JPH05148073A - Production of silicon single crystal - Google Patents

Production of silicon single crystal

Info

Publication number
JPH05148073A
JPH05148073A JP31691391A JP31691391A JPH05148073A JP H05148073 A JPH05148073 A JP H05148073A JP 31691391 A JP31691391 A JP 31691391A JP 31691391 A JP31691391 A JP 31691391A JP H05148073 A JPH05148073 A JP H05148073A
Authority
JP
Japan
Prior art keywords
single crystal
raw material
silicon
silicon single
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31691391A
Other languages
Japanese (ja)
Other versions
JPH0822795B2 (en
Inventor
Masaki Omura
雅紀 大村
Shinji Ishii
伸治 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3316913A priority Critical patent/JPH0822795B2/en
Priority to DE19924207750 priority patent/DE4207750A1/en
Publication of JPH05148073A publication Critical patent/JPH05148073A/en
Publication of JPH0822795B2 publication Critical patent/JPH0822795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a large-sized silicon single crystal by Czochralski technique using a granular silicon raw material by reducing generation of granular silicon fragments to decrease the dislocation-developing probability for silicon single crystal due to such generated fragments. CONSTITUTION:In the production of silicon single crystal by Czochralski technique while continuously feeding a granular silicon raw material, the raw material to be used has a crushing strength of >=15kg/mm<2>. Thereby, generation of granular silicon fragments can be suppressed, markedly reducing the dislocation-developing probability for the objective silicon single crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粒状シリコン原料を連続
的に供給しながらチョクラルスキ−法による大直径のシ
リコン単結晶の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a large diameter silicon single crystal by the Czochralski method while continuously supplying a granular silicon raw material.

【0002】[0002]

【従来の技術】LSI分野では、シリコン単結晶に要求
される直径は年々大きくなっている。今日、最新鋭デバ
イスでは、直径6インチのシリコン単結晶が使用されて
いる。これが将来直径8インチあるいはそれ以上の直径
のシリコン単結晶が、必要になるだろうといわれてい
る。
2. Description of the Related Art In the field of LSI, the diameter required for a silicon single crystal is increasing year by year. Today, state-of-the-art devices use 6 inch diameter silicon single crystals. It is said that a silicon single crystal having a diameter of 8 inches or more will be required in the future.

【0003】チョクラルスキ−法(以下CZ法という)
においては、シリコン単結晶の成長とともに、るつぼ内
のシリコン融液が減少し、シリコン単結晶中のド−パン
ト濃度が上昇し、酸素濃度が低下する。即ち、シリコン
単結晶の成長とともに、シリコン単結晶の性質がその成
長方向により変動する。シリコン単結晶の直径が大きく
なるほど、シリコン単結晶の成長方向のド−パント濃度
偏析が大きくなるため、直径8インチ以上のシリコン単
結晶では、有効単結晶化率が著しく低下してしまう。
Czochralski method (hereinafter referred to as CZ method)
In the above, as the silicon single crystal grows, the silicon melt in the crucible decreases, the dopant concentration in the silicon single crystal increases, and the oxygen concentration decreases. That is, as the silicon single crystal grows, the properties of the silicon single crystal change depending on the growth direction. As the diameter of the silicon single crystal increases, the dopant concentration segregation in the growth direction of the silicon single crystal increases, so that the effective single crystallization rate of the silicon single crystal having a diameter of 8 inches or more decreases significantly.

【0004】LSIの高密度化とともに、シリコン単結
晶の直径は大口径化されており、またシリコン単結晶に
要求される品質も年々厳しくなるので、上記のようなド
−パント濃度偏析の問題は解決されねばならない。
With the increase in the density of LSIs, the diameter of silicon single crystals has been increased, and the quality required for silicon single crystals has become severer year by year. Must be resolved.

【0005】この問題を解決するための手段として、C
Z法における石英るつぼ内のシリコン融液を、小孔を有
する円筒状の石英製仕切り部材で仕切り、この仕切り部
材の外側に原料ポリシリコンを供給しながら、仕切り部
材の内側で円筒状のシリコン単結晶を育成する方法が古
くから、例えば米国特許2,892,739号に開示さ
れている。一方、近年、直径0.1〜4.0mm程度の粒
度分布を持つ粒状多結晶シリコンが開発されたので、特
にこれを用いて連続的に原料供給を行うCZ法が盛んに
研究開発されている(例えば特開平2−80392号公
報)。しかし、この方法は、結晶の有転位化率が通常の
CZ法に比べてまだ高いという問題点があり、そのため
未だに実用化レベルに至っていない。
As a means for solving this problem, C
The silicon melt in the quartz crucible in the Z method is partitioned by a cylindrical quartz partition member having small holes, and while the raw material polysilicon is supplied to the outside of the partition member, the cylindrical silicon single member is placed inside the partition member. A method for growing a crystal has long been disclosed, for example, in US Pat. No. 2,892,739. On the other hand, in recent years, granular polycrystalline silicon having a particle size distribution with a diameter of about 0.1 to 4.0 mm has been developed. In particular, the CZ method for continuously supplying a raw material using this has been actively researched and developed. (For example, JP-A-2-80392). However, this method has a problem that the dislocation generation rate of the crystal is still higher than that of the usual CZ method, and therefore it has not reached a practical level yet.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、以上の
粒状シリコン原料を連続的に供給しながらCZ法により
シリコン単結晶を製造する方法において、得られた単結
晶の結晶転位に起因する点について詳細な調査研究した
結果、以下のことを見知した。
DISCLOSURE OF THE INVENTION In the method for producing a silicon single crystal by the CZ method while continuously supplying the above granular silicon raw material, the inventors of the present invention attributed to the crystal dislocation of the obtained single crystal. As a result of detailed research on the points, the following was found.

【0007】前記のCZ法によりシリコン単結晶を引上
げる方法において、粒状シリコン原料をシリコン融液に
供給する時に、大粒径の粒状ポリシリコン粒が割れを起
こして弾け飛ぶ現象が見知される。
In the method of pulling a silicon single crystal by the above CZ method, when supplying a granular silicon raw material to a silicon melt, a phenomenon in which large-sized granular polysilicon particles are cracked and fly off is known. ..

【0008】特開平1−282194号公報には、粒状
シリコン中の水素含有量を7.5ppm 以下に低減すれば
シリコン融液上で発生する粒状シリコンの破裂飛散は防
止できることが開示されている。しかし、本発明者ら
は、粒状シリコン中の水素含有量が1ppm 以下と極めて
微量な原料を使用しても、破裂飛散現象が起き、粒状シ
リコン原料中の水素量は上記現象の本質的なものでない
ことを見知した。
Japanese Unexamined Patent Publication No. 1-282194 discloses that bursting and scattering of granular silicon generated on a silicon melt can be prevented by reducing the hydrogen content in the granular silicon to 7.5 ppm or less. However, the inventors of the present invention have found that even if a very small amount of raw material such as hydrogen content in granular silicon of 1 ppm or less is used, a bursting and scattering phenomenon occurs, and the amount of hydrogen in the granular silicon raw material is essentially the above phenomenon. I knew it wasn't.

【0009】上記の粒状シリコン破片は、時にはホット
ゾ−ンの上部まで飛んでいることがあり、当然シリコン
融液内にも落下しているものと予想され、この様な状況
下では、粒状シリコン破片が成長中の結晶に付着した
り、結晶付近のシリコン融液に落下し、転位が発生する
ことが十分考えられる。
The above-mentioned granular silicon shards sometimes fly to the upper part of the hot zone, and it is naturally expected that they also fall into the silicon melt. Under such circumstances, the granular silicon shards It is highly conceivable that dislocations occur due to the adherence to the growing crystal or the drop in the silicon melt near the crystal.

【0010】本発明の目的は、原料特性の異なる粒状シ
リコン原料を使用してCZ法によりシリコン単結晶を製
造するに当り、粒状シリコン原料の特性を選択すること
により、前述の粒状シリコン破片の発生数を低減し、粒
状シリコン破片によるシリコン単結晶の転位発生確率を
小さくし、もって大口径のシリコン単結晶の製造方法を
提供することにある。
The object of the present invention is to produce the above-mentioned granular silicon fragments by selecting the characteristics of the granular silicon raw material when the silicon single crystal is manufactured by the CZ method using the granular silicon raw materials having different raw material characteristics. The object of the present invention is to provide a method for producing a large-diameter silicon single crystal by reducing the number of particles and reducing the probability of occurrence of dislocations in the silicon single crystal due to granular silicon fragments.

【0011】[0011]

【課題を解決するための手段】本発明者らは、前述した
知見に基づき、本発明の目的を達成するために粒状シリ
コン原料の物性を詳細に調査した結果、粒状シリコン原
料の機械的強度と粒状シリコン原料の破裂飛散現象が強
い関係があることを知見した。
Means for Solving the Problems Based on the above-mentioned findings, the present inventors have investigated the physical properties of the granular silicon raw material in detail in order to achieve the object of the present invention. It was found that the burst and scattering phenomenon of granular silicon raw material has a strong relationship.

【0012】機械的強度として、圧潰強度値を採用し、
機械的強度の定量化にあたり各種検討した結果、粒状シ
リコン原料の圧潰強度値により破裂飛散現象が極めてよ
く整理できることを見知した。圧潰強度P(kg/mm
2 )とは、粒状ポリシリコンを圧潰試験機により圧潰し
圧潰荷重をF(Kg)とし、粒径をd(mm)とした場
合、 P=4F/(πd2 ) であらわされる。
The crush strength value is adopted as the mechanical strength,
As a result of various studies on the quantification of mechanical strength, it was found that the burst and scattering phenomenon can be arranged very well by the crushing strength value of the granular silicon raw material. Crush strength P (kg / mm
2 ) is expressed as P = 4F / (πd 2 ) when the granular polysilicon is crushed by a crushing tester and the crushing load is F (Kg) and the particle size is d (mm).

【0013】本発明者らは、この粒状シリコン原料の圧
潰強度とシリコン単結晶の転位発生確率を調べた結果、
以下のことを発明したものである。本発明は、粒状シリ
コン原料を連続的に供給しながらチョクラルスキ−法に
よりシリコン単結晶を製造する方法において、上記粒状
シリコン原料の圧潰強度が15kg/mm2 以上である
原料を用いることを特徴とするシリコン単結晶の製造方
法である。
The present inventors have investigated the crushing strength of this granular silicon raw material and the dislocation generation probability of the silicon single crystal, and as a result,
The invention is the following. The present invention is a method for producing a silicon single crystal by the Czochralski method while continuously supplying a granular silicon raw material, characterized in that the granular silicon raw material has a crushing strength of 15 kg / mm 2 or more. It is a method for manufacturing a silicon single crystal.

【0014】[0014]

【作用】本発明のシリコン単結晶の製造方法は、後述す
る実施例に示す図1の粒状シリコン原料の圧潰強度値と
無転位化率の関係グラフに示すように、圧潰強度値15
kg/mm2 以上であればシリコン単結晶の無転位化率
が75%以上になるものである。本発明のシリコン単結
晶の製造方法におい、機械的強度としての圧潰強度値が
15Kg/mm2 以上の高い圧潰強度の粒状シリコンを
原料として用いたので、シリコン融液上に粒状シリコン
原料を供給した場合、シリコン融液上で発生する粒状シ
リコンの破裂飛散現象は防止できる。この破裂飛散現象
防止により結晶成長中に転位が発生する確率が激減し、
安定した結晶成長が達成される。次に本発明の実施例に
ついて述べる。
According to the method for producing a silicon single crystal of the present invention, as shown in the relationship graph between the crushing strength value and the dislocation-free rate of the granular silicon raw material shown in FIG.
If it is kg / mm 2 or more, the dislocation-free rate of the silicon single crystal will be 75% or more. In the method for producing a silicon single crystal of the present invention, since granular silicon having a high crush strength of 15 Kg / mm 2 or more as a mechanical strength was used as a raw material, the granular silicon raw material was supplied onto the silicon melt. In this case, the burst and scattering phenomenon of granular silicon that occurs on the silicon melt can be prevented. By preventing this bursting and scattering phenomenon, the probability of dislocations occurring during crystal growth is dramatically reduced,
Stable crystal growth is achieved. Next, examples of the present invention will be described.

【0015】[0015]

【実施例】図2は、本発明の実施例において、直径6イ
ンチのシリコン単結晶を育成場合の装置を模式的に示し
た断面図である。
EXAMPLE FIG. 2 is a sectional view schematically showing an apparatus for growing a silicon single crystal having a diameter of 6 inches in an example of the present invention.

【0016】図において、1は直径20インチの石英る
つぼで、ペデスタル4で支えられている黒鉛るつぼ2の
中にセットされている。ペデスタル4は炉外で電動モ−
タ−(図示せず)に結合されており、黒鉛るつぼ2に回
転運動(10rpm )を与える働きをする。3は黒鉛るつ
ぼ2を取り囲む電気抵抗加熱体(ヒーター)である。5
はシリコン単結晶で、6はこの電気抵抗加熱体3を取り
囲む断熱材からなるホットゾーンの保温部材で、7は石
英るつぼ1内に入れられたシリコン溶融原料液である。
これから柱状のシリコン単結晶5が回転(20rpm )し
ながら引き上げられる。雰囲気ガスは引き上げチャンバ
−内20から炉内に導入され最終的に炉底の排出口19
から減圧装置(図示せず)により排出される。炉内(チ
ャンバ−上蓋16、及びチャンバ−胴17内)の圧力は
0.01〜0.03気圧である。以上は通常のCZ法に
よるシリコン単結晶製造装置と基本的には同じである。
In the figure, reference numeral 1 is a quartz crucible having a diameter of 20 inches, which is set in a graphite crucible 2 supported by a pedestal 4. The pedestal 4 is electrically operated outside the furnace.
It is connected to a motor (not shown) and serves to impart a rotational movement (10 rpm) to the graphite crucible 2. Reference numeral 3 is an electric resistance heater (heater) surrounding the graphite crucible 2. 5
Is a silicon single crystal, 6 is a heat retaining member in a hot zone made of a heat insulating material surrounding the electric resistance heating body 3, and 7 is a silicon molten raw material liquid contained in the quartz crucible 1.
From this, the columnar silicon single crystal 5 is pulled up while rotating (20 rpm). Atmospheric gas is introduced into the furnace from the pulling chamber 20 and finally the discharge port 19 at the bottom of the furnace.
Is discharged by a pressure reducing device (not shown). The pressure inside the furnace (chamber-upper lid 16 and chamber-body 17) is 0.01 to 0.03 atm. The above is basically the same as the silicon single crystal manufacturing apparatus by the normal CZ method.

【0017】8は石英るつぼ1内にこれと同心円的に配
設された高純度石英からなるリング状の仕切り部材で、
その直径は35cmである。この仕切り部材8には小孔1
0が開けられており、原料溶解部12の溶融原料はこの
小孔10を通って単結晶育成部13に流入する。この仕
切り部材8の下縁部は石英るつぼ1と予め融着されてい
るか、シリコン原料を溶融する際の熱により融着してお
り、原料溶解部12の高温の溶融原料は、この小孔10
のみを通り単結晶育成部13に流入する。9は粒状ポリ
シリコン原料である。14は原料供給管で、原料溶解部
12の上部に開口を持っており、粒状シリコン原料9は
この原料供給管14を通って原料溶解部12に供給され
る。この原料供給管14はチャンバー上蓋16の外部に
設けた原料供給チャンバ−(図示せず)に連結されてお
り、粒状シリコン原料9を連続的に供給する。15は保
温カバ−であり、これらはチャンバー内に収容されてお
り、板厚 0.2mmのタンタル板で構成され、これは仕切り
部材8及び原料溶解部12からの熱の放散を抑制する。
17はチャンバ−胴でチャンバー上蓋16とでチャンバ
ー本体を形成し、19は排出口である。
Reference numeral 8 denotes a ring-shaped partition member made of high-purity quartz and concentrically arranged in the quartz crucible 1,
Its diameter is 35 cm. This partition member 8 has a small hole 1
0 is opened, and the molten raw material of the raw material melting portion 12 flows into the single crystal growth portion 13 through the small holes 10. The lower edge portion of the partition member 8 is fused with the quartz crucible 1 in advance, or is fused by the heat when melting the silicon raw material, and the high-temperature molten raw material of the raw material melting portion 12 has the small holes 10
It flows into the single crystal growth part 13 through only. 9 is a granular polysilicon raw material. A raw material supply pipe 14 has an opening above the raw material melting part 12, and the granular silicon raw material 9 is supplied to the raw material melting part 12 through the raw material supply pipe 14. The raw material supply pipe 14 is connected to a raw material supply chamber (not shown) provided outside the chamber upper lid 16 and continuously supplies the granular silicon raw material 9. Reference numeral 15 is a heat insulating cover, which is housed in the chamber and is composed of a tantalum plate having a plate thickness of 0.2 mm, which suppresses the dissipation of heat from the partition member 8 and the raw material melting section 12.
Reference numeral 17 is a chamber-body to form a chamber body with the chamber upper lid 16, and 19 is an outlet.

【0018】なお、本発明においては、図示しないが原
料溶解部12及び単結晶育成部13の温度を確実に制御
する制御手段、単結晶引上げ及び回転手段、るつぼ回転
手段、不活性ガスの供給及び排出手段を備えることは勿
論である。
In the present invention, although not shown, a control means for surely controlling the temperatures of the raw material melting part 12 and the single crystal growing part 13, a single crystal pulling and rotating means, a crucible rotating means, an inert gas supply and It goes without saying that a discharge means is provided.

【0019】[実施例1]上記のように構成したシリコ
ン単結晶製造装置にて、シリコン単結晶の育成条件は直
径6インチ、ボデイ長さ1mで、また、引き上げ速度は
1mm/min で粒状シリコン原料の供給速度は45g/
minでシリコン単結晶の引上げ操業実験を5回行い、引
上げ後の装置内の粒状シリコン破片の残留数と、長さ1
m以上のシリコン単結晶インゴットが引き上った場合の
転位の有無を調べた。表1は1回の引上げ実験で生じた
粒状シリコン破片残留数により計算される、原料供給量
1kg当りの粒状シリコン破片残留数とその時に転位が
発生したか否かの関係を示したものである。
[Example 1] In the silicon single crystal manufacturing apparatus configured as described above, the conditions for growing a silicon single crystal were a diameter of 6 inches, a body length of 1 m, and a pulling rate of 1 mm / min. Feed rate of raw material is 45g /
The pulling operation experiment of the silicon single crystal was performed 5 times at min, and the number of remaining granular silicon fragments in the device after pulling and the length 1
The presence or absence of dislocation was investigated when a silicon single crystal ingot of m or more was pulled up. Table 1 shows the relationship between the residual number of granular silicon fragments per 1 kg of the raw material supply amount calculated by the residual number of granular silicon fragments generated in one pulling experiment and whether dislocation occurred at that time. ..

【0020】[0020]

【表1】 [Table 1]

【0021】表1より、粒状ポリシリコン破片の残留数
が少ない実験4,5の場合、結晶の転位の発生が無く、
この結果、粒状ポリシリコン破片の残留数とそのときの
転位の発生との両者間には相関があることが判る。即
ち、表1より、粒状シリコン破片の残留数が少ない場
合、有転位化確率は明らかに低いことが判る。
From Table 1, in Experiments 4 and 5 in which the number of remaining granular polysilicon fragments was small, no crystal dislocation was generated,
As a result, it is found that there is a correlation between the number of remaining granular polysilicon fragments and the occurrence of dislocations at that time. That is, it can be seen from Table 1 that the probability of dislocation formation is obviously low when the number of remaining granular silicon fragments is small.

【0022】なお、本実施例において、粒状シリコン破
片の残留数というのは、上記のようにシリコン単結晶を
育成した後、装置内を開放し、装置内のホットゾ−ン部
分に付着したり、乗っている粒状ポリシリコン破片及び
装置内底部に溜まっている粒状シリコン破片を回収し、
その破片の残留数を指すものである。
In the present embodiment, the residual number of granular silicon fragments means that after growing the silicon single crystal as described above, the inside of the apparatus is opened and adhered to the hot zone in the apparatus. Collect the particulate polysilicon fragments on the machine and the granular silicon fragments accumulated at the bottom of the device,
It refers to the number of remaining fragments.

【0023】[実施例2]実施例1と同様な装置並びに
育成条件で、圧潰強度値の異なる7ロットの粒状シリコ
ン原料のケ−スについて4回ずつシリコン単結晶の引上
げを行った。無転位化率は各原料に対して4回の引き上
げを行い、直径6インチ、長さ1m以上のインゴットが
引き上がった場合の無転位本数をカウントした。図1に
圧潰強度値を横軸に、縦軸に上記のようにして求めた無
転位化率を示した。
[Embodiment 2] Using the same apparatus and growth conditions as in Embodiment 1, silicon single crystals were pulled up four times with respect to 7 lots of granular silicon raw material cases having different crushing strength values. The dislocation-free rate was obtained by pulling each material four times and counting the number of dislocation-free pieces when an ingot having a diameter of 6 inches and a length of 1 m or more was pulled up. In FIG. 1, the crush strength value is shown on the horizontal axis, and the vertical axis is the dislocation-free rate obtained as described above.

【0024】図1より、シリコン単結晶引上げ中に供給
する粒状シリコン原料の圧潰強度値が、15kg/mm
2 以上であればシリコン単結晶の無転位化率が75%以
上になることが明らかになった。本発明において用いる
粒状シリコン原料は、モノシランまたはトリクロルシラ
ンのいずれの方法によるものでも適用でき、さらに、単
結晶製造装置は図2に限定されるものでは無く、粒状シ
リコン原料を連続供給しながらシリコン単結晶を育成す
る装置であれば良い。
From FIG. 1, the crushing strength value of the granular silicon raw material supplied during the pulling of the silicon single crystal was 15 kg / mm.
It was clarified that when the ratio is 2 or more, the dislocation-free rate of the silicon single crystal is 75% or more. The granular silicon raw material used in the present invention can be applied by any method of monosilane or trichlorosilane, and the single crystal production apparatus is not limited to that shown in FIG. Any device that grows crystals may be used.

【0025】[0025]

【発明の効果】本発明では、連続的に粒状シリコン原料
を供給しながら結晶を育成するタイプのCZ法におい
て、供給する粒状シリコン原料について、粒状シリコン
原料の圧潰強度値を15kg/mm2 以上にすることに
より、粒状シリコン破片の発生を抑制し、シリコン単結
晶の有転位化率を著しく低減させた。これは連続的に粒
状ポリシリコン原料を供給しながら結晶を育成するタイ
プのCZ法の製造技術を確立するに当って効果が大であ
る。
According to the present invention, in the CZ method of the type in which crystals are grown while continuously supplying the granular silicon raw material, the crushing strength value of the granular silicon raw material to be supplied is set to 15 kg / mm 2 or more. By doing so, the generation of granular silicon fragments was suppressed, and the dislocation generation rate of the silicon single crystal was significantly reduced. This is very effective in establishing the manufacturing technique of the CZ method of the type of growing crystals while continuously supplying the granular polysilicon raw material.

【図面の簡単な説明】[Brief description of drawings]

【図1】粒状ポリシリコン原料の圧潰強度値と無転位化
率の関係を示す説明図。
FIG. 1 is an explanatory diagram showing a relationship between a crushing strength value of a granular polysilicon raw material and a dislocation-free rate.

【図2】本発明の実施例において用いた単結晶製造装置
の模式的断面図である。
FIG. 2 is a schematic cross-sectional view of a single crystal manufacturing apparatus used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 石英るつぼ、 2 黒鉛るつぼ、 3 電気抵抗加熱体(ヒ−タ)、 4 ペディスタル、 5 シリコン単結晶、 6 保温部材、 7 溶融原料、 8 仕切り部材、 9 粒状シリコン原料、 10 小孔、 12 原料溶解部、 13 単結晶育成部、 14 原料供給管、 15 保温カバ−、 16 チャンバ−上蓋、 17 チャンバ−胴、 19 排出口、 20 引上げチャンバ−内。 DESCRIPTION OF SYMBOLS 1 quartz crucible, 2 graphite crucible, 3 electric resistance heating body (heater), 4 pedestal, 5 silicon single crystal, 6 heat retaining member, 7 molten raw material, 8 partitioning member, 9 granular silicon raw material, 10 small holes, 12 raw material Melting part, 13 single crystal growth part, 14 raw material supply pipe, 15 heat insulating cover, 16 chamber-top lid, 17 chamber-body, 19 discharge port, 20 inside pulling chamber.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒状シリコン原料を連続的に供給しなが
らチョクラルスキ−法によりシリコン単結晶を製造する
方法において、 上記粒状シリコン原料の圧潰強度が15kg/mm2
上である原料を用いることを特徴とするシリコン単結晶
の製造方法。
1. A method for producing a silicon single crystal by the Czochralski method while continuously supplying a granular silicon raw material, wherein the raw material having a crushing strength of the granular silicon raw material of 15 kg / mm 2 or more is used. Method for producing a silicon single crystal.
JP3316913A 1991-03-11 1991-11-29 Method for producing silicon single crystal Expired - Lifetime JPH0822795B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3316913A JPH0822795B2 (en) 1991-11-29 1991-11-29 Method for producing silicon single crystal
DE19924207750 DE4207750A1 (en) 1991-03-11 1992-03-11 Czochralski single crystalline silicon@ growth - gives improved yield of defect-free bars due to optimisation of particle distribution, roughness, fracture and pull strength of the polycrystalline grains continuously added

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3316913A JPH0822795B2 (en) 1991-11-29 1991-11-29 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JPH05148073A true JPH05148073A (en) 1993-06-15
JPH0822795B2 JPH0822795B2 (en) 1996-03-06

Family

ID=18082312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3316913A Expired - Lifetime JPH0822795B2 (en) 1991-03-11 1991-11-29 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JPH0822795B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282194A (en) * 1988-01-19 1989-11-14 Osaka Titanium Co Ltd Production of single crystal
JPH02153814A (en) * 1988-10-11 1990-06-13 Ethyl Corp Polysilicon decreased in hydrogen content

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282194A (en) * 1988-01-19 1989-11-14 Osaka Titanium Co Ltd Production of single crystal
JPH02153814A (en) * 1988-10-11 1990-06-13 Ethyl Corp Polysilicon decreased in hydrogen content

Also Published As

Publication number Publication date
JPH0822795B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
EP2705178B1 (en) Growth of a uniformly doped silicon ingot by doping only the initial charge
US5242531A (en) Continuous liquid silicon recharging process in czochralski crucible pulling
US5108720A (en) Float zone processing of particulate silicon
WO2017159028A1 (en) Method for producing silicon monocrystal
US8163083B2 (en) Silica glass crucible and method for pulling up silicon single crystal using the same
TWI516650B (en) Melting apparatus
US7871590B2 (en) Mass of silicon solidified from molten state and process for producing the same
JPH06100394A (en) Method for feeding raw material for producing single crystal and apparatus therefor
JPH05148073A (en) Production of silicon single crystal
JPH01282194A (en) Production of single crystal
JP2531415B2 (en) Crystal growth method
JPH0558769A (en) Production of silicon single crystal
WO1991014809A1 (en) Apparatus for making silicon single crystal
JP7359241B2 (en) Manufacturing method of silicon single crystal
JP2006069852A (en) Method for manufacturing carbon-doped silicon single crystal and carbon-doped silicon single crystal
JPH0570281A (en) Production of silicon single crystals
JP2010173880A (en) Method for producing semiconductor single crystal, and raw material supply container
TW202328509A (en) Methods for growing single crystal silicon ingots that involve silicon feed tube inert gas control
JP2008087972A (en) Method for manufacturing silicon single crystal
TW202248470A (en) Use of quartz plates during growth of single crystal silicon ingots
JP2002128593A (en) Method for producing silicon wafer and silicon wafer produced thereby
CN116783333A (en) Buffer during growth of single crystal silicon ingots
TW202231942A (en) Use of buffer members during growth of single crystal silicon ingots
JP2007176717A (en) Manufacturing method for silicon single crystal
JP3750172B2 (en) Single crystal pulling method