JPH05150193A - Vibration insulation device - Google Patents

Vibration insulation device

Info

Publication number
JPH05150193A
JPH05150193A JP3339364A JP33936491A JPH05150193A JP H05150193 A JPH05150193 A JP H05150193A JP 3339364 A JP3339364 A JP 3339364A JP 33936491 A JP33936491 A JP 33936491A JP H05150193 A JPH05150193 A JP H05150193A
Authority
JP
Japan
Prior art keywords
temperature
shake
apex angle
angle prism
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3339364A
Other languages
Japanese (ja)
Other versions
JP3141039B2 (en
Inventor
Tsuneo Takashima
常雄 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP03339364A priority Critical patent/JP3141039B2/en
Publication of JPH05150193A publication Critical patent/JPH05150193A/en
Application granted granted Critical
Publication of JP3141039B2 publication Critical patent/JP3141039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Lens Barrels (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PURPOSE:To perform the best image vibration correction at all times irrelevantly to current use environment temperature. CONSTITUTION:This vibration insulation device is provided with a temperature detecting means 14 which detects the ambient temperature and a characteristic varying means 16 which varies control characteristics of a control means 16 according to information on the temperature detected by the temperature detecting means 14; and the control characteristics of the control means 16 are varied according to the temperature information obtained by the temperature detecting means 14 to compensate variation in physical characteristics of a variable vertical angle prism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、像振れ補正手段として
可変頂角プリズムを用いた防振装置の改良に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a vibration isolation device using a variable apex angle prism as image blur correction means.

【0002】[0002]

【従来の技術】近年、スチルカメラやビデオカメラ等の
撮影装置の自動化が進み、自動露出や自動焦点調節機構
などを備えたものが広く実用化されており、また、装置
全体の振れに起因する像振れを自動補正する振れ補正
(防振)機能を実現する技術もいくつか実用化されてい
る。
2. Description of the Related Art In recent years, automation of photographing devices such as still cameras and video cameras has progressed, and those equipped with an automatic exposure and automatic focus adjustment mechanism have been widely put into practical use, and also due to shake of the entire device. Some technologies for realizing a shake correction (anti-shake) function for automatically correcting image shake have been put into practical use.

【0003】これらの防振機能を有する装置は、一般
に、装置全体の振れを検出する振れ検出手段と、前記振
れに起因する像振れを補正する像振れ補正手段と、該像
振れ補正手段を駆動する駆動手段と、前記振れ検出手段
の出力に応じて振れ補正量を算出し、前記駆動手段の駆
動制御を行う制御手段とから構成されている。
In general, these apparatuses having the image stabilizing function drive a shake detecting means for detecting the shake of the entire apparatus, an image shake correcting means for correcting the image shake caused by the shake, and the image shake correcting means. The driving means and the control means for calculating the shake correction amount according to the output of the shake detecting means and controlling the driving of the drive means.

【0004】上記振れ検出手段としては、角加速度計、
角速度計、或は、角変位計等が用いられ、上記像振れ補
正手段としては、二枚のガラス板を変形自在の蛇腹状の
弾性フィルムで結合し、その内部に高屈折率の液体を封
入した可変頂角プリズム等が用いられる。
As the shake detecting means, an angular accelerometer,
An angular velocity meter or an angular displacement meter is used, and as the image blur correction means, two glass plates are joined by a deformable bellows-like elastic film and a high refractive index liquid is sealed inside. A variable apex angle prism or the like is used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、像振れ
補正手段として上記の可変頂角プリズムを用いた場合、
該可変頂角プリズムの構成要素である内部液体の粘度
は、周囲温度が高いときは低くなり、低いときは高くな
る。また、同じく構成要素である蛇腹状の弾性フィルム
の弾性は、周囲温度が高いときは小さく、低いときは大
きくなる。
However, when the above variable apex angle prism is used as the image blur correction means,
The viscosity of the internal liquid that is a constituent element of the variable apex angle prism is low when the ambient temperature is high, and is high when the ambient temperature is low. The elasticity of the bellows-like elastic film, which is also a constituent element, is small when the ambient temperature is high, and is large when the ambient temperature is low.

【0006】したがって、上記制御手段の特性が温度に
よらず一定であるなら、周辺温度が低い場合には、系の
ル−プゲインが低下して振れの補正残りが増え、画面上
の像振れが目立ち易くなるとともに、応答速度が落ちる
ために防振帯域が狭まり、比較的高い周波数の振れが補
正できなくなる。また、周囲温度が高い場合には、系の
減衰係数が小さくなるために共振周波数における共振値
が高くなり、発振気味となり、制御の安定性が損なわれ
るといった問題点があった。
Therefore, if the characteristics of the control means are constant irrespective of temperature, when the ambient temperature is low, the loop gain of the system is reduced and the uncorrected amount of shake is increased, resulting in image shake on the screen. In addition to being conspicuous, the vibration reduction band is narrowed because the response speed decreases, and it becomes impossible to correct the vibration at a relatively high frequency. In addition, when the ambient temperature is high, there is a problem that the resonance value at the resonance frequency becomes high because the damping coefficient of the system becomes small, and it tends to oscillate, and the control stability is impaired.

【0007】本発明の目的は、上記の点に鑑み、その時
の使用環境温度に依らず、常に最適な像振れ補正を行う
ことのできる防振装置を提供することである。
SUMMARY OF THE INVENTION In view of the above points, an object of the present invention is to provide an anti-vibration device which can always perform optimum image blur correction irrespective of the operating environment temperature at that time.

【0008】[0008]

【課題を解決するための手段】本発明は、周辺温度を検
出する温度検出手段と、該温度検出手段にて検出される
温度情報に応じて制御手段の制御特性を変化させる特性
可変手段とを設けている。
According to the present invention, there are provided a temperature detecting means for detecting an ambient temperature and a characteristic varying means for changing a control characteristic of the control means in accordance with temperature information detected by the temperature detecting means. It is provided.

【0009】[0009]

【作用】可変頂角プリズムは温度変化に伴ってその構成
要素が物理的な特性変化を生じてしまう為、温度検出手
段にて検出される温度情報に応じて制御手段の制御特性
を変え、可変頂角プリズムの物理的特性の変化を補償す
るようにしている。
In the variable apex angle prism, since the constituent elements of the variable apex angle prism change physically, the control characteristic of the control means is changed according to the temperature information detected by the temperature detection means. It is designed to compensate for changes in the physical characteristics of the apex angle prism.

【0010】[0010]

【実施例】以下、本発明を図示の実施例に基づいて詳細
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on the illustrated embodiments.

【0011】図1及び図2は本発明の第1の実施例にお
ける防振装置を示す図である。
1 and 2 are views showing a vibration isolator according to a first embodiment of the present invention.

【0012】図1において、2a,2bは対向する二枚
のガラス板であり、これとその外周を封止する蛇腹状の
弾性フィルム3とによって密封された空間に高屈折率の
液体1(図示せず)が満たされており、これらによって
可変頂角プリズムが構成される。
In FIG. 1, reference numerals 2a and 2b denote two glass plates facing each other, and a liquid 1 having a high refractive index (see FIG. 1) is enclosed in a space sealed by the glass plate and a bellows-like elastic film 3 which seals the outer periphery of the glass plate. (Not shown) are filled, and these constitute a variable apex angle prism.

【0013】この可変頂角プリズムは、枠体4a,4b
に挟持され、各ガラス板2a,2bがピッチ軸5a,ヨ
−軸5b回りに回動自在になるように保持されている。
前側の枠体4aにはその一端に偏平形コイル6aが固着
されており、その両面に対向して永久磁石7a並びに継
鉄8a,9aが配置され、閉じた磁気回路を構成してい
る。この枠体4aのコイル6aの対称位置にはスリット
10aを有する腕部11aがあり、その両側には発光素
子12a並びに受光素子13aが対向して配置されてお
り、発光素子12aから発射された光束がスリット10
aを透過した後に受光素子13aへ照射されるようにな
っている。
This variable apex angle prism includes frame bodies 4a and 4b.
The glass plates 2a and 2b are sandwiched between the glass plates 2a and 2b so as to be rotatable about the pitch shaft 5a and the yaw shaft 5b.
A flat coil 6a is fixed to one end of the frame 4a on the front side, and permanent magnets 7a and yokes 8a and 9a are arranged on both sides of the frame 4a to form a closed magnetic circuit. An arm portion 11a having a slit 10a is provided at a symmetrical position of the coil 6a of the frame body 4a, and a light emitting element 12a and a light receiving element 13a are arranged on opposite sides of the arm portion 11a so as to face each other. Has slit 10
After passing through a, the light receiving element 13a is irradiated.

【0014】ここで、発光素子12aは例えばIRED
等の赤外発光素子であり、受光素子13aは例えば受光
した光束のスポットの位置によって出力が変化するPS
D等の光電変換素子である。
Here, the light emitting element 12a is, for example, IRED.
The light receiving element 13a is a PS whose output changes depending on the position of the spot of the received light beam, for example.
A photoelectric conversion element such as D.

【0015】また、図では省略するが、ヨ−側にもそれ
ぞれ偏平型コイル6b,永久磁石7b,継鉄8b,9
b,スリット10b,腕11b,発光素子12b,受光
素子13bが配置され、ピッチ側の動作と同様に機能す
る。
Although not shown in the drawing, the flat coil 6b, the permanent magnet 7b, and the yokes 8b and 9 are also provided on the yaw side, respectively.
b, the slit 10b, the arm 11b, the light emitting element 12b, and the light receiving element 13b are arranged, and function similarly to the operation on the pitch side.

【0016】14は装置内部の温度を検出するSiIC
センサなどの感温素子である。15a,15bは装置全
体のピッチ方向,ヨ−方向の振れ量を検出できるよう該
装置に取り付けられた振れ検出器である。16は、A/
Dコンバ−タ,D/Aコンバ−タ,CPU,メモリ等で
構成され、システムを制御する制御回路である。17は
制御回路16の指令に従ってコイル6a,6bに電流を
供給するコイル駆動回路である。
Reference numeral 14 is a SiIC for detecting the temperature inside the apparatus.
A temperature sensitive element such as a sensor. Reference numerals 15a and 15b denote shake detectors attached to the device so as to detect shake amounts in the pitch direction and the yaw direction of the entire device. 16 is A /
The control circuit is composed of a D converter, a D / A converter, a CPU, a memory, etc., and controls the system. Reference numeral 17 denotes a coil drive circuit that supplies a current to the coils 6a and 6b according to a command from the control circuit 16.

【0017】図2は、上記振れ検出器15a,15bの
内部構成を示す図である。
FIG. 2 is a diagram showing the internal structure of the shake detectors 15a and 15b.

【0018】図2において、151は外筒であり、その
内部には高比重の液体152が満たされており、この液
体152中には、感知羽根153が保持腕154の軸1
55回りに回動自在に保持されている。
In FIG. 2, reference numeral 151 denotes an outer cylinder, and the inside thereof is filled with a liquid 152 having a high specific gravity, and in this liquid 152, a sensing blade 153 is provided with a shaft 1 of a holding arm 154.
It is held rotatably around 55.

【0019】前記感知羽根153の中心付近にはスリッ
ト上の反射面156が設けられている。また、外筒15
1の外側には反射面156に向けて発光素子157及び
受光素子158が配置され、発光素子157から発射さ
れた光束が反射面156で反射され、受光素子158の
受光面へ照射されるようになっている。
A reflective surface 156 on the slit is provided near the center of the sensing blade 153. Also, the outer cylinder 15
A light emitting element 157 and a light receiving element 158 are arranged on the outer side of 1 toward the reflecting surface 156, and the light flux emitted from the light emitting element 157 is reflected by the reflecting surface 156 and is irradiated to the light receiving surface of the light receiving element 158. Is becoming

【0020】ここで、発光素子157は例えばIRED
等の赤外発光素子であり、受光素子158は例えば受光
した光束のスポットの位置によって出力が変化するPS
D等の光電変換素子である。
Here, the light emitting element 157 is, for example, IRED.
The light receiving element 158 is a PS whose output changes depending on the position of the spot of the received light beam, for example.
A photoelectric conversion element such as D.

【0021】次に、上記構成における動作を順を追って
説明する。
Next, the operation of the above configuration will be described step by step.

【0022】撮影装置を保持する手の振れ等の原因で装
置全体に振れが生じた場合、振れ検知器15a,15b
内部の外筒151,保持腕154,発光素子157及び
受光素子158は本体と一体となって振れる。しかし、
内部の高比重液体152,感知羽根153及びその中央
部に設けた反射面156は自らの慣性のために、絶対座
表に対して静止しようとする。そのため、外筒151と
感知羽根153との間には振れ量に応じた相対角が生
じ、この相対角によって、発光素子157から発射され
反射面156で反射した光束が受光素子158の受光面
上に形成するスポットの位置に変化が生じ、この変化量
に応じた信号が受光素子158から出力される。
When shake occurs in the entire apparatus due to shake of the hand holding the photographing apparatus or the like, shake detectors 15a and 15b
The inner outer cylinder 151, the holding arm 154, the light emitting element 157, and the light receiving element 158 swing together with the main body. But,
The high specific gravity liquid 152, the sensing vanes 153, and the reflecting surface 156 provided at the center of the liquid 152 tend to be stationary with respect to the absolute seat due to their own inertia. Therefore, a relative angle corresponding to the shake amount is generated between the outer cylinder 151 and the sensing blade 153, and this relative angle causes the light beam emitted from the light emitting element 157 and reflected by the reflecting surface 156 to be reflected on the light receiving surface of the light receiving element 158. A change occurs in the position of the spot formed on the light receiving element 158, and a signal corresponding to this change amount is output from the light receiving element 158.

【0023】したがって、受光素子158の出力、すな
わち振れ検出器15a,15bの出力は、それぞれの軸
5a,5b回りの振れの大きさを示す値の信号となる。
Therefore, the output of the light receiving element 158, that is, the output of the shake detectors 15a and 15b becomes a signal having a value indicating the magnitude of shake about the respective axes 5a and 5b.

【0024】この振れ信号は図1に示す制御回路16に
入力され、ここで適切な乗数を乗じられて、可変頂角プ
リズムでこの振れを取除くために必要な頂角の大きさが
算出される。
This shake signal is input to the control circuit 16 shown in FIG. 1, where it is multiplied by an appropriate multiplier to calculate the magnitude of the apex angle required to remove this shake by the variable apex angle prism. It

【0025】一方、対向するガラス板2a,2bの軸5
a,5b回りの回転角、すなわち可変頂角プリズムのピ
ッチ,ヨ−方向の頂角の変動は、発光素子12a,12
bから発射された光束が、対向するガラス板2a,2b
と一体に回転する枠体4a,4bの腕11a,11bに
取付けられたスリット10a,10bを透過して受光素
子13a,13bに照射する時の受光面上のスポット位
置の移動を生じることになる。この受光素子13a,1
3bはそのスポットの移動量、すなわち可変頂角プリズ
ムの頂角の大きさに応じた出力を制御回路16へ伝達す
る。
On the other hand, the shaft 5 of the glass plates 2a, 2b facing each other
The rotation angles around a and 5b, that is, the pitch of the variable apex prism and the variation of the apex angle in the yaw direction are changed by the light emitting elements 12a and 12b.
The luminous flux emitted from b is the glass plates 2a and 2b facing each other.
When the light-receiving elements 13a and 13b are irradiated with the light through the slits 10a and 10b attached to the arms 11a and 11b of the frame bodies 4a and 4b that rotate integrally with the light-receiving elements, the spot position moves on the light-receiving surface. .. This light receiving element 13a, 1
Reference numeral 3b transmits to the control circuit 16 an output according to the amount of movement of the spot, that is, the size of the apex angle of the variable apex angle prism.

【0026】制御回路16は、さきに述べた計算された
頂角の大きさと、現時点での頂角の大きさとの差を計算
し、これに所定の増幅率を乗じたものをコイル6a,6
bの駆動指令信号としてコイル駆動回路17へ伝達す
る。このコイル駆動指令信号を受けるコイル駆動回路1
7は該信号に応じた駆動電流をコイル6a,6bに通電
し、コイル駆動力を発生する。
The control circuit 16 calculates the difference between the size of the calculated apex angle and the size of the apex angle at the present time, and multiplies the difference by a predetermined amplification factor to the coils 6a, 6a.
It is transmitted to the coil drive circuit 17 as a drive command signal of b. Coil drive circuit 1 for receiving this coil drive command signal
Reference numeral 7 supplies a drive current corresponding to the signal to the coils 6a and 6b to generate a coil drive force.

【0027】可変頂角プリズムはこのコイル駆動力によ
って軸5a,5b回りに回転運動を行い、前述の計算さ
れた頂角の大きさに一致するように変形する。すなわ
ち、可変頂角プリズムは振れを修正するように計算され
た頂角の値を基準信号とし、現在の頂角の値をフィ−ド
バック信号とするフィ−ドバック制御則によって振れの
補正制御を行うように構成されている。
The variable apex angle prism rotates about the axes 5a and 5b by this coil driving force, and is deformed so as to correspond to the magnitude of the apex angle calculated above. That is, the variable apex angle prism performs shake correction control according to a feedback control rule in which the value of the apex angle calculated to correct the shake is used as a reference signal and the current value of the apex angle is used as a feedback signal. Is configured.

【0028】ところが、ここで周囲温度が常温よりも低
い場合は、内部液体152の粘度は高くなり、蛇腹状の
弾性フィルム3の弾性は大きくなる。従って、上記制御
回路16での増幅率を温度によらず一定とした場合は、
既に述べたように、低温時には弾性フィルム3の弾性が
大きくなるために一定の駆動力を与えた場合でも変位量
は小さくなる為、振れを完全に補正しきれなくなり、補
正残りが増え、画面上の像振れが目立ち易くなるととも
に、内部液体152の粘度が大きくなるために粘性抵抗
が増え、応答速度が落ち、高い周波数の駆動信号に追随
できなくなり、高い周波数の振れが補正できなくなる。
また、周囲温度が常温より高い場合は、内部液体152
の粘度は低くなり、蛇腹状の弾性フィルム3の弾性は小
さくなる。そのため、一定の駆動力を与えた場合でも変
位量は大きくなり、しかも内部液体152の粘度が低い
ためにダンピングが弱くなって共振周波数における共振
値が高くなって発振気味となり、場合によっては特定周
波数で発振を生じて画面が常時微震動してしまうような
結果を引き起してしまうこともある。
However, when the ambient temperature is lower than room temperature, the viscosity of the internal liquid 152 increases and the elasticity of the bellows-like elastic film 3 increases. Therefore, when the amplification factor in the control circuit 16 is constant regardless of temperature,
As described above, since the elasticity of the elastic film 3 increases at low temperatures, the displacement becomes small even when a constant driving force is applied, so that the shake cannot be completely corrected, and the correction remaining increases, and The image blur of (3) becomes conspicuous, the viscosity of the internal liquid 152 increases, the viscous resistance increases, the response speed decreases, it becomes impossible to follow the drive signal of high frequency, and the shake of high frequency cannot be corrected.
If the ambient temperature is higher than room temperature, the internal liquid 152
Has a lower viscosity, and the bellows-like elastic film 3 has a smaller elasticity. Therefore, even when a constant driving force is applied, the displacement amount becomes large, and further, since the viscosity of the internal liquid 152 is low, the damping becomes weak and the resonance value at the resonance frequency becomes high, resulting in oscillation. There is also a case where it causes an oscillation and the screen always shakes slightly.

【0029】そこで、この実施例では、予め撮影開始時
に周囲温度を感温素子14により検知し、それに応じた
電圧信号を制御回路16はA/Dコンバ−タを介して取
り込む。そして、制御回路16は、この電圧信号に基づ
いて、もし温度が低い時は、常温の時よりも上記の増幅
率を大きくし、計算された頂角の大きさと実際の頂角の
大きさの差が小さいときでも大きな駆動司令信号を発生
するようにして、大きくなった弾性フィルム3の弾性に
打勝って所定の角度まで傾けるようにして、補正残りの
増加を防ぐようにする。逆に、もし温度が高い時は、常
温の時よりも上記の増幅率を小さくし、制御系の発振を
防ぎ、画面上に微震動が生じないようにする。
Therefore, in this embodiment, the ambient temperature is detected in advance by the temperature sensing element 14 at the start of photographing, and the control circuit 16 fetches the corresponding voltage signal through the A / D converter. Then, based on this voltage signal, the control circuit 16 makes the above-mentioned amplification factor larger when the temperature is lower than that at the normal temperature so that the calculated vertical angle and the actual vertical angle are Even if the difference is small, a large drive command signal is generated to overcome the increased elasticity of the elastic film 3 and tilt to a predetermined angle to prevent an increase in the uncorrected amount. On the contrary, if the temperature is high, the amplification factor is set to be smaller than that at the normal temperature to prevent the control system from oscillating so that a slight vibration does not occur on the screen.

【0030】これによって、周囲温度の変化によって可
変頂角プリズムの構成要素の物理的特性が変化した場合
でも、その影響を打消すように制御できるので、防振上
の不具合をなくすことができる。
As a result, even if the physical characteristics of the constituent elements of the variable apex angle prism are changed due to the change of the ambient temperature, the influence can be controlled so as to be cancelled, so that the problem of vibration isolation can be eliminated.

【0031】図3は上記制御回路16をマイクロコンピ
ュ−タにより構成した場合における動作を示すフロ−チ
ャ−トである。
FIG. 3 is a flow chart showing the operation when the control circuit 16 is composed of a microcomputer.

【0032】本プログラムはビデオカメラのメインスイ
ッチが投入される毎に起動され、メインスイッチの切断
によって終了する。前記メインスイッチが投入される
と、ステップ161からの動作を開始する。 [ステップ161] 装置内部の温度に応じた信号Tp
を感温素子14からA/Dコンバ−タを介して取り込
み、ステップ161へ進む。 [ステップ162] 各温度に適した増幅率K1 ,K2
が予め記憶されているテ−ブル上より、この時の温度信
号Tpに対応する増幅率K1 及びK2 を選択(参照)
し、増幅率K1 ,K2 を決定する。 [ステップ163] メインスイッチの状態を判別し、
OFFであれば本プログラムを終了する。又、ONのま
まならばステップ164ヘ進む。 [ステップ164] 防振スイッチ(AS−sw)の状
態をチェックし、ONであればステップ以下の防振動作
へと進み、OFFであればステップ171以下の非防振
動作へと進む。 [ステップ165] ヨ−側の振れ検出器15aからの
検出値(振れ信号)をA/Dコンバ−タを介して取込ん
でカメラ本体の振れ角度θyとし、更にヨ−側の頂角で
ある受光素子13aの出力をA/Dコンバ−タを介して
取込み可変頂角プリズム頂角αyとする。 [ステップ166] 予めわかっている屈折率ndの値
から、現在のカメラ本体の振れ角度θyを、可変頂角プ
リズムの光軸の屈折により補正するのに必要な頂角の値
を目標値として、次式 θy/(nd−1) で計算し、この目標値と現在の可変頂角プリズムの頂角
αyとの差に上記テ−ブルより選択した増幅率K1 を乗
じてコイル駆動信号 εy=K1 *{θy/(nd−1)−αy} を算出する。 [ステップ167] このコイル駆動信号εyを出力ポ
−トに出力し、D/Aコンバ−タを介してコイル駆動回
路17に伝達する。 [ステップ168] 今度はピッチ側の振れ検出器15
bからの検出値をA/Dコンバ−タを介して取込んでカ
メラ本体の振れ角度θpとし、更にピッチ側の頂角であ
る受光素子13bの出力をA/Dコンバ−タを介して取
込み可変頂角プリズム頂角αpとする。 [ステップ169] 予めわかっている屈折率ndの値
から、現在のカメラ本体の振れ角度θpを、可変頂角プ
リズムの光軸の屈折により補正するのに必要な頂角の値
を目標値として、次式 θp/(nd−1) で計算し、この目標値と現在の可変頂角プリズムの頂角
αpとの差に上記テ−ブルより選択した増幅率K1 を乗
じてコイル駆動信号 εp=K1 *{θp/(nd−1)−αp} を算出する。 [ステップ170] このコイル駆動信号εpを出力ポ
−トに出力し、D/Aコンバ−タを介してコイル駆動回
路17に伝達する。
This program is started each time the main switch of the video camera is turned on, and ends when the main switch is cut off. When the main switch is turned on, the operation from step 161 is started. [Step 161] A signal Tp corresponding to the temperature inside the device
Is taken in from the temperature sensitive element 14 via the A / D converter, and the process proceeds to step 161. [Step 162] Amplification factors K 1 and K 2 suitable for each temperature
Is selected in advance from the table stored in advance, the amplification factors K 1 and K 2 corresponding to the temperature signal Tp at this time are selected (see).
Then, the amplification factors K 1 and K 2 are determined. [Step 163] Determine the state of the main switch,
If it is OFF, this program ends. If it remains ON, the process proceeds to step 164. [Step 164] The state of the anti-vibration switch (AS-sw) is checked, and if it is ON, the operation proceeds to the anti-vibration operation in steps and below. [Step 165] The detected value (shake signal) from the shake detector 15a on the yaw side is taken in through the A / D converter to set the shake angle θy of the camera body, which is the apex angle on the yaw side. The output of the light-receiving element 13a is taken in through the A / D converter to be the variable apex angle prism apex angle αy. [Step 166] From the value of the refractive index nd known in advance, the value of the apex angle required to correct the current shake angle θy of the camera body by refraction of the optical axis of the variable apex angle prism is set as a target value, Calculated by the following equation θy / (nd−1), and multiply the difference between this target value and the current apex angle αy of the variable apex angle prism by the amplification factor K 1 selected from the above table, and the coil drive signal εy = Calculate K 1 * {θy / (nd-1) -αy}. [Step 167] This coil drive signal .epsilon.y is output to the output port and transmitted to the coil drive circuit 17 via the D / A converter. [Step 168] This time, the shake detector 15 on the pitch side
The detected value from b is taken in via the A / D converter to be the deflection angle θp of the camera body, and the output of the light receiving element 13b, which is the apex angle on the pitch side, is taken in via the A / D converter. Variable apex angle Prism apex angle αp. [Step 169] From the value of the refractive index nd known in advance, the value of the apex angle required to correct the current shake angle θp of the camera body by refraction of the optical axis of the variable apex angle prism is set as a target value, Calculated by the following equation θp / (nd-1), multiply the difference between this target value and the current apex angle αp of the variable apex angle prism by the amplification factor K 1 selected from the above table, and drive the coil drive signal εp = Calculate K 1 * {θp / (nd-1) -αp}. [Step 170] This coil drive signal εp is output to the output port and transmitted to the coil drive circuit 17 via the D / A converter.

【0033】以上の一連の動作によって、カメラ本体の
振れに対して可変頂角プリズムの頂角が所定の値だけ傾
いて自動的に振れが補正され像振れのない、良好な画像
が得られる。
By the series of operations described above, the apex angle of the variable apex angle prism is tilted by a predetermined value with respect to the shake of the camera body, the shake is automatically corrected, and a good image without image shake can be obtained.

【0034】また、この際装置内部の温度が常温よりも
高いか又は低くて、可変頂角プリズムの構成要素の物理
的特性が異なる場合であっても、ステップ162によっ
てその時の温度に応じた増幅率K1 がテ−ブルにより選
択されて計算に用いられるので、温度による影響は打消
される。
At this time, even if the temperature inside the apparatus is higher or lower than room temperature and the physical characteristics of the constituent elements of the variable apex angle prism are different, the amplification according to the temperature at that time is performed in step 162. The effect of temperature is negated because the rate K 1 is selected by the table and used in the calculation.

【0035】上記のステップ164において防振スイッ
チがOFFであった場合には、前述した様にステップ1
71以下の非防振動作へと進む。 [ステップ171] ヨ−側の頂角である受光素子13
aの出力をA/Dコンバ−タを介して可変頂角プリズム
の頂角αyとして取り込む。 [ステップ172] 上記可変頂角プリズムの頂角αy
に前述のテ−ブルより選択した増幅率K2 を乗じてコイ
ル駆動信号εyを次式 εy=−K2 *αy にて算出する。 [ステップ173] このコイル駆動信号εyを出力ポ
−トに出力し、D/Aコンバ−タを介してコイル駆動回
路17に伝達する。 [ステップ174] 今度はピッチ側の頂角である受光
素子13bの出力をA/Dコンバ−タを介して可変頂角
プリズムの頂角αpとして取り込む。 [ステップ175] 上記可変頂角プリズムの頂角αp
に前述のテ−ブルより選択した増幅率K2 を乗じてコイ
ル駆動信号εpを次式 εp=−K2 *αp にて算出する。 [ステップ176] このコイル駆動信号εpを出力ポ
−トに出力し、D/Aコンバ−タを介してコイル駆動回
路17に伝達する。
If the anti-vibration switch is OFF in step 164 above, step 1 is executed as described above.
Proceed to the anti-vibration operation of 71 or less. [Step 171] Light receiving element 13 having a vertical angle on the yaw side
The output of a is taken in as the apex angle αy of the variable apex angle prism via the A / D converter. [Step 172] The vertical angle αy of the variable vertical angle prism
Is multiplied by the amplification factor K 2 selected from the above table to calculate the coil drive signal εy by the following equation εy = −K 2 * αy. [Step 173] This coil drive signal εy is output to the output port and transmitted to the coil drive circuit 17 via the D / A converter. [Step 174] This time, the output of the light receiving element 13b, which is the apex angle on the pitch side, is taken in as the apex angle αp of the variable apex angle prism via the A / D converter. [Step 175] The vertical angle αp of the variable vertical angle prism
Is multiplied by the amplification factor K 2 selected from the above table to calculate the coil drive signal εp by the following equation εp = -K 2 * αp. [Step 176] The coil drive signal εp is output to the output port and transmitted to the coil drive circuit 17 via the D / A converter.

【0036】以上の一連の動作によって、防振スイッチ
がOFFである場合においても、可変頂角プリズムを中
立位置に常時保持し、光軸の屈折が生じないようにする
ものである。
By the series of operations described above, even when the anti-vibration switch is OFF, the variable apex angle prism is always held at the neutral position so that refraction of the optical axis does not occur.

【0037】なお、上記実施例では、感温素子14から
の温度信号Tpの取込みを、装置の電源が投入された直
後に一回だけ行う例について述べたが、電源が投入され
てから一回の撮影動作が終了するまでの短い時間内に温
度の急激な変化がある場合を想定して、一定時間毎に温
度信号Tpを取込んで増幅率K1 ,K2 を修正するよう
にしてもよいのは云うまでもない。
In the above embodiment, the temperature signal Tp from the temperature sensitive element 14 is taken in only once immediately after the power of the device is turned on. However, it is once after the power is turned on. Assuming that there is a rapid change in temperature within a short time until the end of the image capturing operation, the temperature signals Tp are fetched at fixed intervals to correct the amplification factors K 1 and K 2. It goes without saying that it is good.

【0038】(第2の実施例)図4は本発明の第2の実
施例における防振装置を示す図である。
(Second Embodiment) FIG. 4 is a diagram showing a vibration isolator according to a second embodiment of the present invention.

【0039】この第2の実施例では、温度補償機能を、
第1の実施例における感温素子14とマイクロコンピュ
−タより成る制御回路16の組合せで行うのではなく、
自動利得調整器を用いて行うものである。
In the second embodiment, the temperature compensation function is
Instead of the combination of the temperature sensitive element 14 and the control circuit 16 including the microcomputer in the first embodiment,
This is done using an automatic gain adjuster.

【0040】図4において、18aは振れ検出器15か
らの検出信号を所定の拡大率で増幅をする第1の増幅回
路である。19aは受光素子13aからの検出信号、即
ち可変頂角プリズムの頂角の値を所定の拡大率で増幅す
る第2の増幅回路である。
In FIG. 4, reference numeral 18a is a first amplifier circuit for amplifying the detection signal from the shake detector 15 at a predetermined enlargement ratio. Reference numeral 19a denotes a second amplifier circuit for amplifying the detection signal from the light receiving element 13a, that is, the value of the apex angle of the variable apex angle prism at a predetermined enlargement ratio.

【0041】ここで、第1の増幅回路18aと第2の増
幅回路19aの利得の比は、カメラの振れによる像振れ
を取り去るように定められている。
Here, the ratio of the gains of the first amplifier circuit 18a and the second amplifier circuit 19a is set so as to eliminate the image shake due to the shake of the camera.

【0042】20aは第1の増幅回路18aの出力と第
2の増幅回路19aの出力との差に応じた信号を出力す
る減算回路である。21aは、その内部に例えば感温素
子の一種であり、温度上昇とともに抵抗値が減少するN
TCサ−ミスタ等が含まれ、温度が高いときは「1」以
下のゲインを持ち、温度が低い時は「1」以上のゲイン
となるように構成された温度補償回路である。22aは
温度補償回路21aの出力に比例した電流をコイル6に
供給する第3の増幅回路である。
Reference numeral 20a is a subtraction circuit for outputting a signal corresponding to the difference between the output of the first amplification circuit 18a and the output of the second amplification circuit 19a. Reference numeral 21a is, for example, a kind of temperature sensitive element inside thereof, and has a resistance value N which decreases as the temperature rises.
The temperature compensating circuit includes a TC thermistor and the like, and has a gain of "1" or less when the temperature is high and a gain of "1" or more when the temperature is low. Reference numeral 22a is a third amplifier circuit that supplies a current proportional to the output of the temperature compensation circuit 21a to the coil 6.

【0043】尚、図4には図示していないが、ピッチ側
の制御系として、第1の増幅回路18b,第2の増幅回
路19b,減算回路20b,温度補償回路21b、及
び、第3の増幅回路22bが配置されることになる。
Although not shown in FIG. 4, as the pitch side control system, the first amplification circuit 18b, the second amplification circuit 19b, the subtraction circuit 20b, the temperature compensation circuit 21b, and the third amplification circuit 18b. The amplifier circuit 22b is arranged.

【0044】上記のような構成をとる事によって、装置
内部の温度が変化した場合であっても、温度補償回路2
1aが自動的にル−プゲインを調整するので、もし温度
が高い時は、常温の時よりもル−プゲインが抑制される
ので発振が回避される。又逆に、もし温度が低い時は、
常温の時よりもル−プゲンが増大されるので補正残りの
増大や帯域幅の減少が回避される。
By adopting the above structure, the temperature compensating circuit 2 can be used even when the temperature inside the apparatus changes.
Since 1a automatically adjusts the loop gain, if the temperature is high, the loop gain is suppressed more than at room temperature, so that oscillation is avoided. Conversely, if the temperature is low,
Since the loop amount is increased more than at room temperature, an increase in the uncorrected portion and a decrease in bandwidth are avoided.

【0045】したがって、周囲温度が変化して可変頂角
プリズムの物理的特性が変化してもそれによって生じる
制御系の不具合を回避できるので、どの温度下において
も画面上には像振れのない良好な映像が得られる。
Therefore, even if the physical characteristics of the variable apex angle prism change due to the change of the ambient temperature, the trouble of the control system caused by the change can be avoided, so that the image blur does not appear on the screen at any temperature. You can get a nice video.

【0046】以上の各実施例によれば、周囲温度の変化
によって可変頂角プリズムの構成要素の物理的特性が変
化しても、温度補償機能を付加してその影響を打消すよ
うに制御するようにしている為、防振上の不具合をなく
すことができ、完全な振れ補正が可能となり、像振れの
無い良好な映像を与えることができる。
According to each of the above-mentioned embodiments, even if the physical characteristics of the constituent elements of the variable apex angle prism are changed due to the change of the ambient temperature, the temperature compensation function is added so as to cancel the influence. As a result, it is possible to eliminate a problem in terms of image stabilization, complete shake correction is possible, and it is possible to provide a good image without image shake.

【0047】[0047]

【発明の効果】以上説明したように、本発明によれば、
周辺温度を検出する温度検出手段と、該温度検出手段に
て検出される温度情報に応じて制御手段の制御特性を変
化させる特性可変手段とを設け、温度検出手段にて検出
される温度情報に応じて制御手段の制御特性を変え、可
変頂角プリズムの物理的特性の変化を補償するようにし
ている。
As described above, according to the present invention,
A temperature detecting means for detecting the ambient temperature and a characteristic varying means for changing the control characteristic of the control means according to the temperature information detected by the temperature detecting means are provided, and the temperature information detected by the temperature detecting means is provided. Accordingly, the control characteristic of the control means is changed to compensate for the change in the physical characteristic of the variable apex angle prism.

【0048】よって、その時の使用環境温度に依らず、
常に最適な像振れ補正を行うことが可能となる。
Therefore, regardless of the operating environment temperature at that time,
It is possible to always perform optimum image blur correction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における防振装置の概略
構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a vibration isolation device according to a first embodiment of the present invention.

【図2】図1の振れ検出器の構成例を示す斜視図であ
る。
FIG. 2 is a perspective view showing a configuration example of the shake detector of FIG.

【図3】図1の制御回路の動作を示すフロ−チャ−トで
ある。
FIG. 3 is a flowchart showing the operation of the control circuit of FIG.

【図4】本発明の第2の実施例における防振装置の概略
構成を示す図である。
FIG. 4 is a diagram showing a schematic configuration of a vibration isolation device according to a second embodiment of the present invention.

【符合の説明】[Explanation of sign]

2a,2b ガラス板 3 弾性フィルム 14 感温素子 15a,15b 振れ検出器 16 制御回路 17 コイル駆動回路 18a 第1の増幅回路 19a 第2の増幅回路 20a 減算回路 21a 温度補償回路 22a 第3の増幅回路 2a, 2b Glass plate 3 Elastic film 14 Temperature sensitive element 15a, 15b Shake detector 16 Control circuit 17 Coil drive circuit 18a First amplification circuit 19a Second amplification circuit 20a Subtraction circuit 21a Temperature compensation circuit 22a Third amplification circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 装置全体の振れを検出する振れ検出手段
と、前記振れに起因する像振れを補正すべく駆動される
可変頂角プリズムと、該可変頂角プリズムを駆動する駆
動手段と、前記振れ検出手段からの信号に基づいて前記
駆動手段を制御し、像振れ補正を行う制御手段とを備え
た防振装置において、周辺温度を検出する温度検出手段
と、該温度検出手段にて検出される温度情報に応じて前
記制御手段の制御特性を変化させる特性可変手段とを設
けたことを特徴とする防振装置。
1. A shake detection means for detecting shake of the entire apparatus, a variable apex angle prism driven to correct an image shake caused by the shake, a drive means for driving the variable apex angle prism, and In a vibration control device including a control unit that controls the drive unit based on a signal from the shake detection unit and performs image shake correction, a temperature detection unit that detects an ambient temperature and a temperature detection unit that detects the ambient temperature. A vibration control device, comprising: a characteristic changing means for changing a control characteristic of the control means according to temperature information.
JP03339364A 1991-11-29 1991-11-29 Anti-vibration device Expired - Fee Related JP3141039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03339364A JP3141039B2 (en) 1991-11-29 1991-11-29 Anti-vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03339364A JP3141039B2 (en) 1991-11-29 1991-11-29 Anti-vibration device

Publications (2)

Publication Number Publication Date
JPH05150193A true JPH05150193A (en) 1993-06-18
JP3141039B2 JP3141039B2 (en) 2001-03-05

Family

ID=18326771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03339364A Expired - Fee Related JP3141039B2 (en) 1991-11-29 1991-11-29 Anti-vibration device

Country Status (1)

Country Link
JP (1) JP3141039B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031023A (en) * 2004-07-21 2006-02-02 Hewlett-Packard Development Co Lp Method of compensating for effect of temperature on control system
JP2007057605A (en) * 2005-08-22 2007-03-08 Matsushita Electric Ind Co Ltd Imaging apparatus
JP2008139639A (en) * 2006-12-04 2008-06-19 Canon Inc Optical apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031023A (en) * 2004-07-21 2006-02-02 Hewlett-Packard Development Co Lp Method of compensating for effect of temperature on control system
US7710460B2 (en) 2004-07-21 2010-05-04 Hewlett-Packard Development Company, L.P. Method of compensating for an effect of temperature on a control system
JP2007057605A (en) * 2005-08-22 2007-03-08 Matsushita Electric Ind Co Ltd Imaging apparatus
JP2008139639A (en) * 2006-12-04 2008-06-19 Canon Inc Optical apparatus

Also Published As

Publication number Publication date
JP3141039B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
US6343188B1 (en) Vibration correction apparatus and optical device
US5940630A (en) System having antivibration faculty
JP2006300997A (en) Imaging apparatus with image blur preventing function
EP0662626B1 (en) Light deflection apparatus with angular deviation detection means
JP3683930B2 (en) Blur correction device
JP3229899B2 (en) Image stabilizer
US5946503A (en) Image processing apparatus wherein an image stabilizing device is also used for another operation
JP3683929B2 (en) Blur correction device and optical device
JPH05150193A (en) Vibration insulation device
JP2000284336A (en) Camera provided with camera shake correcting function
JPH0667246A (en) Correction optical mechanism for vibration-proof camera
JPH0667255A (en) Vibration-proof camera
JP3170522B2 (en) Image stabilizer
JPH07294997A (en) Camera-shake correcting device
JP3192491B2 (en) Anti-vibration device
JP3215708B2 (en) camera
JP3225055B2 (en) Image stabilizer
JP2001075014A (en) Image stabilizing device
US5715086A (en) Image-shake correcting device
JPH0486735A (en) Angle displacement detection device for vibration proof device of camera
JPH02137813A (en) Blurring correcting device
JP2503925Y2 (en) Camera anti-vibration device
JP2836052B2 (en) Image blur correction device and device applied to the device
JPH0566371A (en) Optical equipment with vibration isolation device
JPH0862540A (en) Optical equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees