JPH05154340A - Denitration treatment of exhaust gas from sintering machine - Google Patents

Denitration treatment of exhaust gas from sintering machine

Info

Publication number
JPH05154340A
JPH05154340A JP3324556A JP32455691A JPH05154340A JP H05154340 A JPH05154340 A JP H05154340A JP 3324556 A JP3324556 A JP 3324556A JP 32455691 A JP32455691 A JP 32455691A JP H05154340 A JPH05154340 A JP H05154340A
Authority
JP
Japan
Prior art keywords
exhaust gas
amount
sintering machine
concentration
term
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3324556A
Other languages
Japanese (ja)
Inventor
Akira Kato
加藤  明
Hiroyasu Takahashi
博保 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3324556A priority Critical patent/JPH05154340A/en
Publication of JPH05154340A publication Critical patent/JPH05154340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To promote the saving of labor by reducing the load of an operator operating a sintering machine in order to monitor the concn. of NOX in exhaust gas and to reduce the treatment cost of exhaust gas by preventing the excessive addition of NH3. CONSTITUTION:In reducing and removing nitrogen oxide contained in exhaust gas by adding ammonia to the exhaust gas of a DL type sintering machine, both of long-term and short-term changes in the flow rate of exhaust gas are estimated and the amount of added ammonia is adjusted with due regard to both changes in the flow rate of exhaust gas to control the concn. of NOX.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鉄鉱石焼結工場にお
ける焼結機排ガス中の窒素酸化物(以下、単に「NOX
という)を効果的に除去する技術に関しての提案であ
る。
BACKGROUND OF THE INVENTION This invention relates to nitrogen oxides (hereinafter simply referred to as "NO X ") in the exhaust gas of a sintering machine at an iron ore sintering plant.
That is) is a proposal for a technology to effectively remove.

【0002】[0002]

【従来の技術】一般に、DL式焼結機の操業には焼結用
酸化性ガスとして大気(空気)を吸引して使用してい
る。この吸引ガスは、焼結機パレット上の焼結原料層を
通過する際に堆積原料中のコークス粉と燃焼反応して12
00℃位の温度となり、その熱によって鉱石の焼結反応を
促進させるようになっている。かかる焼結反応に際し、
上記吸引ガスは、鉱石および燃料中に含まれるS(硫
黄)成分が酸化しSOX を生成して排ガス中に混入する。
また同時に、コークス中に含まれるN(窒素)分も酸化
されてNO及び NO2などの窒素酸化物NOX を発生する。従
来、上述したようにして生成する排ガス中のSOX やNOX
は、環境上の制約があることから、そのまま大気中に放
散することができず、通常、これらの成分を除去するた
めの脱硫脱硝処理を施した後に大気放散している。
2. Description of the Related Art Generally, in operating DL type sintering machines, the atmosphere (air) is sucked and used as an oxidizing gas for sintering. When this suction gas passes through the sintering raw material layer on the sintering machine pallet, it burns and reacts with the coke powder in the deposition raw material.
The temperature is around 00 ° C, and the heat accelerates the sintering reaction of the ore. Upon such a sintering reaction,
In the suction gas, the S (sulfur) component contained in the ore and the fuel is oxidized to generate SO X, which is mixed in the exhaust gas.
At the same time, the N (nitrogen) component contained in the coke is also oxidized to generate nitrogen oxide NO X such as NO and NO 2 . Conventionally, SO X and NO X in exhaust gas generated as described above
Oxygen cannot be released into the atmosphere as it is due to environmental restrictions, and is usually released into the atmosphere after desulfurization and denitration treatment for removing these components.

【0003】脱硝処理の方法としては、排ガス中へアン
モニア(NH3)を添加することにより次式に示すような反
応を導くことによってNOX を分解する方法が知られてい
る。 6NO +4NH3 =5N2 +6H2O ・・・・・(1) 6NO2 +8NH3 =7N2 +12H2O ・・・・・(2) 例えば、特公昭63−7086号公報では、排ガス量、含有NO
X濃度、大気放散許容NOX 濃度がわかれば、 NH3注入量
を計算により求めることができるので、これをマイコン
によって自動制御する方法を提案している。
As a denitration treatment method, there is known a method of decomposing NO X by adding ammonia (NH 3 ) to exhaust gas to induce a reaction as shown in the following formula. 6NO + 4NH 3 = 5N 2 + 6H 2 O (1) 6NO 2 + 8NH 3 = 7N 2 + 12H 2 O (2) For example, in Japanese Examined Patent Publication No. 63-7086, the amount of exhaust gas and the content NO
If we know the X concentration and the NO X concentration that can be emitted into the atmosphere, we can calculate the NH 3 injection amount, so we have proposed a method to automatically control this with a microcomputer.

【0004】[0004]

【発明が解決しようとする課題】上述した NH3注入によ
る排ガス中NOX 濃度制御法というのは、排ガス量および
含有NOX 濃度の変動が大きいと、計算機による自動制御
の応答性が悪く、放散NO X 濃度を許容変動レベル内に制
御できないという問題があった。もちろん、このような
問題点を克服する手段も考えられており、例えば、焼結
機からの排ガス量の変動を予測することにより、制御性
を向上する方法もあったが、それを考慮したとしてもな
お、含有NOX 濃度は特異な挙動を示すので制御性は向上
しないのが実情であった。結局、従来は焼結工場のオペ
レーターの勘に頼らざるを得ず、オペレーターの負担の
軽減には役立たなかった。さらに、上記従来技術の問題
点は、上述した事項だけに限らず、一般には放散NOX
度の許容値オーバーを防止するために NH3を過剰に注入
する必要があり、このことが排ガス処理コストの増大を
招くという点も見られた。
[Problems to be Solved by the Invention] The above-mentioned NH3By injection
NO in exhaust gasXConcentration control method means the amount of exhaust gas and
Contains NOXAutomatic control by computer when fluctuation of concentration is large
Is not responsive and emits NO XConcentration is controlled within the allowable fluctuation level
There was a problem that I could not control. Of course, like this
Means to overcome the problems are also considered, for example, sintering
Controllability by predicting fluctuations in the amount of exhaust gas from the machine
There are ways to improve
Oh, NO contentXControllability is improved because the concentration exhibits unique behavior
The reality was not to do it. After all, the operation of the sintering plant was traditionally
I have to rely on the intuition of the operator, which burdens the operator.
It did not help in mitigation. Furthermore, the problems of the above-mentioned conventional technology
The points are not limited to the above-mentioned matters, but in general, emission NOXDark
NH to prevent overshooting3Overdosed
This will increase the cost of exhaust gas treatment.
There was also a point of inviting.

【0005】そこで、本発明の目的は、 NH3添加によっ
て排ガス中のNOX 濃度を制御する従来技術の上述した問
題点を克服すること、すなわち、排ガス中NOX 濃度監視
のため焼結機操業オペレーターの負担が大きく、省力を
進める上で障害になっていること、あるいは NH3の過剰
注入により排ガス処理コストの増大を招いているという
問題点を解決するために、 NH3注入法によるNOX の自動
制御レベルを向上させる技術を確立することにある。
Therefore, an object of the present invention is to overcome the above-mentioned problems of the prior art of controlling the NO X concentration in exhaust gas by adding NH 3 , that is, operating a sintering machine for monitoring NO X concentration in exhaust gas. In order to solve the problem that the operator's burden is heavy and it is an obstacle to promoting labor saving, or that the excessive injection of NH 3 causes an increase in exhaust gas treatment cost, NO X by the NH 3 injection method is solved. It is to establish the technology to improve the automatic control level.

【0006】[0006]

【課題を解決するための手段】上掲の目的の実現に向
け、特に排ガス量の変化に伴うNOX 濃度の変化を詳細に
調べた。その結果、発明者らは次のような知見を得た。 NOX 濃度と排ガス量についての関係を示す図1の結
果から判るように、比較的長期的な変化を見た場合、排
ガス量が低下すると逆にNOX濃度は上昇し、一方、排ガ
ス量が増大するとNOX 濃度は低下する傾向がある。 上述したように排ガス量の増大は、長期的にはNOX
濃度は低下させていくが、短期的な視点に立つと、この
場合のNOX 濃度の減少傾向は一旦NOX 濃度が上昇してピ
ークを形成した後に顕れる現象である。 そして、この時に出現するピークの高さは、排ガス
量の変化量に依存し、次式で示される。 ΔNOX = P1 × (ΔEG)2+ P2 ×ΔEG ・・・・(3) ここで、ΔNOX : 通気性向上時にNOX の推移に出現する
ピークの高さ ΔEG : 通気性向上時の排ガス量の変化量 P1, P2 : 脱硝反応器に依存するパラメータ
[Means for Solving the Problems] In order to realize the above-mentioned purpose, the change of NO X concentration with the change of exhaust gas amount was investigated in detail. As a result, the inventors have obtained the following findings. As can be seen from the results of Fig. 1 showing the relationship between the NO X concentration and the exhaust gas amount, when a relatively long-term change is observed, when the exhaust gas amount decreases, the NO X concentration increases, while the exhaust gas amount decreases. The NO x concentration tends to decrease as it increases. As mentioned above, the increase in the exhaust gas amount causes NO X in the long term.
Concentration gradually decreased, but the stand short-term perspective, decrease of the NO X concentration in this case is a phenomenon appearing after the formation of the peak rises once NO X concentration. The height of the peak that appears at this time depends on the amount of change in the exhaust gas amount and is represented by the following equation. ΔNO X = P 1 × (ΔEG) 2 + P 2 × ΔEG ··· (3) where ΔNO X : Peak height that appears in the transition of NO X when air permeability is improved ΔEG: When air permeability is improved Change in exhaust gas amount P 1 , P 2 : Parameters that depend on the denitration reactor

【0007】上記の〜の知見について考察すると、
焼結パレット上の原料堆積層内の通気性が上昇すると、
この原料堆積層内に持ち込まれる大気ガス量が相対的に
増大する。すると、コークスの燃焼が促進されて燃焼温
度が上昇し、それに伴って発生NOX が増大する。しか
し、通気性がさらに向上すると、その分だけ吸引される
大気ガスの量(すなわち排ガス量に等しい)が上昇する
こととなり、空気抜熱によって燃焼温度の低下を招き、
ひいては発生NOX 量の減少を招き、その結果として排ガ
ス量全体に対するNOX 濃度は低下して元に戻る。しか
も、一般には、排ガス発生源である焼結機パレットと脱
硝反応器との間は、排風機(ブロワ)、電気集塵器、脱
硫工程等の装置が配置されているので、排ガス発生後脱
硝反応器に到達するのに若干の時間遅れがあり、また、
この配管内の非定常なガスの混合も当然にあり、その結
果、通気性が向上したとき図1に示すような変化が生じ
るものと考えられる。
Considering the findings of the above items,
When the air permeability in the raw material deposition layer on the sintering pallet increases,
The amount of atmospheric gas brought into the raw material deposition layer is relatively increased. Then, the combustion of coke is promoted, the combustion temperature rises, and the generated NO X increases accordingly. However, if the air permeability is further improved, the amount of atmospheric gas sucked in (that is, equal to the amount of exhaust gas) will increase accordingly, leading to a decrease in combustion temperature due to air removal,
As a result, the amount of NO X generated is reduced, and as a result, the NO X concentration with respect to the total amount of exhaust gas decreases and returns to the original level. Moreover, in general, devices such as an exhaust fan (blower), an electrostatic precipitator, and a desulfurization process are arranged between the sintering machine pallet, which is an exhaust gas generation source, and the denitration reactor. There is some delay in reaching the reactor, and
It is considered that unsteady gas mixing in the pipe naturally occurs, and as a result, the change shown in FIG. 1 occurs when the air permeability is improved.

【0008】以上説明したように、以前は特異な現象と
して考えられていた通気性向上時のNOX 濃度の変動原因
(長期的要因, 短期的要因)を解明できた結果、排ガス
量やNOX 濃度を測定して NH3添加量を制御するというこ
れまでの長期的な視野での変動要因に加え、短期的な変
動要因をも考慮した通気性の変動を予知することによ
り、上述した長期・短期の両方に亘るNOX 変動に対して
の、 NH3添加による脱硝処理の制御が可能となった。
As explained above, as a result of being able to elucidate the cause of fluctuations in NO X concentration (long-term factor, short-term factor) at the time of improving air permeability, which was previously considered as a peculiar phenomenon, the exhaust gas amount and NO X In addition to the long-term fluctuation factors that have been measured in the past, such as controlling the amount of NH 3 added and controlling the amount of NH 3 added, by predicting fluctuations in breathability that also consider short-term fluctuation factors, the above-mentioned long-term It became possible to control the denitration treatment by adding NH 3 to the NO X fluctuation over both short-term.

【0009】すなわち、本発明は、DL式焼結機の排ガ
スにアンモニアを添加してこのガス中に含まれる窒素酸
化物を還元除去する脱硝処理の方法において、排ガスの
長期的な流量変化と短期的な流量変化とを予測し、この
排ガス流量変化に応じてアンモニア添加量を調整してNO
X 濃度を制御することを特徴とする焼結機の排ガスの脱
硝処理方法である。
That is, according to the present invention, in a denitration treatment method in which ammonia is added to exhaust gas of a DL type sintering machine to reduce and remove nitrogen oxides contained in this gas, a long-term change in exhaust gas flow rate and a short-term change. Of the exhaust gas flow rate, adjust the amount of ammonia added according to this change in the exhaust gas flow rate, and
A method for denitration of exhaust gas from a sintering machine, which is characterized by controlling the X concentration.

【0010】[0010]

【作用】図2は、本発明の脱硝処理方法のシステム構成
図を、そして図3には、本発明方法を適用したNOX 制御
のためのフローチャートを示す。なお、本発明において
NH3添加量の計算は以下に示す式に従って行なった。 AIN = (NI−NR)× EG × PK + P3 ・・・・・・・(4) ここで、AIN : NH3 添加量 (Nm3/h) NI : 入側NOX 濃度(ppm) NR : NOX 放散規制値(ppm) EG : 排ガス量(Nm3/h ) PK : 反応式により決まる定数 P3 :脱硝反応器の仕様により決まるパラメータ
2 shows a system configuration diagram of the denitration treatment method of the present invention, and FIG. 3 shows a flow chart for NO X control to which the method of the present invention is applied. In the present invention,
The NH 3 addition amount was calculated according to the formula shown below. AIN = (NI-NR) × EG × PK + P 3 ······· (4) where, AIN: NH 3 amount (Nm 3 / h) NI: inlet-side NO X concentration (ppm) NR : NO X emission regulation value (ppm) EG: Exhaust gas amount (Nm 3 / h) PK: Constant determined by reaction formula P 3 : Parameter determined by denitration reactor specifications

【0011】また、パレット内の通気性の予測は、通気
抵抗指数RP(次式に示す)により行なった。 RP = PW3 / GW3 ・・・・・・・(5) ここで、PW3 : No.3ウインドボックスの圧力 GW3 : No.3ウインドボックスの風量 このRPと排ガス量とは焼結機のパレット速度に対応する
遅れを考慮すると強い相関関係を有しており(図4参
照)、この通気抵抗指数RPにより排ガス量EGの変化を予
測することができる。(次式に示す) EG = RP × P4 + P5 ・・・・・・・(6) ここで、P4, P5:焼結機の操業状況により決まるパラメ
ータ
The air permeability in the pallet was predicted by the air flow resistance index RP (shown in the following equation). RP = PW 3 / GW 3 (5) Where, PW 3 : No.3 Windbox pressure GW 3 :: No.3 Windbox air volume This RP and exhaust gas volume are the sintering machine There is a strong correlation in consideration of the delay corresponding to the pallet speed (see FIG. 4) (see FIG. 4), and the ventilation resistance index RP can predict the change in the exhaust gas amount EG. (Shown in the following formula) EG = RP × P 4 + P 5 ······· (6) where, P 4, P 5: parameter determined by operating conditions of the sintering machine

【0012】さらに、排ガス発生源から脱硝反応器に至
る遅れ時間TD(分)は次式により計算される。 TD = PS ×L× P6 ・・・・・・・(7) ここで、PS:焼結機のパレット速度 L:RP測定点から排鉱部までの距離 P6:焼結機固有のパラメーター 結局、長期的に通気性がどうなるのかの判定は、上記で
求められた通気抵抗指数EGと現在の排ガス量EGとを比較
して、これらの差がある値以上であれば通気性が向上す
ると判定する。
Further, the delay time T D (minutes) from the exhaust gas source to the denitration reactor is calculated by the following equation. T D = PS × L × P 6 (7) Where, PS: Pallet speed of sintering machine L: Distance from RP measurement point to ore discharge part P 6 : Unique to sintering machine Parameters After all, to determine what the air permeability will be in the long term, compare the airflow resistance index EG obtained above with the current exhaust gas amount EG, and if these differences are above a certain value, the air permeability will improve. Then determine.

【0013】次に、通気性が向上して排ガス量が増大傾
向にあるとき、即ち、上述した短期的な排ガス量の変動
については、NOX 濃度低下原因となるNOX ピーク値を、
(3)式のように示すことができるので、この (3)式によ
り得られるΔNOX を用い、次式により短期的変動要因に
基づく NH3添加量の上乗せ量ΔAIN を求める。 ΔAIN =ΔNOx × PC + P7 ・・・・・・・(8) ここで、 PC : 化学反応式により決まる定数 P7 : 脱硝反応器により決まるパラメーター
Next, when the breathability is improved and the exhaust gas amount tends to increase, that is, for the above-mentioned short-term fluctuation of the exhaust gas amount, the NO X peak value that causes the NO X concentration to decrease is
Since it can be expressed as in Eq. (3), using ΔNO X obtained by Eq. (3), the additive amount ΔAIN of NH 3 addition based on short-term fluctuation factors is calculated by the following equation. ΔAIN = ΔNO x × P C + P 7 ... (8) where P C : constant determined by chemical reaction formula P 7 : parameter determined by denitration reactor

【0014】すなわち、本発明脱硝処理方法は、長期的
な排ガス流量変化を示す(4) 式のAIN と、短期的な排ガ
ス流量変化を示すΔAIN との両方を考慮して、添加すべ
きNH 3 の量を調整し、もって適正許容NOX になるように
制御するのである。
That is, the denitrification treatment method of the present invention is a long-term method.
AIN in Eq. (4), which shows a large change in exhaust gas flow rate, and short-term exhaust gas
In consideration of both ΔAIN, which indicates the flow rate change,
The NH 3Adjust the amount of NOXTo be
Control it.

【0015】[0015]

【実施例】有効吸引面積 215m2の焼結機に本発明を脱硝
処理方法適用した例について、以下に説明する。本発明
脱硝処理方法は、目標NOX 濃度を22ppm とし、本発明に
よる脱硝後NOX 濃度の予測結果とこの目標値の差に対応
する上乗せ量アクション実施の条件で行なった。また、
比較例の脱硝処理方法は、上限NOX 濃度23ppm、下限NO
X 濃度16ppm とし、それぞれの限界に達したらオペレー
ターが手動調整を行う操業基準の条件で行なった。
EXAMPLES An example in which the present invention is applied to the denitration treatment method in a sintering machine having an effective suction area of 215 m 2 will be described below. The denitration treatment method of the present invention was carried out under the condition that the target NO X concentration was 22 ppm, and the additional amount action was performed corresponding to the difference between the predicted result of the NO X concentration after denitration and the target value according to the present invention. Also,
The denitrification treatment method of the comparative example has an upper limit NO x concentration of 23 ppm and a lower limit NO x.
The X concentration was set to 16 ppm, and when the respective limits were reached, the operator manually adjusted the conditions under the operating standard conditions.

【0016】表1は、本発明方法および比較例の方法を
実施した場合のそれぞれの生産率、脱硝前NOX 濃度、脱
硝後NOX 濃度、排ガス量、アンモニア注入量原単位及び
オペレーターによる手動調整回数を示す。この表1よ
り、本発明方法による場合は、従来法による場合に比し
て脱硝前NO X 濃度が上昇したにもかかわらず、制御性を
向上させることによりアンモニア注入量原単位を低減す
ることができた。このように、本発明方法の優れた効果
を確認した。
Table 1 shows the method of the present invention and the method of the comparative example.
Each production rate when implemented, NO before denitrationXConcentration
NO after glassXConcentration, exhaust gas amount, ammonia injection amount basic unit and
Indicates the number of manual adjustments made by the operator. This table 1
In comparison with the conventional method, the method according to the present invention
NO before denitration XControllability despite increased concentration
Reduce the basic unit of ammonia injection by improving
I was able to Thus, the excellent effect of the method of the present invention
It was confirmed.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】以上説明したように本発明によれば、、
排ガス中NOX 濃度の制御性を向上させることができ、排
ガス処理コストを低減すると同時にオペレーターの作業
負荷を著しく低減することができた。
As described above, according to the present invention,
It was possible to improve the controllability of the NO X concentration in the exhaust gas, reduce the exhaust gas treatment cost, and at the same time significantly reduce the workload of the operator.

【図面の簡単な説明】[Brief description of drawings]

【図1】排ガス量とNOX 濃度の関係を示すグラフ。FIG. 1 is a graph showing the relationship between exhaust gas amount and NO X concentration.

【図2】本発明脱硝処理方法のシステム構成図。FIG. 2 is a system configuration diagram of the denitration treatment method of the present invention.

【図3】本発明方法に従うNOX 制御方法のフローチャー
ト。
FIG. 3 is a flow chart of a NO X control method according to the method of the present invention.

【図4】排ガス量と焼結機上層内通気抵抗指数の関係を
示すグラフ。
FIG. 4 is a graph showing the relationship between the amount of exhaust gas and the ventilation resistance index in the upper layer of the sintering machine.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 DL式焼結機の排ガスにアンモニアを添
加してこのガス中に含まれる窒素酸化物を還元除去する
脱硝処理の方法において、排ガスの長期的な流量変化と
短期的な流量変化とを予測し、これら双方の排ガス流量
変化を勘案してアンモニア添加量を調整することによ
り、NOX 濃度を制御することを特徴とする焼結機排ガス
の脱硝処理方法。
1. A denitrification treatment method in which ammonia is added to exhaust gas of a DL type sintering machine to reduce and remove nitrogen oxides contained in this gas, in the long-term flow rate change and short-term flow rate change of the exhaust gas. predicting the door, by adjusting the ammonia amount in consideration of the exhaust gas flow rate change of both, denitration method of sintering machine exhaust gas and controlling the NO X concentration.
JP3324556A 1991-12-09 1991-12-09 Denitration treatment of exhaust gas from sintering machine Pending JPH05154340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3324556A JPH05154340A (en) 1991-12-09 1991-12-09 Denitration treatment of exhaust gas from sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3324556A JPH05154340A (en) 1991-12-09 1991-12-09 Denitration treatment of exhaust gas from sintering machine

Publications (1)

Publication Number Publication Date
JPH05154340A true JPH05154340A (en) 1993-06-22

Family

ID=18167133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3324556A Pending JPH05154340A (en) 1991-12-09 1991-12-09 Denitration treatment of exhaust gas from sintering machine

Country Status (1)

Country Link
JP (1) JPH05154340A (en)

Similar Documents

Publication Publication Date Title
US10583386B2 (en) Ammonia-adding system for ammonia-based desulfurization device
JP6070971B1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
US8268275B2 (en) Method and device for controlling the supply of a reducing agent to an SCR system
JP2011105985A (en) Method for treating exhaust gas in sintering machine
EP0327213A1 (en) A coal combustion apparatus provided with a denitration means
JP2007237019A (en) Feed amount control method for exhaust gas treatment chemical and exhaust gas treatment apparatus
CN207123165U (en) A kind of can-type calcine furnace flue gas recycle combustion system
JPH05154340A (en) Denitration treatment of exhaust gas from sintering machine
CN113419570A (en) Control method of flue gas denitration system of waste incineration power plant
CA2084225C (en) A procedure for regulating the quantity of a processing medium that is used to reduce the nitrogen monoxide content in the exhaust gases generated by combustion processes
CN108949193B (en) Coke oven waste gas circulation volume automatic control system and method
CN101749951A (en) Treatment method for segmentation of metallurgy sintering smoke
CN111530278B (en) Denitration control method and device and boiler denitration control system
JPH0278816A (en) Method of controlling combustion efficiency
CN109794149A (en) A kind of CFB boiler denitrating flue gas autocontrol method and system
CN108267024B (en) Nitrogen oxide emission control method and device
CN112169561B (en) Method for controlling smoke emission
CN110345774A (en) Air quantity control method and device for ammonia mixer in system for desulfuration and denitration
CN108525464A (en) A kind of level control method and device for system for desulfuration and denitration
JP3209029B2 (en) Granulation method of sintering raw material
CN108267023B (en) Nitrogen oxide emission control method and device
JP3611026B2 (en) Smoke removal equipment
CN117991684A (en) Material balance control method, system, equipment and storage medium
CN106755973A (en) A kind of method for reducing Ore Sintering Process NO discharges
JPS6339635B2 (en)