JPH05144474A - Nonaqueous electrolyte secondary battery and active material manufacturing method - Google Patents

Nonaqueous electrolyte secondary battery and active material manufacturing method

Info

Publication number
JPH05144474A
JPH05144474A JP3309416A JP30941691A JPH05144474A JP H05144474 A JPH05144474 A JP H05144474A JP 3309416 A JP3309416 A JP 3309416A JP 30941691 A JP30941691 A JP 30941691A JP H05144474 A JPH05144474 A JP H05144474A
Authority
JP
Japan
Prior art keywords
active material
lithium
electrode
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3309416A
Other languages
Japanese (ja)
Other versions
JP3060077B2 (en
Inventor
Kensuke Tawara
謙介 田原
Hideki Ishikawa
英樹 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP3309416A priority Critical patent/JP3060077B2/en
Publication of JPH05144474A publication Critical patent/JPH05144474A/en
Application granted granted Critical
Publication of JP3060077B2 publication Critical patent/JP3060077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a nonaqueous electrolyte secondary battery which presents excellent charging/discharging characteristics and is equipped with a long cyclic lifetime. CONSTITUTION:A nonaqueous electrolyte secondary battery includes at least a neg. electrode, a pos. electrode, and a nonaqueous electrolyte having Li ion electroconductivity, and therein the active material of at least either of the neg. and pos. electrodes consists in an organic silicon compound having direct bond of silicon and carbon subjected to a heat treatment, or the resultant from heat treatment to which lithium is stored. This gives a large charging/ discharging capacity, high energy density, and less polarization (internal resistance) at the time of charging and discharging, so that it is easy to make charging and discharging with a large current, ensures lesser deterioration due to overcharge/overdischarge, and prolongs the cyclic lifetime.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムもしくはリチ
ウムを吸蔵放出可能な物質を負極活物質及び/又は正極
活物質とし、リチウムイオン導電性の非水電解質を用い
る非水電解質二次電池に関するものであり、繰り返し充
放電が可能で、高容量かつ過充電過放電特性の優れた、
新規な負極活物質及び正極活物質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery in which lithium or a substance capable of inserting and extracting lithium is used as a negative electrode active material and / or a positive electrode active material and a lithium ion conductive non-aqueous electrolyte is used. It is capable of repeated charge and discharge, has a high capacity and excellent overcharge and overdischarge characteristics,
The present invention relates to a novel negative electrode active material and positive electrode active material.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギー密度で、かつ自己
放電が小さく長期信頼性に優れる等々の利点により、一
次電池としてはメモリーバックアップ用、カメラ用等の
電源として既に広く用いられている。 しかしながら、
近年携帯型の電子機器、通信機器等の著しい発展に伴
い、電源としての電池に対し大電流出力を要求する機器
が多種多ように出現し、経済性と機器の小型軽量化の観
点から、再充放電可能で、かつ高エネルギー密度の二次
電池が強く要望されている。このため、高エネルギー密
度を有する前記非水電解質電池の二次電池化を進める研
究開発が活発に行われ、一部実用化されているが、エネ
ルギー密度、充放電サイクル寿命、信頼性等々まだまだ
不十分である。 従来、この種の二次電池の正極を構成
する正極活物質としては、充放電反応の形態に依り下記
の3種のタイプのものが見い出されている。第1のタイ
プは、TiS2,MoS2,NbSe3 等の金属カルコゲ
ン化物や、MnO2,MoO3,V25 ,LiXCo
2,LiX NiO2,LiXMn24 等の金属酸化物等
々のように、結晶の層間や格子位置又は格子間隙間にリ
チウムイオン(カチオン)のみがインターカレーショ
ン、デインターカレーション反応等に依り出入りするタ
イプ。第2のタイプは、ポリアニリン、ポリピロール、
ポリパラフェニレン等の導電性高分子のような、主とし
てアニオンのみが安定にドープ、脱ドープ反応に依り出
入りするタイプ。第3のタイプは、グラファイト層間化
合物やポリアセン等の導電性高分子等々のような、リチ
ウムカチオンとアニオンが共に出入り可能なタイプ(イ
ンターカレーション、デインターカレーション又はドー
プ、脱ドープ等)である。
2. Description of the Related Art Non-aqueous electrolyte batteries using lithium as a negative electrode active material have advantages of high voltage, high energy density, low self-discharge and excellent long-term reliability. It has already been widely used as a power source for business. However,
With the recent remarkable development of portable electronic devices, communication devices, etc., a large number of devices that require a large current output for a battery as a power source have appeared, and from the viewpoints of economy and reduction in size and weight of devices, the There is a strong demand for a secondary battery that can be charged and discharged and that has a high energy density. For this reason, research and development for promoting the non-aqueous electrolyte battery having a high energy density into a secondary battery have been actively carried out and partially put into practical use, but energy density, charge / discharge cycle life, reliability, etc. are still unsatisfactory. It is enough. Conventionally, as the positive electrode active material constituting the positive electrode of this type of secondary battery, the following three types have been found depending on the form of charge / discharge reaction. The first type is a metal chalcogenide such as TiS 2 , MoS 2 , NbSe 3 or MnO 2 , MoO 3 , V 2 O 5 , Li X Co.
Like metal oxides such as O 2 , Li X NiO 2 , Li X Mn 2 O 4, etc., only lithium ions (cations) are intercalated or deintercalated between crystal layers or between lattice positions or gaps. Type that goes in and out depending on the reaction. The second type is polyaniline, polypyrrole,
A type in which only anions are stably doped and desorbed by the dedoping reaction, such as conductive polymers such as polyparaphenylene. The third type is a type (intercalation, deintercalation or doping, dedoping, etc.) in which both lithium cations and anions can enter and exit, such as graphite intercalation compounds and conductive polymers such as polyacene. ..

【0003】一方、この種電池の負極を構成する負極活
物質としては、金属リチウムを単独で用いた場合が電極
電位が最も卑であるため、上記のような正極活物質を用
いた正極と組み合わせた電池としての出力電圧が最も高
く、エネルギー密度も高く好ましいが、充放電に伴い負
極上にデンドライトや不働体化合物が生成し、充放電に
よる劣化が大きく、サイクル寿命が短いという問題があ
った。この問題を解決するため、負極活物質として
(1)リチウムとAl,Zn,Sn,Pb,Bi,Cd
等の他金属との合金、(2)WO2,MoO2,Fe
23,TiS2 等の無機化合物やグラファイト、有機物
を焼成して得られる炭素質材料等々の結晶構造中にリチ
ウムイオンを吸蔵させた層間化合物あるいは挿入化合
物、(3)リチウムイオンをドープしたポリアセンやポ
リアセチレン等の導電性高分子等々のリチウムイオンを
吸蔵放出可能な物質を用いることが提案されている。
On the other hand, as the negative electrode active material constituting the negative electrode of this type of battery, when metal lithium is used alone, the electrode potential is the most base, and therefore it is combined with the positive electrode using the positive electrode active material as described above. The battery has the highest output voltage and the high energy density, which is preferable, but there is a problem that dendrites and passivation compounds are generated on the negative electrode during charging and discharging, the deterioration due to charging and discharging is large, and the cycle life is short. In order to solve this problem, as a negative electrode active material, (1) lithium and Al, Zn, Sn, Pb, Bi, Cd
Alloys with other metals such as (2) WO 2 , MoO 2 , Fe
An intercalation compound or an intercalation compound in which lithium ions are occluded in the crystal structure of an inorganic compound such as 2 O 3 or TiS 2 or graphite, a carbonaceous material obtained by firing an organic substance, or the like, and (3) lithium ion-doped polyacene It has been proposed to use a substance capable of inserting and extracting lithium ions, such as a conductive polymer such as or polyacetylene.

【0004】[0004]

【発明が解決しようとする課題】しかし乍、一般に、負
極活物質として上記のような金属リチウム以外のリチウ
ムイオンを吸蔵放出可能な物質を用いた負極と、前記の
ような正極活物質を用いた正極とを組合せて電池を構成
した場合には、これらの物質の電極電位が金属リチウム
の電極電位より貴であるため、電池の作動電圧が負極活
物質として金属リチウムを単独で用いた場合よりかなり
低下するという欠点がある。例えば、リチウムとAl,
Zn,Pb,Sn,Bi,Cd等の合金を用いる場合に
は0.2〜0.8V、炭素−リチウム層間化合物では0
〜1V、MoO2やWO2等のリチウムイオン挿入化合物
では0.5〜1.5V作動電圧が低下する。
However, generally, a negative electrode using a substance capable of inserting and extracting lithium ions other than metallic lithium as described above as a negative electrode active material, and a positive electrode active material as described above are used. When a battery is constructed by combining it with a positive electrode, the electrode potential of these substances is nobler than the electrode potential of metallic lithium, so the operating voltage of the battery is considerably higher than that when metallic lithium is used alone as the negative electrode active material. It has the drawback of decreasing. For example, lithium and Al,
0.2 to 0.8 V when an alloy such as Zn, Pb, Sn, Bi, Cd is used, and 0 when a carbon-lithium intercalation compound is used.
To 1V, the lithium ion insertion compound such as MoO 2 and WO 2 0.5 to 1.5 operating voltage is reduced.

【0005】更に、リチウム以外の元素も負極構成要素
となるため、体積当り及び重量当りの容量及びエネルギ
ー密度が著しく低下する。このため、充放電特性が優
れ、サイクル寿命が長く、かつ高電圧、高エネルギー密
度の二次電池を得るためには、リチウムに対する電極電
位が低く(卑な)、かつ可逆的にリチウムイオンを吸蔵
放出できる量の大きい負極活物質が必要である。
Furthermore, since elements other than lithium also serve as negative electrode constituents, the capacity and energy density per volume and weight are significantly reduced. Therefore, in order to obtain a secondary battery with excellent charge / discharge characteristics, long cycle life, high voltage, and high energy density, the electrode potential for lithium is low (base) and reversibly occludes lithium ions. A negative electrode active material that can release a large amount is required.

【0006】一方、上記の正極活物質に於て、第1のタ
イプは、一般にエネルギー密度は大きいが、過充電や過
放電すると結晶の崩壊や不可逆物質の生成等による劣化
が大きいという欠点がある。又、第2、第3のタイプで
は、逆に容量及びエネルギー密度が小さいという欠点が
ある。このため、過充電特性及び過放電特性が優れ、か
つ高容量、高エネルギー密度の二次電池を得るためには
過充電過放電に依る結晶の崩壊や不可逆物質の生成が無
く、かつ可逆的にリチウムイオンを吸蔵放出できる量の
より大きい正極活物質が必要である。
On the other hand, of the above-mentioned positive electrode active materials, the first type generally has a large energy density, but has a drawback that if it is overcharged or overdischarged, it is greatly deteriorated due to crystal collapse or generation of irreversible substances. .. On the contrary, the second and third types have a drawback that the capacity and energy density are small. Therefore, in order to obtain a secondary battery with excellent overcharge characteristics and overdischarge characteristics, high capacity, and high energy density, there is no crystal collapse or irreversible substance generation due to overcharge overdischarge, and reversible There is a need for a positive electrode active material that can store and release lithium ions in a larger amount.

【0007】[0007]

【課題を解決するための手段】本発明は、上記のような
問題点を解決するため、この種の電池の負極と正極の少
なくとも一方の電極の活物質として、ケイ素Siと炭素
Cの直接結合を有する有機ケイ素化合物の熱処理物又は
該熱処理物にリチウムを吸蔵させたものから成る新規な
リチウムイオン吸蔵放出可能物質を用いることを提起す
るものである。
In order to solve the above-mentioned problems, the present invention provides a direct bond of silicon Si and carbon C as an active material of at least one of the negative electrode and the positive electrode of this type of battery. The present invention proposes to use a novel lithium ion occluding / releasing substance comprising a heat-treated product of an organosilicon compound having the above or a heat-treated product obtained by occluding lithium.

【0008】本発明電池の負極及び/又は正極の活物質
として用いられる有機ケイ素化合物の熱処理物は次のよ
うにして製造することができる。出発原料となる有機ケ
イ素化合物としては、有機化合物中の炭素の一部をケイ
素で置換した形式のケイ素と炭素の直接結合を有する化
合物であれば良いが、更にケイ素と酸素の直接結合をも
有する化合物がより好ましい。具体的には、シラン誘導
体(RmSinH2n+2-m)、シレン誘導体、ハロゲンシラ
ン誘導体(RnSiX4-n )、シラノール誘導体(RnS
i(OH)2)、アルコキシシラン誘導体(RnSi(O
R´)4-n)、シロキサン誘導体等及びこれらの重合体
等々があげられる。但し、置換基R及びR´としてはメ
チル基、エチル基等のアルキル基、フェニル基、トリル
基、キシリル基、ナフチル基等のアリール基、脂環式炭
化水素基等々の全ての炭化水素基、トリフルオロプロピ
ル基等のフルオロアルキル基、複素環式化合物から導か
れる有機基等々の任意の有機基が可能であり、Xは塩
素、フッ素、臭素、ヨウ素等のハロゲン原子、m及びn
は整数である。
The heat-treated product of the organosilicon compound used as the active material of the negative electrode and / or the positive electrode of the battery of the present invention can be manufactured as follows. The organosilicon compound used as a starting material may be a compound having a direct bond between silicon and carbon in a form in which a part of carbon in the organic compound is replaced by silicon, but it also has a direct bond between silicon and oxygen. Compounds are more preferred. Specifically, silane derivatives (RmSinH 2 n + 2 -m) , cyclohexylene derivatives, halogenated silane derivative (RnSiX 4 -n), silanol derivative (RNS
i (OH) 2 ) and an alkoxysilane derivative (RnSi (O
R ') 4- n), siloxane derivatives and the like, and polymers thereof. However, as the substituents R and R ', all hydrocarbon groups such as an alkyl group such as a methyl group and an ethyl group, a phenyl group, a tolyl group, an xylyl group, an aryl group such as a naphthyl group, and an alicyclic hydrocarbon group, Any organic group such as a fluoroalkyl group such as a trifluoropropyl group and an organic group derived from a heterocyclic compound can be used, and X is a halogen atom such as chlorine, fluorine, bromine or iodine, m and n.
Is an integer.

【0009】これらの有機ケイ素化合物を100〜30
00゜Cの温度で加熱処理して得られる生成物を用い
る。加熱温度と雰囲気に付いての制限は、この加熱処理
により有機ケイ素化合物が完全に熱分解もしくは酸化さ
れ炭素が炭化水素ガスやCO2ガス等として全て散逸
し、酸化ケイ素(SiO2等)だけが熱処理残留物とし
て生成することの無い範囲、即ち、ケイ素と炭素を主体
とし、好ましくは更に酸素を含み、それらの原子が直接
結合し網状構造または3次元構造の化合物を生成する範
囲に限定される。従って、不活性雰囲気中または真空中
では100〜3000゜C、より好ましくは300〜2
500゜C、大気中または酸素を有する雰囲気中では1
00〜900゜C、より好ましくは200〜700゜C
の温度が好適である。このような加熱処理により、有機
ケイ素化合物は重合、宿重合、架橋及び/または熱分解
し、ケイ素と炭素またはケイ素と炭素及び酸素を主体と
し、それらの原子が直接相互に結合した網状構造または
3次元網目構造の化合物を生成する。 上述の有機ケイ
素化合物の中で、ケイ素に結合した有機基の側鎖を有す
る有機シロキサンの重合体であるシリコーン(ポリオル
ガノシロキサン)は、ケイ素と炭素及びケイ素と酸素と
の直接結合を骨格とした安定な高分子化合物であり、本
発明の出発原料としてとくに好ましいものである。
100 to 30 of these organosilicon compounds
The product obtained by heat treatment at a temperature of 00 ° C is used. Limit with the heating temperature and atmosphere, the organosilicon compound is carbon are completely thermally decomposed or oxidized all dissipated as hydrocarbon gas or CO2 gas or the like by the heat treatment, only silicon oxide (SiO 2 or the like) is heat-treated It is limited to a range where it does not form as a residue, that is, a range where silicon and carbon are the main constituents, and preferably oxygen is further contained, and those atoms are directly bonded to form a compound having a network structure or a three-dimensional structure. Therefore, in an inert atmosphere or in a vacuum, the temperature is 100 to 3000 ° C, more preferably 300 to 2 ° C.
1 at 500 ° C in the air or in an atmosphere containing oxygen
00-900 ° C, more preferably 200-700 ° C
Is preferred. By such heat treatment, the organosilicon compound undergoes polymerization, in-situ polymerization, cross-linking and / or thermal decomposition, and has a network structure in which silicon and carbon or silicon, carbon and oxygen are the main components and their atoms are directly bonded to each other, or 3 A compound having a three-dimensional network structure is produced. Among the above-mentioned organosilicon compounds, silicone (polyorganosiloxane), which is a polymer of an organosiloxane having a side chain of an organic group bonded to silicon, has a skeleton of a direct bond between silicon and carbon and between silicon and oxygen. It is a stable polymer compound and is particularly preferable as a starting material for the present invention.

【0010】又、この熱処理物へのリチウムの吸蔵は、
次のようにして行うことができる。即ち、(1)該熱処
理物とリチウムメタルとを両電極としてリチウムイオン
導電性の非水電解質に接して対向し、適当な電流で放電
もしくは通電し電気化学的にリチウムイオンを吸蔵させ
る方法。(2)該熱処理物又は該熱処理物と導電剤及び
結着剤等との混合合剤を所定形状に成形し、これにリチ
ウムを圧着して積層電極としたものを電極として電池に
組み込む。電池内でこの積層電極が電解質に触れること
により自己放電し電気化学的にリチウムが吸蔵される方
法。(3)該熱処理物を一方の電極の活物質とし、もう
一方の電極にリチウムを含有する活物質を用いた電池を
構成する。電池として使用中に充放電を行うことにより
該熱処理物にリチウムが吸蔵される方法。
The storage of lithium in this heat-treated product is
It can be done as follows. That is, (1) a method in which the heat-treated product and lithium metal are used as both electrodes in contact with a lithium ion conductive non-aqueous electrolyte so as to be opposed to each other and discharged or energized at an appropriate current to electrochemically occlude lithium ions. (2) The heat-treated product or a mixture of the heat-treated product and a conductive agent and a binder is molded into a predetermined shape, and lithium is pressure-bonded to form a laminated electrode, which is incorporated into a battery as an electrode. A method in which this laminated electrode contacts the electrolyte in the battery to self-discharge and electrochemically occlude lithium. (3) A battery is constructed using the heat-treated product as an active material for one electrode and an active material containing lithium for the other electrode. A method in which lithium is occluded in the heat-treated product by performing charging and discharging during use as a battery.

【0011】このようにして得られる熱処理物または該
熱処理物にリチウムを吸蔵させたものを負極及び/また
は正極の活物質として用いる。本発明に依る有機ケイ素
化合物の熱処理物または該熱処理物にリチウムを吸蔵さ
せたものを活物質とする電極は、これを正負両極の活物
質として用いて二次電池を構成することができるし、
又、これを正極または負極の何れか一方の電極として用
い、前述のリチウムもしくはリチウムイオンを吸蔵放出
可能な各種の他の負極活物質又は正極活物質を用いた電
極をもう一方の電極として組み合わせて用いることもで
きる。特に、本発明の有機ケイ素化合物の熱処理物また
は該熱処理物にリチウムを吸蔵させたものを活物質とす
る電極は、金属リチウムに対する電極電位が1V以下の
卑な領域の充放電容量が大きいことから、これを負極と
して用い、前述の金属酸化物や金属カルコゲン化物等々
のような金属リチウムに対する電極電位が2V以上の高
電位の活物質を用いた正極と組み合わせることにより高
電圧高エネルギー密度でかつ大電流充放電特性に優れ、
過充電過放電による劣化の小さい二次電池が得られるの
で、特に好ましい。
The heat-treated product thus obtained or the heat-treated product obtained by occluding lithium is used as the active material of the negative electrode and / or the positive electrode. A heat-treated product of an organosilicon compound according to the present invention or an electrode having an active material obtained by occluding lithium in the heat-treated product can be used as a positive / negative active material to form a secondary battery,
Further, by using this as either the positive electrode or the negative electrode, the above-mentioned various negative electrode active materials capable of inserting and extracting lithium or lithium ions or the electrode using the positive electrode active material is combined as the other electrode. It can also be used. In particular, a heat-treated product of the organosilicon compound of the present invention or an electrode using the heat-treated product obtained by occluding lithium as an active material has a large charge / discharge capacity in a base region where the electrode potential with respect to metallic lithium is 1 V or less. By using this as a negative electrode and combining it with a positive electrode using an active material having a high potential of 2 V or more for metallic lithium such as the above-mentioned metal oxides and metal chalcogenides, a high voltage and a high energy density and a high voltage are obtained. Excellent current charge / discharge characteristics,
It is particularly preferable because a secondary battery with little deterioration due to overcharge and overdischarge can be obtained.

【0012】一方、電解質としては、γ−ブチロラクト
ン、プロピレンカーボネート、エチレンカーボネート、
ブチレンカーボネート、1、2−ジメトキシエタン、テ
トラヒドロフラン、ジオキソラン、ジメチルフォルムア
ミド等の有機溶媒の単独又は混合溶媒に支持電解質とし
てLiClO4,LiPF6,LiBF4,LiCF3SO
3等のリチウムイオン解離性塩を溶解した有機電解液、
ポリエチレンオキシドやポリフォスファゼン架橋体等の
高分子に前記リチウム塩を固溶させた高分子固体電解質
あるいはLi3N,LiI等の無機固体電解質等々のリ
チウムイオン導電性の非水電解質であれば良い。
On the other hand, as the electrolyte, γ-butyrolactone, propylene carbonate, ethylene carbonate,
Butylene carbonate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolane, LiClO 4, LiPF 6, LiBF 4 as a supporting electrolyte alone or organic solvents such as dimethylformamide, LiCF 3 SO
An organic electrolyte solution in which a lithium ion dissociable salt such as 3 is dissolved,
A lithium ion conductive non-aqueous electrolyte such as a polymer solid electrolyte in which the lithium salt is dissolved in a polymer such as polyethylene oxide or a crosslinked polyphosphazene or an inorganic solid electrolyte such as Li 3 N or LiI may be used. ..

【0013】[0013]

【作用】本発明の有機ケイ素化合物の熱処理物または該
熱処理物にリチウムを吸蔵させたものを活物質とする電
極は、非水電解質中に於て金属リチウムに対し少なくと
も0〜3Vの電極電位の範囲で安定に繰り返しリチウム
を吸蔵放出(インターカレーション、デインターカレー
ションまたはドープ、脱ドープ等)することができ、こ
のような電極反応により繰り返し充放電可能な二次電池
の負極及び/または正極として用いることができる。特
にリチウム基準極に対し0〜1Vの卑な電位領域におい
て、安定にリチウムイオンを吸蔵放出し繰り返し充放電
できる高容量領域を有する。又、従来この種の電池の電
極として用いられてきたグラファイト等の炭素質材料に
比べ可逆的にリチウムイオンを吸蔵放出できる量即ち充
放電容量が著しく大きく、かつ充放電の分極が小さいた
め、大電流での充放電が可能であり、更に過充電過放電
による分解や結晶崩壊等の劣化が殆ど見られず、極めて
安定でサイクル寿命の長い電池を得ることができる。
A heat-treated product of the organosilicon compound of the present invention or an electrode using the heat-treated product obtained by occluding lithium as an active material has an electrode potential of at least 0 to 3 V with respect to metallic lithium in a non-aqueous electrolyte. It is possible to stably occlude and release lithium (intercalation, deintercalation or doping, dedoping, etc.) repeatedly within a range, and the negative electrode and / or positive electrode of a secondary battery capable of being repeatedly charged and discharged by such an electrode reaction. Can be used as In particular, in a base potential region of 0 to 1 V with respect to the lithium reference electrode, it has a high capacity region in which lithium ions can be occluded and released stably and can be repeatedly charged and discharged. Further, as compared with carbonaceous materials such as graphite that have been conventionally used as electrodes of this type of battery, the amount capable of reversibly occluding and releasing lithium ions, that is, the charging / discharging capacity is extremely large, and the polarization of charging / discharging is small. The battery can be charged and discharged with an electric current, and further, degradation such as decomposition and crystal collapse due to overcharge and overdischarge is hardly seen, and a very stable battery having a long cycle life can be obtained.

【0014】このように優れた充放電特性が得られる理
由は必ずしも明らかではないが、次のように推定され
る。即ち、本発明による新規な活物質である有機ケイ素
化合物の熱処理物は、ケイ素と炭素又はケイ素と炭素及
び酸素を主体とし、それらの原子が直接相互に結合して
網状構造又は3次元網目構造を形成しており、この構造
中でのリチウムイオンの移動度が高く、且つ、リチウム
イオンを吸蔵できるサイトが非常に多いためリチウムイ
オンの吸蔵放出が容易である為と推定される。
The reason why such excellent charge and discharge characteristics are obtained is not always clear, but it is presumed as follows. That is, a heat-treated product of an organosilicon compound which is a novel active material according to the present invention is mainly composed of silicon and carbon or silicon, carbon and oxygen, and their atoms are directly bonded to each other to form a network structure or a three-dimensional network structure. It is presumed that the lithium ions are formed, the mobility of lithium ions in this structure is high, and the number of sites that can store lithium ions is very large, so that it is easy to store and release lithium ions.

【0015】以下、実施例により本発明を更に詳細に説
明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0016】[0016]

【実施例】(実施例1)図1は、本発明に依る非水電解
質二次電池の電極活物質の性能評価に用いたテストセル
の一例を示すコイン型電池の断面図である。図におい
て、1は対極端子を兼ねる対極ケースであり、外側片面
をNiメッキしたステンレス鋼製の板を絞り加工したも
のである。2はステンレス鋼製のネットから成る対極集
電体であり対極ケース1にスポット溶接されている。対
極3は、所定厚みのアルミニウム板を直径15mmに打
ち抜き、対極集電体2に固着し、その上に所定厚みのリ
チウムフォイルを直径14mmに打ち抜いたものを圧着
したものである。7は外側片面をNiメッキしたステン
レス鋼製の作用極ケースであり、作用極端子を兼ねてい
る。5は後述の本発明に依る活物質又は従来法に依る比
較活物質を用いて構成された作用極であり、ステンレス
鋼製のネットからなる作用極集電体6と一体に加圧成形
されている。4はポリプロピレンの多孔質フィルムから
なるセパレータであり、電解液が含浸されている。8は
ポリプロピレンを主体とするガスケットであり、対極ケ
ース1と作用極ケース7の間に介在し、対極と作用極と
の間の電気的絶縁性を保つと同時に、作用極ケース開口
縁が内側に折り曲げられカシメられることに依って、電
池内容物を密封、封止している。電解質はプロピレンカ
ーボネートと1,2−ジメトキシエタンの体積比1:1
混合溶媒に過塩素酸リチウムLiClO4 を1モル/l
溶解したものを用いた。電池の大きさは、外径20m
m、厚さ1.6mmであった。
EXAMPLE 1 FIG. 1 is a sectional view of a coin-type battery showing an example of a test cell used for performance evaluation of an electrode active material of a non-aqueous electrolyte secondary battery according to the present invention. In the figure, reference numeral 1 denotes a counter electrode case which also serves as a counter electrode terminal, which is obtained by drawing a stainless steel plate having Ni plated on one outer surface. Reference numeral 2 denotes a counter electrode current collector made of a stainless steel net, which is spot-welded to the counter electrode case 1. The counter electrode 3 is formed by punching out an aluminum plate having a predetermined thickness to a diameter of 15 mm, fixing it to the counter electrode current collector 2, and pressing a lithium foil having a predetermined thickness punched out to have a diameter of 14 mm on it. Reference numeral 7 denotes a stainless steel working electrode case having one outer surface plated with Ni, which also serves as a working electrode terminal. Reference numeral 5 denotes a working electrode composed of an active material according to the present invention described below or a comparative active material according to a conventional method, which is integrally molded with a working electrode current collector 6 made of a stainless steel net under pressure. There is. 4 is a separator made of a polypropylene porous film, which is impregnated with an electrolytic solution. Reference numeral 8 is a gasket mainly composed of polypropylene, which is interposed between the counter electrode case 1 and the working electrode case 7 to maintain the electrical insulation between the counter electrode and the working electrode, and at the same time the working electrode case opening edge is inward. By folding and crimping, the battery contents are hermetically sealed. The electrolyte is a 1: 1 volume ratio of propylene carbonate and 1,2-dimethoxyethane.
1 mol / l of lithium perchlorate LiClO4 as a mixed solvent
What was melt | dissolved was used. Battery size is 20m outside diameter
m and the thickness was 1.6 mm.

【0017】作用極5は次のようにして作製した。ケイ
素原子に結合したメチル基とフェニル基等の有機基を有
する有機ケイ素化合物重合体であるポリメチルフェニル
シロキサンをキシレンで希釈した溶液(東芝シリコーン
社製シリコーンワニスTSR117)を大気中100゜
Cで5時間加熱乾燥した。次に、この乾燥物を窒素ガス
気流中700゜Cで8時間熱処理し、冷却後、粒径53
μm以下に粉砕整粒した。得られた熱処理物を本発明に
依る活物質aとし、これに導電剤としてグラファイト
を、結着剤として架橋型アクリル酸樹脂等を重量比3
0:65:5の割合で混合して作用極合剤とし、次にこ
の作用極合剤をステンレス鋼製のネットからなる作用極
集電対6と共に2ton/cm2 で直径15mm厚さ
0.5mmのペレットに加圧成形した後、100℃で1
0時間減圧加熱乾燥したものを作用極とした。
The working electrode 5 was manufactured as follows. A solution (silicone varnish TSR117 manufactured by Toshiba Silicone Co., Ltd.) obtained by diluting polymethylphenylsiloxane, which is an organosilicon compound polymer having an organic group such as a methyl group and a phenyl group bonded to a silicon atom, with an atmosphere of 5 at 100 ° C. in the atmosphere. Heat dried for hours. Next, this dried product was heat-treated in a nitrogen gas stream at 700 ° C. for 8 hours, cooled and then cooled to a particle size of
The particles were pulverized and sized to a size of less than μm. The obtained heat-treated product was used as the active material a according to the present invention, and graphite was used as a conductive agent, and a cross-linked acrylic acid resin was used as a binder in a weight ratio of 3
The working electrode mixture is mixed at a ratio of 0: 65: 5, and then this working electrode mixture is used together with the working electrode current collector 6 made of a stainless steel net at 2 ton / cm 2 and the diameter is 15 mm and the thickness is 0.5 mm. After pressure forming into pellets,
What was dried under reduced pressure for 0 hours was used as a working electrode.

【0018】又、比較のため、上記の本発明に依る活物
質aの代わりに、炭素を含まないケイ素だけの酸化物で
ある二酸化ケイ素SiO2 (活物質b)及びケイ素を含
まず炭素のみから成る上記の導電剤に用いたと同じグラ
ファイト(活物質c)を活物質として用いた他は、上記
の本発明の作用極の場合と同様にして、同様な電極(比
較用作用極)を作成した。
For comparison, instead of the active material a according to the present invention, silicon dioxide SiO2 (active material b) which is an oxide of only silicon without carbon and silicon without carbon is used instead. A similar electrode (comparative working electrode) was prepared in the same manner as in the case of the working electrode of the present invention, except that the same graphite (active material c) as that used for the above-mentioned conductive agent was used as the active material.

【0019】このようにして作製された電池は、室温で
1週間放置エージングされた後、後述の充放電試験が行
われた。このエージングによって、対極のリチウム−ア
ルミニウム積層電極は電池内で非水電解液に触れること
により十分合金化が進行し、リチウムフォイルは実質的
に全てLi−Al合金となるため、電池電圧は、対極と
して金属リチウムを単独で用いた場合に比べて約0.4
V低下した値となって安定した。
The battery thus manufactured was aged for 1 week at room temperature and then subjected to the charge / discharge test described below. By this aging, the lithium-aluminum laminated electrode of the counter electrode is sufficiently alloyed by touching the non-aqueous electrolyte in the battery, and the lithium foil is substantially all Li-Al alloy. As compared with the case where metallic lithium is used alone, it is about 0.4
The value decreased by V and became stable.

【0020】このようにして作製した電池を、以下、そ
れぞれの使用した作用極の活物質a,b,cに対応し、
電池A,B,Cと略記する。これらの電池A,B及びC
を0.4mAの定電流で、充電(作用極にリチウムイオ
ンが吸蔵される電池反応をする電流方向)の終止電圧−
0.4V、放電(作用極からリチウムイオンが放出され
る電池反応をする電流方向)の終止電圧2.5Vの条件
で充放電サイクルを行ったときの3サイクル目の充電特
性を図2に、放電特性を図3に示した。又、サイクル特
性を図4に示した。尚、充放電サイクルは充電からスタ
ートした。図2〜4から明らかなように、本発明による
電池Aは比較電池B及びCに比べ、充放電容量が著しく
大きく、充放電の可逆領域が著しく拡大することが分か
る。又、充放電の繰り返しによる放電容量の低下(サイ
クル劣化)が著しく小さい。更に、全充放電領域に渡っ
て充電と放電の作動電圧の差が著しく小さくなってお
り、電池の分極(内部抵抗)が著しく小さく、大電流充
放電が容易なことが分かる。これは、上述のように本発
明に依る電池Aの作用極の活物質である有機ケイ素化合
物の熱処理物に於いては、ケイ素と炭素が共存し、それ
らの原子が直接相互に結合した網状構造又は3次元網目
構造を有することによりリチウムイオンの移動度が高
く、かつリチウムイオンを吸蔵できるサイトが多いため
と推定される。
The batteries thus produced will be described below in correspondence with the active materials a, b and c of the working electrodes used.
The batteries A, B, and C are abbreviated. These batteries A, B and C
At a constant current of 0.4 mA, the end voltage of charging (current direction in which battery reaction in which lithium ions are occluded in the working electrode) −
FIG. 2 shows the charge characteristics of the third cycle when a charge / discharge cycle was performed under the conditions of 0.4 V and a final voltage of 2.5 V of discharge (current direction in which battery reaction in which lithium ions are released from the working electrode). The discharge characteristics are shown in FIG. The cycle characteristics are shown in FIG. The charging / discharging cycle started from charging. As is clear from FIGS. 2 to 4, it can be seen that the battery A according to the present invention has a significantly larger charge / discharge capacity and a reversible charge / discharge region is significantly expanded as compared with the comparative batteries B and C. Further, the decrease in discharge capacity (cycle deterioration) due to repeated charging and discharging is extremely small. Further, it can be seen that the difference in operating voltage between charging and discharging is extremely small over the entire charging / discharging region, the polarization (internal resistance) of the battery is extremely small, and large-current charging / discharging is easy. As described above, in the heat-treated product of the organic silicon compound which is the active material of the working electrode of the battery A according to the present invention, the network structure in which silicon and carbon coexist and those atoms are directly bonded to each other is used. It is presumed that the mobility of lithium ions is high due to having a three-dimensional network structure and there are many sites that can store lithium ions.

【0021】(実施例2)実施例1で用いたのと同様な
ポリメチルフェニルシロキサンの乾燥物を大気中200
゜Cで5時間熱処理した後、粒径53μm以下に粉砕整
粒して活物質dを作製した。このようにして得られた有
機ケイ素化合物の熱処理物を作用極の活物質として用い
た以外は、すべて実施例1と同様にして同様な電池Dを
作製した。
Example 2 A dried product of the same polymethylphenylsiloxane as that used in Example 1 was used in air at 200
After heat-treatment at ° C for 5 hours, the active material d was prepared by pulverizing and sizing to a particle size of 53 µm or less. A similar battery D was produced in the same manner as in Example 1 except that the heat-treated organosilicon compound thus obtained was used as the active material of the working electrode.

【0022】このようにして得られた電池Dについても
実施例1と同様な充放電サイクル試験を行った。この時
の結果を実施例1と同様に、図2〜4に併記して示し
た。図から明かなように、本実施例の電池Dは、実施例
1の本発明に依る電池Aと同様に優れた充放電特性を有
することが判る。又、本発明に依る電池A及びDの活物
質a及びdはLi−Al合金電極に対して1.0〜2.
5V(金属リチウムに対して約1.4〜2.9Vに対応
する)の貴な電位領域と同様、もしくはそれ以上に、−
0.4〜+0.6V(金属リチウムに対して約0〜1V
に対応する)の卑な電位領域の充放電容量が大きいこと
から、非水電解質二次電池の正極活物質として用いられ
るのみならず、負極活物質としても優れていることが判
る。特に、本実施例2の活物質dは卑な電位領域での充
放電容量がより大きく、かつより卑な電位を有してお
り、負極活物質として特に優れている。
The battery D thus obtained was subjected to the same charge / discharge cycle test as in Example 1. The results at this time are also shown in FIGS. As is apparent from the figure, the battery D of this example has excellent charge / discharge characteristics as the battery A of the first example according to the present invention. Further, the active materials a and d of the batteries A and D according to the present invention are 1.0 to 2.
5V (corresponding to about 1.4 to 2.9V with respect to metallic lithium), as well as or above the noble potential region,
0.4 to + 0.6V (about 0 to 1V against metallic lithium)
(Corresponding to (1)), the charge and discharge capacities in the base potential region are large, and thus it is found that not only it is used as the positive electrode active material of the non-aqueous electrolyte secondary battery, but also as the negative electrode active material. In particular, the active material d of Example 2 has a larger charge / discharge capacity in a base potential region and a base potential, and is particularly excellent as a negative electrode active material.

【0023】尚、実施例においては、対極としてリチウ
ム−アルミニウム合金の場合のみを示したが、本発明は
実施例に限定されず、前述のように、金属リチウム、リ
チウムとZn,Sn,Pb,Bi等の他金属との合金、
炭素やMoO2,WO2,Fe 23等のリチウム挿入化合
物、ポリアセチレン,ポリピロール,ポリアセン等のリ
チウムイオンをドープ可能な導電性高分子等々のリチウ
ムを吸蔵放出可能な物質を活物質とする負極や、TiS
2,MoS2,NbSe3等の金属カルコゲン化物、Mn
2,MoO3,V25,LiXCoO2,LiX Ni
2,LiXMn24等の金属酸化物、ポリアニリン、ポ
リピロール、ポリパラフェニレン、ポリアセン等の導電
性高分子、グラファイト層間化合物等々のようなリチウ
ムカチオン及び/またはアニオンを吸蔵放出可能な物質
を活物質とする正極を対極として本発明に依る電極と組
合わせて用いることができることは言うまでもない。
In the embodiment, lithium is used as the counter electrode.
Although only the case of the aluminum alloy is shown, the present invention
The invention is not limited to the examples, and as described above, metallic lithium, lithium
Alloys of titanium with other metals such as Zn, Sn, Pb, Bi,
Carbon and MoO2, WO2, Fe 2O3Lithium insertion compounds such as
Materials, polyacetylene, polypyrrole, polyacene, etc.
Lithium such as conductive polymer that can be doped with thion ion
Negative electrode that uses a substance capable of occluding and releasing titanium oxide as the active material, and TiS
2, MoS2, NbSe3Metal chalcogenides such as Mn
O2, MoO3, V2OFive, LiXCoO2, LiX Ni
O2, LiXMn2OFourMetal oxides such as polyaniline,
Conductivity of lipyrole, polyparaphenylene, polyacene, etc.
Lithium such as conductive polymers, graphite intercalation compounds, etc.
Substances capable of occluding and releasing cations and / or anions
A positive electrode using as an active material a counter electrode and an electrode according to the present invention
It goes without saying that they can be used together.

【0024】[0024]

【発明の効果】以上詳述したように、本発明は、非水電
解質二次電池の負極と正極の少なくとも一方の電極の活
物質として、ケイ素と炭素の直接結合を有する有機ケイ
素化合物の熱処理物又は該熱処理物にリチウムを吸蔵さ
せたものから成る新規な活物質を用いたものであり、充
放電により可逆的にリチウムイオンを吸蔵放出できる量
即ち充放電容量が著しく大きく、かつ充放電の分極が小
さいため、大電流での充放電が可能であり、更に過充電
過放電による分解や結晶崩壊等の劣化が殆ど見られず、
極めて安定でサイクル寿命の長い電池を得ることができ
る。又、特に、本発明による該活物質を負極活物質とし
て用いた場合には、高電圧かつ高エネルギー密度の電池
を得ることができる等々優れた効果を有する。
INDUSTRIAL APPLICABILITY As described above in detail, the present invention provides a heat-treated product of an organic silicon compound having a direct bond between silicon and carbon as an active material of at least one of the negative electrode and the positive electrode of a non-aqueous electrolyte secondary battery. Alternatively, the heat-treated product uses a novel active material composed of lithium occluded, and the amount capable of reversibly occluding and releasing lithium ions by charging / discharging, that is, the charging / discharging capacity is extremely large, and the polarization of charging / discharging is Since it is small, it can be charged and discharged with a large current, and degradation such as decomposition and crystal collapse due to overcharge and overdischarge is hardly seen,
An extremely stable battery with a long cycle life can be obtained. Further, in particular, when the active material according to the present invention is used as a negative electrode active material, there are excellent effects such that a battery having high voltage and high energy density can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において実施した電池の構造の一例を示
した説明図である。
FIG. 1 is an explanatory diagram showing an example of the structure of a battery implemented in the present invention.

【図2】本発明による電池と従来電池の3サイクル目の
充電特性の比較を示した説明図である。
FIG. 2 is an explanatory diagram showing a comparison of the charging characteristics in the third cycle between the battery according to the present invention and the conventional battery.

【図3】本発明による電池と従来電池の3サイクル目の
放電特性の比較を示した説明図である。
FIG. 3 is an explanatory diagram showing a comparison of the discharge characteristics at the third cycle between the battery according to the present invention and the conventional battery.

【図4】本発明による電池と従来電池のサイクル特性の
比較を示した説明図である。
FIG. 4 is an explanatory diagram showing a comparison of cycle characteristics of a battery according to the present invention and a conventional battery.

【符号の説明】[Explanation of symbols]

1 対極ケース 2 対極集電体 3 対極 4 セパレータ 5 作用極 6 作用極集電体 7 作用極ケース 8 ガスケット 1 counter electrode case 2 counter electrode current collector 3 counter electrode 4 separator 5 working electrode 6 working electrode current collector 7 working electrode case 8 gasket

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負極と正極とリチウムイオン導電性の非
水電解質とから少なくとも成る非水電解質二次電池にお
いて、負極と正極の少なくとも一方の電極の活物質とし
て、ケイ素Siと炭素Cの直接結合を有する有機ケイ素
化合物の熱処理物又は該熱処理物にリチウムを吸蔵させ
たものを用いたことを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising at least a negative electrode, a positive electrode, and a lithium ion conductive non-aqueous electrolyte, wherein silicon Si and carbon C are directly bonded as an active material of at least one of the negative electrode and the positive electrode. A non-aqueous electrolyte secondary battery characterized by using a heat-treated product of an organosilicon compound having: or a heat-treated product obtained by occluding lithium.
【請求項2】有機ケイ素化合物としてシリコーン(ポリ
オルガノシロキサン)を用いたことを特徴とする請求項
1に記載の非水電解質二次電池用の負極活物質及び/ま
たは正極活物質の製造方法。
2. The method for producing a negative electrode active material and / or a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein silicone (polyorganosiloxane) is used as the organosilicon compound.
JP3309416A 1991-11-25 1991-11-25 Non-aqueous electrolyte secondary battery and method for producing active material thereof Expired - Lifetime JP3060077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3309416A JP3060077B2 (en) 1991-11-25 1991-11-25 Non-aqueous electrolyte secondary battery and method for producing active material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3309416A JP3060077B2 (en) 1991-11-25 1991-11-25 Non-aqueous electrolyte secondary battery and method for producing active material thereof

Publications (2)

Publication Number Publication Date
JPH05144474A true JPH05144474A (en) 1993-06-11
JP3060077B2 JP3060077B2 (en) 2000-07-04

Family

ID=17992742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3309416A Expired - Lifetime JP3060077B2 (en) 1991-11-25 1991-11-25 Non-aqueous electrolyte secondary battery and method for producing active material thereof

Country Status (1)

Country Link
JP (1) JP3060077B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024135A1 (en) * 1996-11-26 1998-06-04 Kao Corporation Negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery
EP1011160A1 (en) * 1998-05-25 2000-06-21 Kao Corporation Method of manufacturing secondary battery negative electrode
JP2007294422A (en) * 2006-03-27 2007-11-08 Shin Etsu Chem Co Ltd Sico-li based composite and its manufacturing method, as well as negative electrode material for nonaqueous electrolyte secondary battery
US20120264020A1 (en) * 2010-10-07 2012-10-18 Applied Sciences, Inc. Method of depositing silicon on carbon nanomaterials
KR101310531B1 (en) * 2006-03-27 2013-09-23 신에쓰 가가꾸 고교 가부시끼가이샤 SiCO-Li COMPOSIT, MAKING METHOD, AND NON-AQUEOUS ELECTROLYTE SECONDARY CELL NEGATIVE ELECTRODE MATERIAL
CN105576248A (en) * 2016-02-25 2016-05-11 中国科学院金属研究所 Composite conductive agent slurry for silicon-carbon anode and preparation method and application thereof
WO2022009572A1 (en) 2020-07-07 2022-01-13 Dic株式会社 Active material for battery, composite active material for battery, and secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102207529B1 (en) 2018-03-14 2021-01-26 주식회사 엘지화학 Amorphous silicon-carbon complex, manufacturing method thereof and lithium secondary battery comprising the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024135A1 (en) * 1996-11-26 1998-06-04 Kao Corporation Negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery
US6171725B1 (en) 1996-11-26 2001-01-09 Kao Corporation Negative electrode material for non-aqueous secondary battery
EP1011160A1 (en) * 1998-05-25 2000-06-21 Kao Corporation Method of manufacturing secondary battery negative electrode
US6432579B1 (en) 1998-05-25 2002-08-13 Kao Corporation Method of manufacturing secondary battery negative electrode
EP1011160A4 (en) * 1998-05-25 2007-07-18 Kao Corp Method of manufacturing secondary battery negative electrode
JP2007294422A (en) * 2006-03-27 2007-11-08 Shin Etsu Chem Co Ltd Sico-li based composite and its manufacturing method, as well as negative electrode material for nonaqueous electrolyte secondary battery
KR101310531B1 (en) * 2006-03-27 2013-09-23 신에쓰 가가꾸 고교 가부시끼가이샤 SiCO-Li COMPOSIT, MAKING METHOD, AND NON-AQUEOUS ELECTROLYTE SECONDARY CELL NEGATIVE ELECTRODE MATERIAL
US20120264020A1 (en) * 2010-10-07 2012-10-18 Applied Sciences, Inc. Method of depositing silicon on carbon nanomaterials
CN105576248A (en) * 2016-02-25 2016-05-11 中国科学院金属研究所 Composite conductive agent slurry for silicon-carbon anode and preparation method and application thereof
WO2022009572A1 (en) 2020-07-07 2022-01-13 Dic株式会社 Active material for battery, composite active material for battery, and secondary battery
KR20230030569A (en) 2020-07-07 2023-03-06 디아이씨 가부시끼가이샤 Active materials for batteries, composite active materials for batteries, and secondary batteries

Also Published As

Publication number Publication date
JP3060077B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US5506075A (en) Non-aqueous electrolyte secondary battery and method of producing the same
JP2997741B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP4957944B2 (en) Secondary battery
JPH05174818A (en) Manufacture of nonaqueous electrolyte secondary battery and negative electrode active material thereof
JP2004273153A (en) Battery
JP2003229172A (en) Nonaqueous electrolyte battery
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
JP2005166290A (en) Electrolyte and battery using it
JP3060077B2 (en) Non-aqueous electrolyte secondary battery and method for producing active material thereof
JPH10208741A (en) Lithium secondary battery
JP2001250543A (en) Lithium secondary battery
JP2004319212A (en) Electrolyte and battery using it
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JPH0696759A (en) Nonaqueous electrolytic secondary battery and manufacture of active material used therefor
JP2000243449A (en) Nonaqueous electrolyte secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2001093571A (en) Non-aqueous electrolyte battery
JP3390195B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JP2000077099A (en) Battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 12