JPH01282194A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH01282194A
JPH01282194A JP13514788A JP13514788A JPH01282194A JP H01282194 A JPH01282194 A JP H01282194A JP 13514788 A JP13514788 A JP 13514788A JP 13514788 A JP13514788 A JP 13514788A JP H01282194 A JPH01282194 A JP H01282194A
Authority
JP
Japan
Prior art keywords
raw material
granular
crucible
single crystal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13514788A
Other languages
Japanese (ja)
Other versions
JPH0477712B2 (en
Inventor
Tsutomu Kajimoto
梶本 努
Daizo Horie
堀江 大造
Shinichi Sakurada
桜田 晋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Original Assignee
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU ELECTRON METAL CO Ltd, Osaka Titanium Co Ltd filed Critical KYUSHU ELECTRON METAL CO Ltd
Priority to JP13514788A priority Critical patent/JPH01282194A/en
Priority to US07/357,717 priority patent/US5037503A/en
Publication of JPH01282194A publication Critical patent/JPH01282194A/en
Priority to US07/953,630 priority patent/USRE35242E/en
Publication of JPH0477712B2 publication Critical patent/JPH0477712B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent bursting phenomena by melting a Si raw material wherein the residual (H) amount of the granular Si raw material obtained by a silane method or the residual (Cl) amount of the granular Si raw material obtained by a trichlorosilane method is specified respectively. CONSTITUTION:A granular Si raw material (A) having <=7.5wt.ppm residual (H) amount in a silane method or having <=15wt.ppm residual (Cl) amount in a trichlorosilane method is obtained. Then the raw material A is introduced into a crucible 3 and heated with a heater 4 to obtain melt (B). Thereafter the crucible 3 is rotated with a shaft 3a in the gaseous Ar atmosphere fed from a protective cylinder 5 and seed crystal 5c is lowered with a pulling-up shaft 5a and immersed in liquid B of the inside of a cylindrical partition 9 and thereafter the additional raw material A is fed to an annular region of the outside of the partition 9 in the crucible 3 via a feed pipe 6a and an introduction jig 10 via the hoppers 6e, 6d while rotating the shaft 5a. Then single crystal 7 is grown under the seed crystal 5c by pulling up the shaft 5a at about 1.5mm/ min velocity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はSi単結晶を製造する単結晶製造方法に関し、
更に詳述すれば顆粒状Si原料を用いてSi単結晶を製
造する単結晶製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a single crystal manufacturing method for manufacturing a Si single crystal,
More specifically, the present invention relates to a single crystal manufacturing method for manufacturing a Si single crystal using a granular Si raw material.

〔従来の技術〕[Conventional technology]

Si単結晶を成長させる方法としては、石英製の坩堝内
にSi原料を収納して融解させ、このSi融液にSiの
種結晶を浸し、これを回転させつつ上方に引上げて種結
晶下端にSi単結晶を成長せしめる、所謂チョクラルス
キー(CZ)法が知られている。
To grow a Si single crystal, a Si raw material is stored in a quartz crucible and melted, a Si seed crystal is immersed in this Si melt, and the Si seed crystal is pulled upward while rotating to reach the lower end of the seed crystal. The so-called Czochralski (CZ) method for growing Si single crystals is known.

最初に坩堝内に収納するSi原料としては、多結晶を粉
砕して塊状とした原料がよく用いられ、融解に伴う容量
の減少を鑑みて、最初に坩堝内には山盛り状態にして塊
状原料を収納しておく。従って、融解するに伴って塊状
原料がブリッジ状態となり、このブリッジがくずれて融
液が飛散したり、石英が変形するという難点がある。
As the Si raw material initially stored in the crucible, a raw material made into a lump by pulverizing a polycrystal is often used.In consideration of the decrease in capacity due to melting, the raw material is piled up in a heap in the crucible. Store it away. Therefore, as it melts, the bulk raw material becomes in a bridge state, and this bridge collapses, causing the melt to scatter and the quartz to deform.

このよう難点を解消するために、最初に坩堝内に収納す
るSi原料(初期チャージ用Si原料という)として、
顆粒状のSi原料を使用することがある。
In order to solve these difficulties, as the Si raw material (referred to as initial charging Si raw material) to be initially stored in the crucible,
A granular Si raw material may be used.

顆粒状のSi原料を初期チャージ用Si原料として使用
する場合には上述のような難点を解消し、しかも塊状原
料に比して充填率を大きくできるのでチップあたりのコ
ストの低減化を図ることができ、また塊状原料に比して
嵩が小さいので取扱いが容易となる。
When using granular Si raw material as the Si raw material for initial charging, the above-mentioned difficulties can be overcome, and the filling rate can be increased compared to bulk raw material, so the cost per chip can be reduced. Moreover, it is easier to handle because it has a smaller bulk than bulk raw materials.

坩堝内に収納したSi原料を融解させるとその容量が減
少するので、坩堝容量を十分に活かすように、追加のS
i原料(チャージアップ用Si原料という)を更に坩堝
内に収納してそれを融解させる。
When the Si raw material stored in the crucible is melted, its capacity decreases, so in order to make full use of the crucible capacity, additional S is added.
The i raw material (referred to as the Si raw material for charge-up) is further placed in the crucible and melted.

そして、このチャージアップ用Si原料の収納方法とし
ては、棒状Si原料を収納して融解させる方法(実公昭
50−11788号公報)、または特殊な治具にて塊状
Si原料を収納して融解させる方法(特開昭50−1.
1788号公報)等が知られている。
As a method for storing this Si raw material for charge-up, there is a method of storing and melting a rod-shaped Si raw material (Japanese Utility Model Publication No. 11788/1988), or a method of storing and melting a lumpy Si raw material using a special jig. Method (Unexamined Japanese Patent Publication No. 50-1.
1788) etc. are known.

ところが、棒状Si原料を利用する場合にあっては、原
料を収納し過ぎると坩堝が破損したり、液漏れしたりす
る難点があり、また原料と融液とを離散した状態にて放
置するときには融液が沸騰するという難点がある。また
塊状Si原料を利用する場合にあっては、原料を融液内
に収納する際に融液が飛散するので、融液表面を一旦固
化させた後原料を収納することとするが、この固化時に
坩堝が割れて液漏れが住じるという難点がある。
However, when using a rod-shaped Si raw material, there are disadvantages such as damage to the crucible or liquid leakage if the raw material is stored too much, and when the raw material and melt are left in a discrete state. The problem is that the melt boils. In addition, when using a bulk Si raw material, the melt will scatter when the raw material is stored in the melt, so the raw material is stored after the surface of the melt is solidified. The problem is that sometimes the crucible cracks and liquid leaks.

このような難点を解消するために、チャージアップ用S
i原料として顆粒状のSi原料を使用することがある。
In order to solve this problem, we have developed a charge-up S
A granular Si raw material may be used as the i raw material.

顆粒状のSi原料をこのような目的に使用する場合には
、前述したような難点を解消することができる。
When a granular Si raw material is used for such purposes, the above-mentioned difficulties can be overcome.

また、種結晶を引上げなからSi単結晶を連続して成長
させていく際には、坩堝容量には限りがあるから単結晶
の成長容量に応じてSi原料を坩堝内に供給する必要が
あるが、このSi原料(追加チャージ用Si原料)の供
給は成長条件を変化させないように行わなければならな
い。
In addition, when growing Si single crystals continuously without pulling the seed crystal, the capacity of the crucible is limited, so it is necessary to supply Si raw material into the crucible according to the growth capacity of the single crystal. However, this Si raw material (Si raw material for additional charging) must be supplied without changing the growth conditions.

このため従来にあっては坩堝の内側に、融液の通流口を
開口した他の坩堝、または円筒体を配置して融液面を単
結晶を引上げる内側領域と、Si原料を供給する外側領
域とに区分し、原料供給に伴う融液面の波動、粉塵、温
度変化等が結晶成長域である内側領域に及ぼす影響を可
逆的に低減することが行われている(特開昭57−18
3392号公報。
For this reason, conventionally, inside the crucible, another crucible with an opening for the flow of the melt or a cylindrical body is arranged so that the melt surface is used as an inner region for pulling the single crystal and for supplying the Si raw material. The method is used to reversibly reduce the effects of waves, dust, temperature changes, etc. on the melt surface due to supply of raw materials on the inner region, which is the crystal growth region. -18
Publication No. 3392.

特開昭47−10355号公報)。そしてこの追加チャ
ージ用Si原料としては、シリコン多結晶を粉砕した塊
粒状のSi原料が広く使用されている。
JP-A-47-10355). As the Si raw material for this additional charge, bulk Si raw material obtained by pulverizing polycrystalline silicon is widely used.

ところが上述した塊粒状のSi原料は形状が不定形性で
あるので、原料供給部内においてブリッジ状態となって
詰まりが生じ易いという難点がある。
However, since the above-mentioned lumpy and granular Si raw material has an amorphous shape, there is a problem in that it tends to form a bridging state and cause clogging in the raw material supply section.

そこで、この難点を解消すべく、顆粒状のSi原料を追
加チャージ用Si原料として使用することがある。
Therefore, in order to solve this difficulty, granular Si raw material is sometimes used as the Si raw material for additional charging.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、初期チャージ用、チャージアップ用として顆
粒状のSi原料を使用する場合には、Si原料が融解温
度直前まで加熱されたときに生じる破裂現象のために、
飛散物が坩堝表面に集積し、集積した飛散物が融液面に
脱落して結晶成長条件が乱れて欠陥結晶が生じるという
問題点がある。
However, when using granular Si raw material for initial charging and charge-up, due to the rupture phenomenon that occurs when the Si raw material is heated to just before its melting temperature,
There is a problem in that flying debris accumulates on the crucible surface, and the accumulated flying debris falls onto the melt surface, disrupting crystal growth conditions and producing defective crystals.

また追加チャージ用として顆粒状のSi原料を使用する
場合には、同様の破裂現象のために、飛散物が単結晶成
長域である内側領域、または結晶成長界面に飛び込み、
結晶成長条件を乱して結晶欠陥を誘発するという問題点
がある。
Furthermore, when using granular Si raw material for additional charging, a similar rupture phenomenon causes scattered objects to fly into the inner region of the single crystal growth region or into the crystal growth interface.
There is a problem in that crystal growth conditions are disturbed and crystal defects are induced.

第5図(イ)、(ロ)、(ハ)は本発明者が実験、研究
の結果知見したシラン法(トリクロルシラン法の場合も
実質的に同じ)により得た顆粒状Si原料の破裂現象の
説明図であり、第5図(イ)に示す如く、顆粒はその表
面のSiに周囲のガス中のSiが結合して順次成長して
ゆくが、この成長過程ではSiにSi或いはHも結合し
て顆粒内にHが取り込まれ、また顆粒の表面にはS i
 −H又はH−Si−H等の形態で未分解水素が吸着さ
れる。
Figures 5 (a), (b), and (c) show the rupture phenomenon of granular Si raw materials obtained by the silane method (substantially the same in the case of the trichlorosilane method) as found by the present inventor as a result of experiments and research. As shown in FIG. 5(a), the granules grow as Si in the surrounding gas combines with the Si on the surface, but during this growth process, Si or H is also added to the Si. H is bound into the granules, and Si
Undecomposed hydrogen is adsorbed in the form of -H or H-Si-H.

ところでこのような顆粒の成長過程では顆粒同士も結合
するが、第5図(ロ)に示す如く結合した顆粒A、B、
C相互の隙間内では粒界表面に吸着された未分解水素が
閉じ込められた状態となる。
By the way, during the growth process of such granules, the granules also combine with each other, and as shown in Figure 5 (b), the combined granules A, B,
In the gaps between C, undecomposed hydrogen adsorbed on the grain boundary surfaces becomes trapped.

このような原料が加熱されると第5図(ハ)に示す如く
粒界表面、或いは内部に閉じ込められた未分解水素が分
離して水素ガスとなり、融解直前に達して顆粒相互の結
合力が低下したとき水素ガスの急速膨張によって破裂し
、顆粒細片が飛散物として坩堝の内側領域、或いは単結
晶成長界面に侵入することとなると考えられる。
When such a raw material is heated, as shown in Figure 5 (c), undecomposed hydrogen trapped on the grain boundary surface or inside separates and becomes hydrogen gas, reaching the point of melting, and the bonding force between the grains is reduced. It is thought that when the temperature decreases, the hydrogen gas ruptures due to rapid expansion, and the granule fragments enter the inner region of the crucible or the single crystal growth interface as flying objects.

また本発明者は顆粒状Si原料に生じる原料自身の融解
直前の破裂現象はシラン法によって得た顆粒状Si原料
にあっては残留〔H〕量と、またトリクロルシラン法に
よって得た顆粒状Si原料にあっては残留〔C1〕量と
夫々密接な関係にあり1.この残留〔H〕量、〔C1〕
量が所定値以下になると破裂が著しく低減されることを
知見した。
The present inventor also found that the rupture phenomenon that occurs in granular Si raw materials immediately before melting of the raw material itself is due to the amount of residual [H] in the granular Si raw materials obtained by the silane method, and the amount of residual [H] in the granular Si raw materials obtained by the trichlorosilane method. Regarding raw materials, there is a close relationship with the amount of residual [C1].1. This residual [H] amount, [C1]
It has been found that bursting is significantly reduced when the amount is below a predetermined value.

本発明はかかる知見に基づきなされたものであって、残
留(HE量、残留(Cjり量を所定値以下に低減した顆
粒状Si原料を用いることにより、破裂現象が生じず、
しかも棒状または塊状のSi原料を使用する際に発生す
る難点を解消することができる単結晶製造方法を提供す
ることを目的とする。
The present invention has been made based on this knowledge, and by using a granular Si raw material in which the residual (HE amount) and residual (Cj amount) are reduced to below a predetermined value, the rupture phenomenon does not occur.
Moreover, it is an object of the present invention to provide a method for producing a single crystal that can overcome the difficulties that occur when using rod-shaped or lump-shaped Si raw materials.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る単結晶製造方法は、シラン法により得た残
留〔H〕itが7.5wtppm以下、又はトリクロル
シラン法により得た残留(C/り ffiが15wtp
pa+以下とした顆粒状Si原料を用いることを特徴と
する。
In the single crystal manufacturing method according to the present invention, the residual [H] it obtained by the silane method is 7.5 wtppm or less, or the residual [H]it obtained by the trichlorosilane method is 15 wtppm or less.
It is characterized by using a granular Si raw material having a temperature of not more than pa+.

〔作用〕[Effect]

本発明方法の単結晶製造方法にあっては、上述したよう
な顆粒状Si原料を用いてSi単結晶を製造する。そう
すると融解直前における破裂現象が生じない。
In the single crystal manufacturing method of the present invention, a Si single crystal is manufactured using the granular Si raw material as described above. This prevents the phenomenon of bursting immediately before melting.

〔実施例〕〔Example〕

シラン法による顆粒状Si原料はペルジャー内に導入し
た粉状のSi種の表面にシランガス5if14を温度6
00〜800°Cで熱解離させて顆粒状に成長させて製
造される。
The granular Si raw material produced by the silane method is prepared by applying 5if14 silane gas to the surface of the powdered Si species introduced into the Pelger at a temperature of 6.
It is produced by thermally dissociating it at 00 to 800°C and growing it into granules.

ところでこの製造された顆粒状Si原料は微細単結晶粒
が集合した構造となっているが、この結晶粒界には通常
未分解水素〔H〕が 20〜40wtppm程度取り込
まれているからこの残留〔H〕量を7.5wtppm以
下に低減せしめる処理を施す。この残留〔H〕量の低減
法には、例えば顆粒状Si原料を真空熱処理する方法、
或いは製造過程での反応を遅延させる方法、或いは製造
後原料を保温徐冷する方法等があり、必要に応じて選定
して適用すればよい。
By the way, the produced granular Si raw material has a structure in which fine single crystal grains are aggregated, and since approximately 20 to 40 wtppm of undecomposed hydrogen [H] is normally incorporated into the grain boundaries, this residual [H] A process is performed to reduce the amount of H] to 7.5 wtppm or less. Methods for reducing the amount of residual [H] include, for example, a method of vacuum heat treating a granular Si raw material;
Alternatively, there are methods of delaying the reaction during the manufacturing process, or methods of keeping the raw material warm and slowly cooling after manufacturing, and these methods may be selected and applied as necessary.

適正な水素濃度、処理温度、処理時間を得るため本発明
者等が行った実験について以下に説明する。実験は直径
21以下の顆粒状Si原料を石英製の坩堝内に10kg
収納し、抵抗加熱によって処理温度、処理時間を変えて
加熱処理し、得られた顆粒状Si原料の水素濃度を求め
ると共に、水素濃度と熱処理時間との関係、処理温度と
処理時間との関係を求めた。なお雰囲気圧力は0.05
〜0. ITorr及びArガスにより10〜20To
rrに調整した圧力の2水準で行い、終了後は室温迄冷
却した。なおこの間真空排気はそのまま継続した。
Experiments conducted by the present inventors to obtain appropriate hydrogen concentration, treatment temperature, and treatment time will be described below. In the experiment, 10 kg of granular Si raw material with a diameter of 21 mm or less was placed in a quartz crucible.
The hydrogen concentration of the obtained granular Si raw material was determined by storing and heat-treating by resistance heating while changing the treatment temperature and treatment time, and the relationship between the hydrogen concentration and heat treatment time, and the relationship between treatment temperature and treatment time I asked for it. Note that the atmospheric pressure is 0.05
~0. 10-20To with ITorr and Ar gas
The test was carried out at two levels of pressure adjusted to rr, and after completion of the test, the test was cooled to room temperature. During this time, vacuum evacuation continued.

第1図は顆粒状Si原料の熱処理時間と水素濃度とが飛
散に与える影響についての実験結果を示すグラフであり
、横軸に熱処理時間(時間)を、また縦軸に水素濃度(
wtppm )をとって示しである。
FIG. 1 is a graph showing the experimental results on the effects of heat treatment time and hydrogen concentration on scattering of granular Si raw materials. The horizontal axis shows the heat treatment time (hours), and the vertical axis shows the hydrogen concentration (
wtppm).

グラフ中白丸は飛散なし、黒丸は飛散ありの場合を示し
ている。このグラフから明らかなようにハツチングを付
して示す線で囲われた領域内に納まる水素濃度7.5h
tppm以下に設定すれば飛散のない顆粒状Si原料と
することが可能であることが解る。なおグラフ中の温度
表示は処理温度を示している。
White circles in the graph indicate no scattering, and black circles indicate cases with scattering. As is clear from this graph, the hydrogen concentration of 7.5 hours falls within the area enclosed by the hatched line.
It can be seen that if it is set to tppm or less, it is possible to obtain a granular Si raw material without scattering. Note that the temperature display in the graph indicates the processing temperature.

第2図は顆粒状Si原料に対する熱処理温度と処理時間
とが飛散に与える影響についての実験結果を示すグラフ
であり、横軸に熱処理温度(’c)、また縦軸に処理時
間(時間)をとって示しである。
Figure 2 is a graph showing the experimental results on the effects of heat treatment temperature and treatment time on scattering on granular Si raw materials, with the heat treatment temperature ('c) on the horizontal axis and the treatment time (hours) on the vertical axis. This is a great indication.

グラフ中白丸は飛散なし、黒丸は飛散ありの場合を示し
ている。
White circles in the graph indicate no scattering, and black circles indicate cases with scattering.

このグラフから明らかな如くハツチングを付して示す限
界曲線で囲われた領域内に納まる範囲で処理を行えば、
飛散のない顆粒状Si原料とすることができることが解
る。
As is clear from this graph, if processing is performed within the area enclosed by the hatched limit curve,
It can be seen that a granular Si raw material without scattering can be obtained.

トリクロルシラン法による顆粒状Si原料の製造は、ペ
ルジャー内に導入した粉状のSi種の表面にトリクロル
シランガスと水素の混合ガスを導入し、温度1000〜
1200℃で還元により顆粒状に成長させるものである
In the production of granular Si raw material by the trichlorosilane method, a mixed gas of trichlorosilane gas and hydrogen is introduced onto the surface of powdered Si seeds introduced into a Pelger, and the temperature is 1000~1000.
It is grown into granules by reduction at 1200°C.

このトリクロルシラン法により製造された顆粒状Si原
料にも通常未分解塩素(CX)が50〜200wtpp
m程度取り込まれており、前記したシラン法により得た
顆粒状Si原料の場合と同様の方法により残留(Cj2
)量を15wtppm以下に低減せしめて用いる。
The granular Si raw material produced by this trichlorosilane method also usually contains 50 to 200 wtpp of undecomposed chlorine (CX).
Cj2 is taken in, and remaining (Cj2
) is used by reducing the amount to 15wtppm or less.

第3図はトリクロルシラン法により製造した顆粒状Si
原料における残留(Cj2)量と飛散との関係を示すグ
ラフである。グラフは横軸に残留塩素濃度(wtppm
  :放射化分析法に依る)を、また縦軸に飛散の有無
をとって示しである。グラフ中白丸は飛散なし、また黒
丸は飛散有りの場合を示している。
Figure 3 shows granular Si produced by the trichlorosilane method.
It is a graph showing the relationship between the amount of residual (Cj2) in the raw material and scattering. The graph shows the residual chlorine concentration (wtppm) on the horizontal axis.
: Depends on the activation analysis method) and the presence or absence of scattering is plotted on the vertical axis. White circles in the graph indicate no scattering, and black circles indicate cases with scattering.

このグラフから明らかなように残留塩素濃度は15wt
ppm以下で飛散が無くなることが解る。
As is clear from this graph, the residual chlorine concentration is 15wt.
It can be seen that scattering disappears below ppm.

次に前述した如き顆粒状Si原料を用いて単結晶成長を
行う場合の具体的装置の例を示す。
Next, an example of a specific apparatus for growing a single crystal using the granular Si raw material as described above will be shown.

第4図は本発明に係る単結晶製造方法を用いる単結晶製
造装置の模式的断面図であり、図中1はチャンバ、2は
保温壁、3は坩堝、4はヒータを示している。チャンバ
1内にはその側周に保温壁2が内張すされ、この保温壁
2で囲われた中央部に坩堝3が配設され、この坩堝3と
保温壁2との間にヒータ4がこれらとの間に排気用の通
気路を構成する間隙を隔てて配設されている。
FIG. 4 is a schematic cross-sectional view of a single crystal manufacturing apparatus using the single crystal manufacturing method according to the present invention, in which 1 indicates a chamber, 2 a heat retaining wall, 3 a crucible, and 4 a heater. A heat insulating wall 2 is lined around the side of the chamber 1, a crucible 3 is disposed in the center surrounded by the heat insulating wall 2, and a heater 4 is placed between the crucible 3 and the heat insulating wall 2. A gap forming an exhaust air passage is provided between them.

坩堝3はグラファイト製の容器の内側に石英製の容器を
嵌め合わせた二重構造に構成されており、底部中央には
チャンバlの底壁を貫通させた軸3aの上端が連結され
、該軸3aにて回転させつつ昇降せしめられるようにな
っている。
The crucible 3 has a double structure in which a quartz container is fitted inside a graphite container, and the upper end of a shaft 3a passing through the bottom wall of the chamber 1 is connected to the center of the bottom. It can be raised and lowered while rotating at 3a.

チャンバ1の上部壁中央にはチャンバ1内の雰囲気ガス
の供給口を兼ねる単結晶の引上口1aが開口され、また
その周囲の1個所には、原料供給口1bが開口せしめら
れており、前記引上口1aには保護筒5が立設され、ま
た原料供給口1bを通じて原料供給装置6の原料供給管
6aがチャンバ1内に差し込まれている。
A single-crystal pulling port 1a that also serves as a supply port for atmospheric gas in the chamber 1 is opened at the center of the upper wall of the chamber 1, and a raw material supply port 1b is opened at one location around the single-crystal pulling port 1a. A protection tube 5 is provided upright at the pulling port 1a, and a raw material supply pipe 6a of a raw material supply device 6 is inserted into the chamber 1 through the raw material supply port 1b.

保護筒5の上端からは引上軸5aを用いて種結晶5cを
掴持するチャック5bが吊り下げられ、また引上軸5a
の上端は図示しない回転、昇降機構に連繋されており、
種結晶5cを坩堝3内の融液になじませた後、回転させ
つつ上昇させることによって、種結晶5c下端にシリコ
ン単結晶7を成長せしめるようになっている。
A chuck 5b that grips the seed crystal 5c using a pulling shaft 5a is suspended from the upper end of the protective tube 5.
The upper end of the is connected to a rotating and lifting mechanism (not shown).
After the seed crystal 5c is adapted to the melt in the crucible 3, it is rotated and raised to grow a silicon single crystal 7 at the lower end of the seed crystal 5c.

チャンバ1内の上方には前記単結晶7の引上げ域の周囲
に位置させて輻射スクリーン8が配設され、またこの輻
射スクリーン8には筒状隔壁9、原料導入治具10が取
り付けられている。
A radiation screen 8 is disposed above the chamber 1 around the pulling area of the single crystal 7, and a cylindrical partition wall 9 and a raw material introduction jig 10 are attached to the radiation screen 8. .

輻射スクリーン8は金属製あるいはカーボン製の環状リ
ム8aの外周縁部に輻射スクリーン8を保温壁2の上面
に支持する円筒形の支持部8bを、また内周縁部にはこ
こから下方に向かうに従って縮径され、中空の逆円錐台
形をなすよう傾斜させたテーパ部8cを夫々設けて構成
されている。
The radiation screen 8 has a cylindrical support part 8b that supports the radiation screen 8 on the upper surface of the heat retaining wall 2 at the outer peripheral edge of an annular rim 8a made of metal or carbon, and a cylindrical support part 8b that supports the radiation screen 8 on the upper surface of the heat insulation wall 2, and a cylindrical support part 8b that supports the radiation screen 8 on the upper surface of the heat insulation wall 2, and a cylindrical support part 8b that supports the radiation screen 8 on the inner peripheral edge as it goes downward from here. The tapered portions 8c each have a reduced diameter and are inclined to form a hollow inverted truncated cone shape.

筒状隔壁9は石英製であって、円筒形の隔壁本体部9a
の上端部に周方向の複数個所から立設した図示しない支
持片を輻射スクリーン8のテーパ部8cに取り付けられ
、その下端が坩堝3の内底から所要高さの位置であって
、且つ融液中の適正な深さ位置まで漬かり、坩堝3内を
同心状に内側領域とその外側の環状領域とに区分するよ
うになっている。
The cylindrical partition wall 9 is made of quartz, and has a cylindrical partition main body 9a.
Support pieces (not shown), which are erected from multiple positions in the circumferential direction at the upper end, are attached to the tapered part 8c of the radiation screen 8, and the lower end thereof is located at a required height from the inner bottom of the crucible 3, and the melt is The crucible 3 is immersed in the crucible 3 to an appropriate depth, and the inside of the crucible 3 is concentrically divided into an inner region and an annular region outside the crucible 3.

一方原料導入治具10はロート部10a及びこれに連な
る管部を備えており、輻射スクリーン8の環状リム8a
に穿った孔に管部を通して取り付けられ、ロート部10
aは原料供給口1bから差し込まれた原料供給管6aの
下端に臨み、また管部の下端は坩堝3内であって、筒状
隔壁9で仕切られる外側、即ち外側の環状領域に臨ませ
である。
On the other hand, the raw material introduction jig 10 includes a funnel part 10a and a pipe part connected to the funnel part 10a, and an annular rim 8a of the radiation screen 8.
The funnel part 10 is attached by passing the tube part through a hole drilled in the
a faces the lower end of the raw material supply pipe 6a inserted from the raw material supply port 1b, and the lower end of the pipe portion faces the outside, that is, the outer annular area partitioned by the cylindrical partition 9, inside the crucible 3. be.

原料供給管6aの上端はチャンバ1の外に配した原料供
給装置6におけるケーシング6b内に配した秤量計付の
電磁フィーダ6Cの排出端下に臨ませである。電磁フィ
ーダ6Cの受給端にはサブホッパ6dが配設され、該サ
ブホッパ6d上にはケーシング6bに固定したメインホ
ッパ6eを臨ませである。
The upper end of the raw material supply pipe 6a faces below the discharge end of an electromagnetic feeder 6C equipped with a weighing scale, which is disposed inside the casing 6b of the raw material supply device 6 disposed outside the chamber 1. A sub-hopper 6d is provided at the receiving end of the electromagnetic feeder 6C, and a main hopper 6e fixed to the casing 6b faces above the sub-hopper 6d.

次にこのような構成の装置を用いるSi単結晶の製造方
法の具体的手順について説明する。
Next, a detailed procedure of a method for manufacturing a Si single crystal using an apparatus having such a configuration will be described.

まず、本発明に係る顆粒状Si原料を初期チャージ用S
i原料として坩堝3内に収納した後、ヒータ4にて坩堝
3を加熱し、坩堝3に収納した顆粒状Si原料を加熱溶
融する。なおこの際融解の進行に伴って容量が減少する
ので、本発明に係る顆粒状Si原料を、チャージアップ
用Si原料として適量だけ坩堝3内に追加収納して融解
させる。
First, the granular Si raw material according to the present invention is used as S for initial charging.
After being stored in a crucible 3 as an i raw material, the crucible 3 is heated by a heater 4 to heat and melt the granular Si raw material stored in the crucible 3. At this time, since the capacity decreases as the melting progresses, an appropriate amount of the granular Si raw material according to the present invention is additionally stored in the crucible 3 as a charge-up Si raw material and melted.

坩堝3をこれを支持する軸3aにて矢符方向に回転させ
、また引上げ手段を構成する引上軸5aを下降して種結
晶5cを筒状隔壁9にて囲われた内側の融液中に浸漬し
た後、引上軸5aを回転させつつ所定の速度で引上げ(
平均1.5mm/分)、種結晶5c下に単結晶7を成長
せしめる。
The crucible 3 is rotated in the direction of the arrow by the shaft 3a that supports it, and the pulling shaft 5a constituting the pulling means is lowered to drop the seed crystal 5c into the melt inside the cylindrical partition wall 9. After being immersed in water, it is pulled up at a predetermined speed while rotating the pulling shaft 5a (
The single crystal 7 is grown under the seed crystal 5c at an average rate of 1.5 mm/min).

本発明に係る顆粒状Si原料を追加チャージ用Si原料
として、予めメインホッパ6eに貯留しておき、ここか
らサブホッパ6dを経て電磁フィーダ6cにより計量さ
れつつ原料供給管6a、原料導入治具10を経て坩堝3
における筒状隔壁9の外側の環状領域に供給されること
とする。
The granular Si raw material according to the present invention is stored in the main hopper 6e in advance as the Si raw material for additional charging, and from there the raw material supply pipe 6a and the raw material introduction jig 10 are metered by the electromagnetic feeder 6c via the sub-hopper 6d. After that, Crucible 3
It is assumed that the water is supplied to the outer annular region of the cylindrical partition wall 9 in .

なお最初に収納された顆粒状Si原料の融解開始から、
単結晶の引上げ終了に到るまで保護筒5の上端に接続し
た供給管からAr等の雰囲気ガスが保護筒5を通じて坩
堝3上にその上方から導入される。
Note that from the start of melting of the initially stored granular Si raw material,
Atmospheric gas such as Ar is introduced from above onto the crucible 3 through the protection tube 5 from a supply pipe connected to the upper end of the protection tube 5 until the pulling of the single crystal is completed.

保護筒5の上方から坩堝3上に下降した雰囲気ガスは輻
射スクリーン8のテーバ部8Cに沿って坩堝3内の融液
表面に達し、ここから輻射スクリーン8の下面側を経て
筒状隔壁9間を経、次いで筒状隔壁9の外側の環状領域
を経、坩堝3とヒータ4、保温壁2との間に形成された
通気路を経てチャンバ1の下部側壁に開口した排気口I
Cから図示しない排気ポンプにより吸引排出される。
The atmospheric gas that descends onto the crucible 3 from above the protective tube 5 reaches the surface of the melt in the crucible 3 along the tapered portion 8C of the radiation screen 8, and from there passes through the lower surface side of the radiation screen 8 between the cylindrical partition walls 9. , then through the annular region outside the cylindrical partition wall 9 , through the ventilation path formed between the crucible 3 , the heater 4 , and the heat retaining wall 2 , and then through the exhaust port I opened in the lower side wall of the chamber 1
It is suctioned and discharged from C by an exhaust pump (not shown).

なお本実施例では、本発明に係る顆粒状Si原料を、初
期チャージ用Si原料、チャージアップ用Si原料及び
追加チャージ用Si原料として、何れの場合においても
使用することとしたが、この31の用途のうちの任意の
1種または任意の2種の用途において、本発明に係る顆
粒状Si原料を使用してもよいことは勿論である。
In this example, the granular Si raw material according to the present invention was used as the Si raw material for initial charging, the Si raw material for charge-up, and the Si raw material for additional charging. Of course, the granular Si raw material according to the present invention may be used in any one or two of the applications.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の単結晶製造方法では、Si原
料としてシラン法により製造した残留〔H〕量が7.5
 wtppm以下、またはトリクロルシラン法により製
造した残留(CX)量が15wtppm以下の顆粒状S
i原料を用いてSi単結晶を製造することとするので、
破裂現象を防止することができ、しかも顆粒状Si原料
を使用する際における利点を活かすことができる。
As detailed above, in the single crystal production method of the present invention, the amount of residual [H] produced by the silane method as a Si raw material is 7.5
Granular S with a residual (CX) amount of 15 wtppm or less, or produced by the trichlorosilane method
Since we will manufacture Si single crystal using i raw material,
It is possible to prevent the phenomenon of bursting, and also to take advantage of the advantages of using a granular Si raw material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る単結晶製造方法において用いる顆
粒状Si原料の残留CH)量の低減のための熱処理時間
と水素濃度とが破裂に伴う飛散に与る影響を示すグラフ
、第2図は同じく熱処理温度と処理時間とが破裂に伴う
飛散に与える影響を示すグラフ、第3図は同じく残留塩
素濃度〔C1〕が破裂に伴う飛散に与える影響を示すグ
ラフ、第4図は本発明の単結晶製造方法実施するための
装置の縦断面図、第5図はシラン法によって製造した顆
粒状Si原料の破裂現象の説明図である。 1・・・チャンバ、3・・・坩堝 4・・・ヒータ 5
・・・保護筒 6・・・原料供給装置 6c・・・電磁
フィーダ6d・・・サブホッパ 6e・・・メインホッ
パ 7・・・単結晶8・・・輻射スクリーン 10・・
・原料導入治具10a・・・ロート部 特 許 出願人 大阪チタニウム製造株式会社外1名 代理人 弁理士 河  野   登  夫藁 4 図 熱処理時日(時間) 第1図 処1!温度(℃) 第2図 0  10 20  30  40  5[160塩素
濃度(wt ppm1 第 3 図 第5図
FIG. 1 is a graph showing the influence of heat treatment time and hydrogen concentration on scattering due to rupture for reducing the amount of residual CH in the granular Si raw material used in the single crystal production method according to the present invention, and FIG. 3 is a graph showing the influence of heat treatment temperature and treatment time on scattering due to rupture, FIG. 3 is a graph showing the effect of residual chlorine concentration [C1] on scattering due to rupture, and FIG. FIG. 5 is a longitudinal cross-sectional view of an apparatus for implementing the single crystal manufacturing method, and is an explanatory diagram of the rupture phenomenon of the granular Si raw material manufactured by the silane method. 1... Chamber, 3... Crucible 4... Heater 5
...Protection tube 6...Raw material supply device 6c...Electromagnetic feeder 6d...Sub hopper 6e...Main hopper 7...Single crystal 8...Radiation screen 10...
・Raw material introduction jig 10a...Funnel part patent Applicant: Osaka Titanium Manufacturing Co., Ltd. and one other agent Patent attorney Noboru Kono 4 Figure Heat treatment date (hours) Figure 1 Location 1! Temperature (°C) Fig. 2 0 10 20 30 40 5 [160 Chlorine concentration (wt ppm1) Fig. 3 Fig. 5

Claims (1)

【特許請求の範囲】 1、顆粒状Si原料を用いてSi単結晶を製造する方法
において、 前記顆粒状Si原料として、シラン法により得た残留〔
H〕量が7.5wtppm以下、又はトリクロルシラン
法により得た残留〔C1〕量が15wtppm以下とし
た顆粒状Si原料を用いることを特徴とする単結晶製造
方法。 2、坩堝内に顆粒状Si原料を収納して該顆粒状Si原
料を融解した後、前記坩堝内の融液にSi種結晶を浸し
てSi単結晶を成長させつつ引きあげる単結晶製造方法
において、前記顆粒状Si原料として、シラン法により
得た残留〔H〕量が7.5wtppm以下、又はトリク
ロルシラン法により得た残留〔C1〕量が15wtpp
m以下とした顆粒状Si原料を用いることを特徴とする
単結晶製造方法。 3、坩堝内にSi原料を収納して該Si原料を融解した
後、更に前記坩堝内に顆粒状Si原料を追加収納して該
顆粒状Si原料を融解し、その後坩堝内の融液にSi種
結晶を浸してSi単結晶を成長させつつ引きあげる単結
晶製造方法において、 前記顆粒状Si原料として、シラン法により得た残留〔
H〕量が7.5wtppm以下、又はトリクロルシラン
法により得た残留〔C1〕量が15wtppm以下とし
た顆粒状Si原料を用いることを特徴とする単結晶製造
方法。 4、坩堝内にその単結晶原料融液の液面を液面下で連通
した状態で内、外の領域に区分する隔壁を配置し、外側
領域に顆粒状Si原料を供給し、内側領域からSi単結
晶を成長させつつ引き上げる単結晶製造方法において、 前記顆粒状Si原料として、シラン法により得た残留〔
H〕量が7.5wtppm以下、又はトリクロルシラン
法により得た残留〔C1〕量が15wtppm以下とし
た顆粒状Si原料を用いることを特徴とする単結晶製造
方法。
[Claims] 1. A method for producing a Si single crystal using a granular Si raw material, wherein the granular Si raw material is a residue obtained by a silane method [
A single crystal production method characterized by using a granular Si raw material having an amount of H] of 7.5 wtppm or less, or a residual [C1] amount of 15 wtppm or less obtained by a trichlorosilane method. 2. In a single crystal manufacturing method in which a granular Si raw material is stored in a crucible and the granular Si raw material is melted, a Si seed crystal is immersed in the melt in the crucible and pulled out while growing a Si single crystal. , as the granular Si raw material, the amount of residual [H] obtained by the silane method is 7.5 wtppm or less, or the amount of residual [C1] obtained by the trichlorosilane method is 15 wtpp
A method for producing a single crystal, characterized in that a granular Si raw material having a particle size of less than m is used. 3. After storing a Si raw material in a crucible and melting the Si raw material, further storing a granular Si raw material in the crucible and melting the granular Si raw material, and then adding Si to the melt in the crucible. In a method for producing a single crystal in which a seed crystal is immersed and pulled up while growing a Si single crystal, the residue obtained by the silane method is used as the granular Si raw material.
A single crystal production method characterized by using a granular Si raw material having an amount of H] of 7.5 wtppm or less, or a residual [C1] amount of 15 wtppm or less obtained by a trichlorosilane method. 4. A partition wall is placed in the crucible to separate the inner and outer regions with the liquid surface of the single-crystal raw material melt communicating below the liquid surface, and the granular Si raw material is supplied to the outer region, and the granular Si raw material is supplied from the inner region. In a single crystal production method in which a Si single crystal is pulled while growing, the granular Si raw material is a residue obtained by a silane method [
A single crystal production method characterized by using a granular Si raw material having an amount of H] of 7.5 wtppm or less, or a residual [C1] amount of 15 wtppm or less obtained by a trichlorosilane method.
JP13514788A 1988-01-19 1988-05-31 Production of single crystal Granted JPH01282194A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13514788A JPH01282194A (en) 1988-01-19 1988-05-31 Production of single crystal
US07/357,717 US5037503A (en) 1988-05-31 1989-05-26 Method for growing silicon single crystal
US07/953,630 USRE35242E (en) 1988-05-31 1992-09-30 Method for growing silicon single crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1040788 1988-01-19
JP63-10407 1988-01-19
JP13514788A JPH01282194A (en) 1988-01-19 1988-05-31 Production of single crystal

Publications (2)

Publication Number Publication Date
JPH01282194A true JPH01282194A (en) 1989-11-14
JPH0477712B2 JPH0477712B2 (en) 1992-12-09

Family

ID=26345665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13514788A Granted JPH01282194A (en) 1988-01-19 1988-05-31 Production of single crystal

Country Status (1)

Country Link
JP (1) JPH01282194A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013192A1 (en) * 1990-03-02 1991-09-05 Nkk Corporation Single crystal production apparatus
JPH059097A (en) * 1991-06-28 1993-01-19 Shin Etsu Handotai Co Ltd Method for pulling up silicon single crystal
JPH05148073A (en) * 1991-11-29 1993-06-15 Nkk Corp Production of silicon single crystal
JPH05208889A (en) * 1992-01-30 1993-08-20 Shin Etsu Handotai Co Ltd Production of silicon single crystal
JP2008266017A (en) * 2007-03-29 2008-11-06 Sharp Corp Solid material supply device, solid material processing device and solid material supply method
WO2023007830A1 (en) * 2021-07-30 2023-02-02 グローバルウェーハズ・ジャパン株式会社 Method for producing silicon single crystal, and single crystal pulling apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155423A (en) * 1974-05-13 1975-12-15
JPS57183392A (en) * 1981-05-01 1982-11-11 Tohoku Metal Ind Ltd Apparatus for preparation of single crystal
JPS5945917A (en) * 1982-09-02 1984-03-15 Denki Kagaku Kogyo Kk Continuous preparation of polycrystalline silicon
JPS6117537A (en) * 1984-04-27 1986-01-25 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Phenol derivative, manufacture and antiestrogenic medicine
JPS61242984A (en) * 1985-04-19 1986-10-29 Shinetsu Sekiei Kk Crucible for pulling up silicon single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155423A (en) * 1974-05-13 1975-12-15
JPS57183392A (en) * 1981-05-01 1982-11-11 Tohoku Metal Ind Ltd Apparatus for preparation of single crystal
JPS5945917A (en) * 1982-09-02 1984-03-15 Denki Kagaku Kogyo Kk Continuous preparation of polycrystalline silicon
JPS6117537A (en) * 1984-04-27 1986-01-25 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Phenol derivative, manufacture and antiestrogenic medicine
JPS61242984A (en) * 1985-04-19 1986-10-29 Shinetsu Sekiei Kk Crucible for pulling up silicon single crystal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013192A1 (en) * 1990-03-02 1991-09-05 Nkk Corporation Single crystal production apparatus
JPH059097A (en) * 1991-06-28 1993-01-19 Shin Etsu Handotai Co Ltd Method for pulling up silicon single crystal
JPH05148073A (en) * 1991-11-29 1993-06-15 Nkk Corp Production of silicon single crystal
JPH0822795B2 (en) * 1991-11-29 1996-03-06 東芝セラミックス株式会社 Method for producing silicon single crystal
JPH05208889A (en) * 1992-01-30 1993-08-20 Shin Etsu Handotai Co Ltd Production of silicon single crystal
JP2008266017A (en) * 2007-03-29 2008-11-06 Sharp Corp Solid material supply device, solid material processing device and solid material supply method
WO2023007830A1 (en) * 2021-07-30 2023-02-02 グローバルウェーハズ・ジャパン株式会社 Method for producing silicon single crystal, and single crystal pulling apparatus

Also Published As

Publication number Publication date
JPH0477712B2 (en) 1992-12-09

Similar Documents

Publication Publication Date Title
US5242531A (en) Continuous liquid silicon recharging process in czochralski crucible pulling
JP4225688B2 (en) Method for producing a silicon melt from a polysilicon charge
USRE35242E (en) Method for growing silicon single crystal
JP4103593B2 (en) Recharge tube for solid polycrystalline raw material and method for producing single crystal using the same
JP5777336B2 (en) Recharging method of polycrystalline silicon raw material
US9359691B2 (en) Method of loading a charge of polysilicon into a crucible
JPH09328391A (en) Production of molten silicon melt from polycrystalline silicon charging material
US5306473A (en) Quartz glass crucible for pulling a single crystal
JPH01282194A (en) Production of single crystal
US5306388A (en) Quartz glass crucible for pulling a semiconductor single crystal
JP4804348B2 (en) Cooled lump of molten silicon and method for producing the same
JP6708173B2 (en) Recharge tube and method for manufacturing single crystal
JPH06100394A (en) Method for feeding raw material for producing single crystal and apparatus therefor
JP2531415B2 (en) Crystal growth method
JP3085567B2 (en) Polycrystalline recharge apparatus and recharge method
JPH0550478B2 (en)
JPH0523580Y2 (en)
JPH0280392A (en) Single crystal production device
JP2010173880A (en) Method for producing semiconductor single crystal, and raw material supply container
US20230142420A1 (en) Determination of mass/time ratios for buffer members used during growth of single crystal silicon ingots
TW202248470A (en) Use of quartz plates during growth of single crystal silicon ingots
JPH05148073A (en) Production of silicon single crystal
JPH0558769A (en) Production of silicon single crystal
JPH02233582A (en) Pulling device of single crystal
JPH04357190A (en) Single crystal production apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees