iron contact material, is omitted and not shown.

活性汚泥法により浄化処理された汚水の上澄液
は、処理液排出管24より排出され、沈澱槽23
に流入して、液中に浮遊する汚泥を分離する。沈
澱槽23で分離された沈澱汚泥は、一部が好気処
理室13に戻され、残部は余剰汚泥として、集合
管27から系外に適宜引き抜かれて、好気処理室
13の混合液浮遊物質濃度が適切に保たれる。ま
た、沈澱槽23で汚泥が分離されて、沈澱槽23
を溢流する上澄液は、処理上澄液排出管25から
流出される。
The supernatant liquid of wastewater purified by the activated sludge method is discharged from the treated liquid discharge pipe 24 and transferred to the settling tank 23.
The sludge that flows into the liquid and floats in the liquid is separated. A part of the settled sludge separated in the settling tank 23 is returned to the aerobic treatment chamber 13, and the remainder is appropriately drawn out of the system from the collecting pipe 27 as surplus sludge, and is suspended in the mixed liquid in the aerobic treatment chamber 13. Appropriate substance concentration is maintained. In addition, the sludge is separated in the settling tank 23.
The supernatant liquid overflowing is discharged from the treated supernatant liquid discharge pipe 25.

このようにして、本例においては、槽1に流入
した汚水は、該沈澱分離領域4内で、燐及び
COD、BOD及びSSの一部等が除去されて、更
に、好気処理領域5及び沈澱槽23で清澄化され
排出される。
In this way, in this example, the wastewater that has flowed into the tank 1 is treated with phosphorus and
COD, BOD, a part of SS, etc. are removed, and further clarified in the aerobic treatment area 5 and settling tank 23 and discharged.

本例においては、嫌気室と好気処理室とを、流
出管などの連通管を備える仕切り壁で分離されて
いるが、嫌気室と好気処理室とを別個の槽に形成
して、管路により連通させるようにすることもで
きる。
In this example, the anaerobic chamber and aerobic treatment chamber are separated by a partition wall equipped with a communication pipe such as an outflow pipe, but the anaerobic chamber and aerobic treatment chamber are formed into separate tanks, and the They may also be communicated by a road.

例 上記実施例に示される沈殿分離領域及び好気領
域を槽内に組合せて備える処理装置を使用して、
生活汚水の燐濃度が4.7乃至5.3mg/1、嫌気室の
金属鉄接触材の表面積の燐負荷が0.28乃至0.22
g/m2・日、30分静止、15分循環攪拌をサイクル
とする嫌気室内の攪拌速度が15cm/秒、溶存酸素
濃度が0mg/1、硫酸塩還元細菌が1.2×105個/
mlで処理した時、燐除去率は常に90%以上で、処
理水中のリン濃度は常に1mg/1以下の結果が得
られた。
Example Using a processing device equipped with a combination of the sedimentation separation area and the aerobic area shown in the above example in a tank,
The phosphorus concentration in domestic sewage is 4.7 to 5.3 mg/1, and the phosphorus load on the surface area of the metal iron contact material in the anaerobic chamber is 0.28 to 0.22.
g/m 2 days, a cycle of 30 minutes of rest and 15 minutes of circulating stirring, the stirring speed in the anaerobic chamber is 15 cm/sec, the dissolved oxygen concentration is 0 mg/1, and the number of sulfate-reducing bacteria is 1.2 × 10 5 /
ml, the phosphorus removal rate was always over 90%, and the phosphorus concentration in the treated water was always below 1 mg/1.

本例においては、嫌気室内液及び好気室内液を
循環させて、金属鉄接触材を溶解させるものであ
り、超音波振動装置は設けられていないが、超音
波振動装置の振動子を接触材間に、移動可能に又
は固定して、或は金属鉄接触材又は嫌気室壁に固
定して設けると、金属鉄接触材の表面に汚れの形
成が防止されて、良好な結果が得られる。
In this example, the anaerobic indoor liquid and the aerobic indoor liquid are circulated to dissolve the metal iron contact material, and although an ultrasonic vibrator is not installed, the vibrator of the ultrasonic vibrator is used as a contact material. If it is provided movably or fixedly in between, or fixedly on the metal ferrocontact material or the anaerobic chamber wall, good results are obtained by preventing the formation of dirt on the surface of the metal ferrocontact material.

〔発明の効果〕〔Effect of the invention〕

本発明においては、沈澱分離領域の後段の嫌気
室内に金属鉄接触材を浸漬し、嫌気性微生物と共
に硫酸塩還元細菌を共存させ、金属鉄接触材表面
に攪拌流速を与えながら、金属鉄の至適腐食条件
を保つて、硫酸塩還元細菌による微生物腐食によ
り、嫌気室液中に鉄イオンを溶出させるので、汚
水中の燐酸イオンは、溶出した鉄イオンと結合し
て不溶性の燐酸鉄塩のアモルフアスを形成して再
溶出し難くなる。
In the present invention, the metal iron contact material is immersed in an anaerobic chamber after the precipitation separation region, and sulfate-reducing bacteria are allowed to coexist with the anaerobic microorganisms. By maintaining appropriate corrosion conditions, microbial corrosion by sulfate-reducing bacteria causes iron ions to be eluted into the anaerobic chamber liquid.The phosphate ions in the wastewater combine with the eluted iron ions and form insoluble iron phosphate amorphous salts. forms and becomes difficult to re-elute.

このため、本発明による汚水処理方法では、従
来の生物学的脱燐法、酸化池法等の燐除去率が、
20乃至80%と不安定であるのに対し、常に80乃至
95%が達成でき、大巾に燐除去率が向上する。ま
た、凝集沈殿法、金属塩凝集浮上法、晶析脱燐法
等は除去率は安定しているが、建設費、維持管理
費が高い。これに対し本発明は、建設費、維持管
理費が大巾に安くなり、さらに維持管理も容易
で、発生汚泥量も少ないといつた顕著な効果の差
がみられる。
Therefore, in the wastewater treatment method according to the present invention, the phosphorus removal rate is lower than that of conventional biological dephosphorization methods, oxidation pond methods, etc.
It is unstable at 20 to 80%, but always at 80 to 80%.
95% can be achieved, greatly improving the phosphorus removal rate. In addition, the coagulation-precipitation method, metal salt coagulation flotation method, crystallization dephosphorization method, etc. have stable removal rates, but construction costs and maintenance costs are high. On the other hand, the present invention has remarkable effects such as significantly lower construction and maintenance costs, easier maintenance, and less sludge generation.

また、本発明においては、金属鉄接触材表面の
室内液による循環攪拌流速を10乃至20cm/秒の範
囲の流れとさせているので、金属鉄接触材面の腐
食を進行させ、鉄イオンの溶出を促進し、同時に
この攪拌流により室内全体も攪拌させるので、汚
水中の燐酸イオンと結合する機会を多くするか
ら、効果的に反応して不溶性燐酸鉄塩となること
により、燐除去率が著しく高く、かつ安定する。
In addition, in the present invention, since the circulating agitation flow rate of the indoor liquid on the surface of the metal iron contact material is set to a flow rate in the range of 10 to 20 cm/sec, corrosion of the metal iron contact material surface progresses and iron ions are eluted. At the same time, this agitation flow also agitates the entire room, increasing the chances of bonding with phosphate ions in the wastewater, which effectively reacts to form insoluble iron phosphate salts, significantly increasing the phosphorus removal rate. High and stable.

さらに、一般的な凝集沈澱法で鉄塩により汚水
中の燐除去を行うには、理論的な必要量の3乃至
5倍程度の添加が必要であるが、本発明では制御
された最適な条件下で、微生物腐食によつて鉄イ
オンを溶出させ、直ちに汚水中の燐酸イオンと効
果的に反応させるので、鉄イオンの必要量が略理
論量で足り、経済的でかつ運転が容易であり、汚
泥の濃縮性も良いので余剰汚泥量も少なくなるな
どといつた利点がある。
Furthermore, in order to remove phosphorus from wastewater using iron salts using a general coagulation-sedimentation method, it is necessary to add about 3 to 5 times the theoretically necessary amount, but in the present invention, it is necessary to add 3 to 5 times as much as the theoretically required amount. The iron ions are eluted by microbial corrosion and immediately react effectively with the phosphate ions in the wastewater, so the required amount of iron ions is approximately the theoretical amount, making it economical and easy to operate. It has the advantage of reducing the amount of surplus sludge because it has good sludge thickening properties.

また、沈澱分離領域の後段の嫌気室のみなら
ず、好気質内にも金属鉄接触材を浸漬させ、槽内
の溶存酸素濃度を1乃至3.2ミリグラム/リツト
ル、金属鉄接触材表面の攪拌流速を10乃至20セン
チメートル/秒とすることにより、汚水中の燐除
去率は従来法に比べ大幅に向上させることができ
る。
In addition, the metal iron contact material was immersed not only in the anaerobic chamber after the precipitation separation area but also in the aerobic chamber, and the dissolved oxygen concentration in the tank was adjusted to 1 to 3.2 milligrams/liter, and the agitation flow rate on the surface of the metal iron contact material was adjusted. By setting the rate to 10 to 20 cm/sec, the phosphorus removal rate in wastewater can be greatly improved compared to conventional methods.

また、本発明による汚水の燐除去方法は、嫌気
室で行われるので、省エネルギーが期待できる。
Furthermore, since the method for removing phosphorus from wastewater according to the present invention is carried out in an anaerobic chamber, energy savings can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を沈澱分離室と活性汚泥法を
組み合わせた分離曝気方式に適用した一実施例に
係る汚水処理装置の概略的な流れ図であり、説明
の便箋宜上簡略化して示されている。 図中の符号については、1は槽、2は流出管、
3,8及び9は仕切り壁、4は沈殿分離領域、5
は好気処理領域、6及び7は流出管、10は第1
室、11は第2室、12は第3室(嫌気室)、1
3は好気処理室、14は汚水流入管、15,1
6,20及び26は汚泥排出管、17は鉄製平板
状接触板、18は汚水、19は循環攪拌ポンプ、
21は汚泥返送管、22は側壁、23は沈澱槽、
24は処理液排出管、25は処理上澄液排出管、
27は集合管である。
FIG. 1 is a schematic flowchart of a sewage treatment apparatus according to an embodiment in which the present invention is applied to a separation aeration system that combines a sedimentation separation chamber and an activated sludge method, and is shown in a simplified manner for convenience of explanation. ing. Regarding the symbols in the figure, 1 is the tank, 2 is the outflow pipe,
3, 8 and 9 are partition walls, 4 is a precipitation separation area, 5
is the aerobic treatment area, 6 and 7 are the outflow pipes, and 10 is the first
chamber, 11 is the second chamber, 12 is the third chamber (anaerobic chamber), 1
3 is an aerobic treatment room, 14 is a wastewater inflow pipe, 15, 1
6, 20 and 26 are sludge discharge pipes, 17 is an iron flat contact plate, 18 is sewage, 19 is a circulation stirring pump,
21 is a sludge return pipe, 22 is a side wall, 23 is a settling tank,
24 is a treated liquid discharge pipe, 25 is a treated supernatant liquid discharge pipe,
27 is a collecting pipe.

Claims (1)

【特許請求の範囲】 1 嫌気室内に汚水を流入させ、流入した汚水内
に、105乃至106個/ミリリツトルの硫酸塩還元細
菌及び嫌気性微生物の存在下に、表面積に対する
隣の負荷が、0.2乃至0.3グラム/平方メートル・
日で、金属鉄接触材を浸漬させ、該汚水中の溶存
酸素濃度が0ミリグラム/リツトルの条件で、金
属鉄接触材表面に嫌気室内液の10乃至20センチメ
ートル/秒の範囲の攪拌流速の流れを形成して、
金属鉄接触材面より微生物腐食を利用して鉄イオ
ンを溶出させ、かくして、溶出した鉄イオンを汚
水中の燐酸イオンと結合させて、汚水中の燐酸イ
オンを不溶性燐酸鉄塩として沈殿分離し、次い
で、この燐酸イオンが分離された汚水を、金属鉄
接触材を備える好気処理室内に流入させ、この流
入した汚水に活性汚泥を加えて、溶存酸素濃度が
1乃至3ミリグラム/リツトル及び金属鉄接触材
表面に与えられる好気処理室内液の攪拌流速が10
乃至20センチメートル/秒の範囲の条件で、金属
鉄接触材面から鉄イオンを溶出させ、かくして、
この溶出した鉄イオンを前記汚水中の残余の燐酸
イオンと結合させ、不溶性の燐酸鉄塩として沈殿
分離して、さらに汚水中の燐除去を行うと供に活
性汚泥法による汚水処理を行うことを特徴とする
汚水処理方法。 2 金属鉄接触材表面に形成される嫌気室内液の
流れが、金属鉄接触材表面に嫌気室内液の循環に
よる攪拌流を与えることにより形成されることを
特徴とする請求項1に記載の汚水処理方法。 3 金属鉄接触材表面に形成される嫌気室内液の
流れが、超音波振動を該金属鉄接触材表面に与え
ることによつて形成されることを特徴とする請求
項1に記載の汚水処理方法。 4 金属鉄接触材表面に形成される嫌気室内液の
流れが、金属鉄接触材表面に、該嫌気室内液の循
環による攪拌流及び超音波振動を与えることによ
つて形成されることを特徴とする請求項1又は3
に記載の汚水処理方法。 5 汚水流入管及び嫌気処理水排出管路を備える
嫌気室、前記嫌気処理水排出管路に接続する流入
管路及び好気処理水排出管路を備える好気処理室
及び前記好気処理水排出管路に接続する流入管路
及び排出管路を備える沈殿槽を具備する汚水処理
装置において、嫌気室内は、夫々、上方に、嫌気
処理水排出用の流出管を備える仕切壁を以て内部
が複数の区画室に仕切られ、この仕切られた夫々
の区画室には底部に沈殿汚泥排出管路が設けられ
ており、嫌気処理水排出管路を介して好気処理室
に接続している嫌気室の最終段の区画室内には、
金属鉄接触材と、攪拌装置又は超音波振動装置が
設けられると供に、硫酸塩還元細菌投入装置が設
けられており、前記嫌気室の最終段の区画室に接
続する好気処理室には、金属鉄接触材と、攪拌装
置又は超音波振動装置が設けられていることを特
徴とする汚水処理装置。
[Scope of Claims] 1 Sewage is caused to flow into an anaerobic chamber, and in the presence of 10 5 to 10 6 sulfate-reducing bacteria and anaerobic microorganisms in the inflowing sewage, the adjacent load relative to the surface area is 0.2 to 0.3 grams/square meter・
The metal iron contact material is immersed in the sewage, and under the condition that the dissolved oxygen concentration in the wastewater is 0 mg/liter, the anaerobic indoor liquid is applied to the surface of the metal iron contact material at a stirring flow rate of 10 to 20 cm/sec. form a flow,
Iron ions are eluted from the surface of the metal iron contact material using microbial corrosion, and the eluted iron ions are combined with phosphate ions in the wastewater to precipitate and separate the phosphate ions in the wastewater as insoluble iron phosphate salts. Next, this sewage from which phosphate ions have been separated is flowed into an aerobic treatment chamber equipped with a metal iron contact material, and activated sludge is added to this flowed sewage to reduce the dissolved oxygen concentration to 1 to 3 milligrams/liter and metal iron. The agitation flow rate of the aerobically treated indoor liquid applied to the surface of the contact material is 10
Iron ions are eluted from the surface of the metallic iron contact material under conditions ranging from 20 cm/sec to 20 cm/sec, thus
The eluted iron ions are combined with the remaining phosphate ions in the sewage, and are precipitated and separated as insoluble iron phosphate salts. Phosphorus is further removed from the sewage, and the sewage is treated by an activated sludge method. Characteristic sewage treatment method. 2. The sewage according to claim 1, wherein the flow of the anaerobic indoor liquid formed on the surface of the metal iron contact material is formed by applying an agitation flow due to circulation of the anaerobic indoor liquid to the surface of the metal iron contact material. Processing method. 3. The sewage treatment method according to claim 1, wherein the flow of the anaerobic indoor liquid formed on the surface of the metal iron contact material is formed by applying ultrasonic vibration to the surface of the metal iron contact material. . 4. The flow of the anaerobic indoor fluid formed on the surface of the metal iron contact material is formed by applying an agitation flow and ultrasonic vibrations to the surface of the metal iron contact material due to circulation of the anaerobic indoor fluid. Claim 1 or 3
The sewage treatment method described in . 5. An anaerobic chamber equipped with a sewage inflow pipe and an anaerobic treated water discharge pipe, an aerobic treatment room equipped with an inflow pipe and an aerobic treated water discharge pipe connected to the anaerobic treated water discharge pipe, and the aerobic treated water discharge pipe. In a sewage treatment equipment equipped with a settling tank having an inflow pipe and a discharge pipe connected to a pipe, the anaerobic chamber has a plurality of partition walls each having an outflow pipe for discharging anaerobic treated water above the anaerobic chamber. Each partitioned room is equipped with a settled sludge discharge pipe at the bottom, and the anaerobic room is connected to the aerobic treatment room via the anaerobic treated water discharge pipe. Inside the final compartment,
A metal iron contact material, a stirring device or an ultrasonic vibration device are provided, as well as a sulfate-reducing bacteria input device, and the aerobic treatment chamber connected to the final compartment of the anaerobic chamber is A sewage treatment device, characterized in that it is provided with a metal iron contact material and a stirring device or an ultrasonic vibration device.
JP63131008A 1988-05-28 1988-05-28 Method and device for treating sewage Granted JPH01299689A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63131008A JPH01299689A (en) 1988-05-28 1988-05-28 Method and device for treating sewage
JP4288099A JPH0757352B2 (en) 1988-05-28 1992-09-14 Sewage treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63131008A JPH01299689A (en) 1988-05-28 1988-05-28 Method and device for treating sewage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4288099A Division JPH0757352B2 (en) 1988-05-28 1992-09-14 Sewage treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH01299689A JPH01299689A (en) 1989-12-04
JPH0515517B2 true JPH0515517B2 (en) 1993-03-01

Family

ID=15047812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63131008A Granted JPH01299689A (en) 1988-05-28 1988-05-28 Method and device for treating sewage

Country Status (1)

Country Link
JP (1) JPH01299689A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079285B2 (en) * 2006-08-31 2012-11-21 株式会社ハウステック Wastewater septic tank
CN109626570A (en) * 2018-12-26 2019-04-16 同济大学 A kind of preposition phosphorus removing method of vivianite crystallization based on AAO/AO technique
CN113666498B (en) * 2021-08-06 2022-11-29 同济大学 Ferrocyanite separation and kieselguhr recovery device and method for enhanced nitrogen and phosphorus removal system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268397A (en) * 1985-05-23 1986-11-27 Nishihara Environ Sanit Res Corp Treatment of sewage
JPS6233598A (en) * 1985-08-08 1987-02-13 Nishihara Environ Sanit Res Corp Treatment of sludge
JPS62279888A (en) * 1986-05-28 1987-12-04 Kobe Chutetsusho:Kk Treatment of sewage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268397A (en) * 1985-05-23 1986-11-27 Nishihara Environ Sanit Res Corp Treatment of sewage
JPS6233598A (en) * 1985-08-08 1987-02-13 Nishihara Environ Sanit Res Corp Treatment of sludge
JPS62279888A (en) * 1986-05-28 1987-12-04 Kobe Chutetsusho:Kk Treatment of sewage

Also Published As

Publication number Publication date
JPH01299689A (en) 1989-12-04

Similar Documents

Publication Publication Date Title
CN101519265B (en) Sewage treatment process and system
JPH0154119B2 (en)
US4029575A (en) Phosphorus removal from waste water
CN208071539U (en) A kind of sewage disposal system
Balmér et al. Control of phosphorus discharges: present situation and trends
CN110386724A (en) A kind of sewage whole process processing system and method based on MBBR and Magneto separate
CN108585384A (en) A kind of MBBR high standards sewage disposal system and treatment process
JP2000000592A (en) Treatment of organic waste water
CN105906052A (en) Coupling anaerobic sludge acidogenesis mud-film two-phase composite A/A/O system and technology
CN208732851U (en) A kind of MBBR high standard sewage disposal system
CN108751413A (en) The circulating anoxic of long residence time strengthens town sewage denitrification and dephosphorization method
CN104986854A (en) Sludge backflow control system and method and sewage treatment system
JP5900098B2 (en) Nitrogen and phosphorus removal apparatus and method
CN218893548U (en) Sewage pretreatment device and phosphorus-containing sewage treatment system
US4110209A (en) Method for treating a medium containing water with coagulants
CN201261748Y (en) Chemical dephosphorization apparatus based on anoxic-anaerobic-oxidation ditch
JPH0515517B2 (en)
CN101279795A (en) Chemical phosphorus removal method and apparatus based on anoxic-anaerobic-oxidation ditch
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
JP3449862B2 (en) Advanced purification method for organic wastewater
JP4368159B2 (en) Method for treating wastewater containing phosphate
CN207259331U (en) A kind of kitchen garbage slurry fermentation waste water processing unit
JPH0757352B2 (en) Sewage treatment method and apparatus
JPH0611440B2 (en) Sewage treatment method
CN218491607U (en) Chemical phosphorus removal device