JPH0696759A - Nonaqueous electrolytic secondary battery and manufacture of active material used therefor - Google Patents

Nonaqueous electrolytic secondary battery and manufacture of active material used therefor

Info

Publication number
JPH0696759A
JPH0696759A JP4227646A JP22764692A JPH0696759A JP H0696759 A JPH0696759 A JP H0696759A JP 4227646 A JP4227646 A JP 4227646A JP 22764692 A JP22764692 A JP 22764692A JP H0696759 A JPH0696759 A JP H0696759A
Authority
JP
Japan
Prior art keywords
active material
electrode
lithium
battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4227646A
Other languages
Japanese (ja)
Inventor
Yasuhiko Sasaki
安彦 佐々木
Kensuke Tawara
謙介 田原
Hideki Ishikawa
英樹 石川
Seiji Yahagi
誠治 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Seiko Instruments Inc
Original Assignee
Seiko Electronic Components Ltd
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd, Seiko Instruments Inc filed Critical Seiko Electronic Components Ltd
Priority to JP4227646A priority Critical patent/JPH0696759A/en
Publication of JPH0696759A publication Critical patent/JPH0696759A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a battery having satisfactory charge/discharge characteristic and a long cycle life by using, as an electrode active material, a thermally treated material of an organic Si compound having one or more coupling parts of Si having an organic group and O or a one having Li stored therein. CONSTITUTION:An organosiloxane such as Si oil which is a polymer consisting of a main chain in which Si having an organic group and O are alternately bonded to each other is used. This compound is treated at 200-600 deg.C in the atmosphere or at 300-1000 deg.C in vacuum or inert atmosphere. The optimum temperature is differed depending on starting materials. The thermally treated material or a mixing agent of the thermally treated material with 8 conductive agent and a binder is molded to form one electrode, and 8 current is carried thereto with a Li-contained material as a counter electrode to store Li ions. As an electrolyte, a solution 10 which LiClO4 is dissolved in gamma-butyrolactone is use. This electrode can stably store and release Li ions within the range of 0-3V to the metal Li in nonaqueous electrolyte, and used as the negative electrode and/or positive electrode of a secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、リチウムもしくはリ
チウムを吸蔵放出可能な物質を負極活物質及び/又は正
極活物質とし、リチウムイオン導電性の非水電解質を用
いる非水電解質二次電池に関するものであり、繰り返し
充放電が可能で、高容量かつ過充電過放電特性の優れ
た、新規な負極活物質及び正極活物質に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using lithium or a substance capable of inserting and extracting lithium as a negative electrode active material and / or a positive electrode active material and using a lithium ion conductive non-aqueous electrolyte. The present invention relates to a novel negative electrode active material and positive electrode active material that can be repeatedly charged and discharged, have high capacity, and have excellent overcharge and overdischarge characteristics.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギ−密度で、かつ自己
放電が小さく長期信頼性に優れる等の利点により、一次
電池としてはメモリ−バックアップ用、カメラ用等の電
源として既に広く用いられている。しかしながら、近年
携帯型の電子機器、通信機器等の著しい発展に伴い、電
源としての電池に対し大電流出力を要求する機器が多種
多様に出現し、経済性と機器の小型軽量化の観点から、
再充放電可能で、かつ高エネルギ−密度の二次電池が強
く要望されている。このため、高エネルギ−密度を有す
る前記非水電解質電池の二次電池化を進める研究開発が
活発に行われ、一部実用化されているが、エネルギ−密
度、充放電サイクル寿命、信頼性等まだまだ不十分であ
る。
2. Description of the Related Art A non-aqueous electrolyte battery using lithium as a negative electrode active material has a high voltage, a high energy density, a small self-discharge and excellent long-term reliability. It is already widely used as a power source for cameras. However, in recent years, with the remarkable development of portable electronic devices, communication devices, and the like, a wide variety of devices that require a large current output for a battery as a power source have appeared, and from the viewpoint of economy and reduction in size and weight of the device,
There is a strong demand for rechargeable / dischargeable secondary batteries with high energy density. For this reason, research and development for making the non-aqueous electrolyte battery having a high energy density into a secondary battery have been actively carried out and partially put into practical use, but energy density, charge / discharge cycle life, reliability, etc. It is still insufficient.

【0003】従来、この種の二次電池の正極を構成する
正極活物質としては、充放電反応の形態に依り下記の3
種のタイプのものが見い出されている。第1のタイプ
は、TiS2,MoS2,NbSe3等の金属カルコゲン
化物や、MnO2,MoO3,V25,LiXCoO2,L
XNiO2,LixMn24等の金属酸化物等々の様
に、結晶の層間や格子位置又は格子間隙間にリチウムイ
オン(カチオン)のみがインターカレーション、デイン
ターカレーション反応等に依り出入りするタイプ。第2
のタイプは、ポリアニリン、ポリピロール、ポリパラフ
ェニレン等の導電性高分子の様な、主としてアニオンの
みが安定にドープ、脱ドープ反応に依り出入りするタイ
プ。第3のタイプは、グラファイト層間化合物やポリア
セン等の導電性高分子等々の様な、リチウムカチオンと
アニオンが共に出入り可能なタイプ(インターカレーシ
ョン、デインターカレーション又はドープ、脱ドープ
等)である。
Conventionally, as the positive electrode active material constituting the positive electrode of this type of secondary battery, depending on the form of charge / discharge reaction, the following 3
Some types of species have been found. The first type is a metal chalcogenide such as TiS 2 , MoS 2 , NbSe 3 or MnO 2 , MoO 3 , V 2 O 5 , Li X CoO 2 , L.
Like metal oxides such as i x NiO 2 and Li x Mn 2 O 4, only lithium ions (cations) are involved in intercalation and deintercalation reactions between crystal layers, lattice positions or lattice gaps. Type that goes in and out. Second
Type is a type such as polyaniline, polypyrrole, polyparaphenylene, etc., in which only anions are stably doped and dedoped due to conductive polymers such as conductive polymers. The third type is a type (intercalation, deintercalation or doping, dedoping, etc.) in which both lithium cations and anions can enter and exit, such as graphite intercalation compounds and conductive polymers such as polyacene. .

【0004】一方、この種の電池の負極を構成する負極
活物質としては、金属リチウムを単独で用いた場合が電
極電位が最も卑であるため、上記の様な正極活物質を用
いた正極と組み合わせた電池としての出力電圧が最も高
く、エネルギー密度も高く好ましいが、充放電に伴い負
極上にデンドライトや不働体化合物が生成し、充放電に
よる劣化が大きく、サイクル寿命が短いという問題があ
った。この問題を解決するため、負極として(1)リチ
ウムとAl,Zn,Sn,Pb,Bi,Cd等の他金属
との合金、(2)WO2,MoO2,Fe23,TiS2
等の無機化合物やグラファイト、有機物を焼成して得ら
れる炭素質材料等々の結晶構造中にリチウムイオンを吸
蔵させた層間化合物あるいは挿入化合物、(3)リチウ
ムイオンをド−プしたポリアセンやポリアセチレン等の
導電性高分子等々のリチウムイオンを吸蔵放出可能な物
質を用いることが提案されている。
On the other hand, as the negative electrode active material constituting the negative electrode of this type of battery, when metal lithium is used alone, the electrode potential is the most base, so that the positive electrode using the positive electrode active material as described above is used. The combined battery has the highest output voltage and high energy density, which is preferable, but there was a problem that dendrites and passivation compounds were formed on the negative electrode during charging and discharging, and deterioration due to charging and discharging was large and cycle life was short. . In order to solve this problem, as a negative electrode, (1) an alloy of lithium and another metal such as Al, Zn, Sn, Pb, Bi and Cd, (2) WO 2 , MoO 2 , Fe 2 O 3 , TiS 2
Intercalation compounds or intercalation compounds in which lithium ions are occluded in the crystal structures of inorganic compounds such as graphite, carbonaceous materials obtained by firing organic substances, and (3) polyacenes and polyacetylenes doped with lithium ions It has been proposed to use a substance capable of inserting and extracting lithium ions such as a conductive polymer.

【0005】[0005]

【発明が解決しようとする課題】しかし、一般に、負極
活物質として上記の様な金属リチウム以外のリチウムイ
オンを吸蔵放出可能な物質を用いた負極と、前記の様な
正極活物質を用いた正極とを組合せて電池を構成した場
合には、これらの物質の電極電位が金属リチウムの電極
電位より貴であるため、電池の作動電圧が負極活物質と
して金属リチウムを単独で用いた場合よりかなり低下す
るという欠点がある。例えば、リチウムとAl,Zn,
Pb,Sn,Bi,Cd等の合金を用いる場合には0.
2〜0.8V、炭素−リチウム層間化合物では0〜1
V、MoO2やWO2等のリチウムイオン挿入化合物では
0.5〜1.5V作動電圧が低下する。
However, in general, a negative electrode using a substance capable of occluding and releasing lithium ions other than metallic lithium as described above as a negative electrode active material, and a positive electrode using the positive electrode active material as described above. When a battery is constructed by combining and, the electrode potential of these substances is nobler than the electrode potential of metallic lithium, so the operating voltage of the battery is significantly lower than when metallic lithium is used alone as the negative electrode active material. There is a drawback that For example, lithium and Al, Zn,
When an alloy such as Pb, Sn, Bi, Cd is used, it is 0.
2 to 0.8 V, 0 to 1 for carbon-lithium intercalation compound
The lithium-ion insertion compounds such as V, MoO 2 and WO 2 lower the operating voltage by 0.5 to 1.5V.

【0006】更に、リチウム以外の元素も負極構成要素
となるため、体積当り及び重量当りの容量及びエネルギ
ー密度が著しく低下する。このため、充放電特性が優
れ、サイクル寿命が長く、かつ高電圧、高エネルギ−密
度の二次電池を得るためには、リチウムに対する電極電
位が低く(卑な)、かつ可逆的にリチウムイオンを吸蔵
放出できる量の大きい負極活物質が必要である。
Furthermore, since elements other than lithium are also constituent elements of the negative electrode, the capacity and energy density per volume and weight are significantly reduced. Therefore, in order to obtain a secondary battery having excellent charge / discharge characteristics, long cycle life, high voltage, and high energy density, the electrode potential for lithium is low (base) and reversible lithium ion is used. A negative electrode active material that can store and release a large amount is required.

【0007】一方、上記の正極活物質に於て、第1のタ
イプは、一般にエネルギー密度は大きいが、過充電や過
放電すると結晶の崩壊や不可逆物質の生成等による劣化
が大きいという欠点がある。又、第2、第3のタイプで
は、逆に容量及びエネルギー密度が小さいという欠点が
ある。
On the other hand, of the above-mentioned positive electrode active materials, the first type generally has a large energy density, but has a drawback that if it is overcharged or overdischarged, it is greatly deteriorated due to crystal collapse or generation of an irreversible substance. . On the contrary, the second and third types have a drawback that the capacity and energy density are small.

【0008】このため、過充電特性及び過放電特性が優
れ、かつ高容量、高エネルギー密度の二次電池を得るた
めには過充電過放電に依る結晶の崩壊や不可逆物質の生
成が無く、かつ可逆的にリチウムイオンを吸蔵放出でき
る量のより大きい正極活物質が必要である。
Therefore, in order to obtain a secondary battery having excellent overcharge characteristics and overdischarge characteristics, and having a high capacity and a high energy density, there is no crystal collapse or irreversible substance formation due to overcharge / overdischarge, and A positive electrode active material having a larger amount capable of reversibly inserting and extracting lithium ions is required.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の様な問
題点を解決するため、この種の電池の負極及び/又は正
極の電極の活物質として、有機基を有するケイ素と酸素
の結合部位を少なくとも1つ以上有する有機ケイ素化合
物の熱処理物又は該熱処理物にリチウムを吸蔵させたも
のから成る新規なリチウムイオン吸蔵放出可能物質を用
いることを提起するものである。
In order to solve the above problems, the present invention provides a bond between silicon and oxygen having an organic group as an active material of the negative electrode and / or the positive electrode of this type of battery. It is proposed to use a novel lithium ion storage / release material comprising a heat-treated product of an organic silicon compound having at least one site or a product obtained by storing lithium in the heat-treated product.

【0010】本発明電池の負極及び/又は正極の活物質
として用いられる有機ケイ素化合物の熱処理物は次のよ
うにして製造することが出来る。原料の有機ケイ素化合
物としては、有機基を側鎖として持つケイ素と酸素の結
合部位を少なくとも1つ以上持つ化合物であればよい。
中でも、有機基を持つケイ素と酸素が交互に結合してで
きた主鎖からなるポリマーであるシリコーンオイルやシ
リコーンゴム、あるいはシリコーン樹脂等が好ましい。
これらの化合物は総称して、ポリオルガノシロキサンと
言われる。ケイ素に結合した有機基は、炭化水素基、ア
ルコキシ基、-N-R1R2(R1,R2はアルキル基、アリル基、
フェニル基、水素等)で示されるアンモニウム基等で有
れば良く、炭素に結合している一部又は全部の水素が塩
素、臭素、ヨウ素等のハロゲン原子に置換されていても
良い。中でも有機基としては、メチル基(-CH3)、エチ
ル基(-C2H5)、フェニル基(-C6H5)、メトキシ基(-O
CH 3)、エトキシ基(-OC2H5)等が好ましい。
Negative electrode and / or positive electrode active material of the battery of the present invention
The heat-treated products of organosilicon compounds used as
Can be manufactured in this way. Organic silicon compound of raw material
As a product, a bond between silicon and oxygen having an organic group as a side chain is formed.
Any compound may be used as long as it has at least one compounding site.
Above all, silicon and oxygen, which have organic groups, are bonded alternately.
Silicone oil and silicone
Recone rubber or silicone resin is preferred.
These compounds are collectively referred to as polyorganosiloxane and
Be told. The organic group bonded to silicon is a hydrocarbon group,
Lucoxy group, -N-R1R2(R1, R2Is an alkyl group, an allyl group,
Phenyl group, hydrogen group, etc.)
All or part of the hydrogen bonded to carbon is a salt.
Even if it is substituted with a halogen atom such as elemental, bromine or iodine
good. Among them, the methyl group (-CH3), Echi
Lu group (-C2HFive), Phenyl group (-C6HFive), Methoxy group (-O
CH 3), Ethoxy group (-OC2HFive) Etc. are preferable.

【0011】これらの有機ケイ素化合物を200〜10
00℃の範囲の適当な温度で加熱処理する事により、部
分的に縮重合反応あるいは分解が起き、3次元網目構造
の化合物が生成する。特に大気中での熱処理の場合に
は、200℃〜600℃、真空中または不活性雰囲気中
での熱処理の場合には300℃〜1000℃が好まし
い。最適な熱処理温度は、原料化合物の分子量、分子構
造さらに架橋状態、あるいはケイ素、炭素、酸素等の元
素の原料分子中に含まれる割合の違い、等により異な
る。
200 to 10 of these organosilicon compounds
By heat treatment at an appropriate temperature in the range of 00 ° C., a polycondensation reaction or decomposition partially occurs and a compound having a three-dimensional network structure is produced. Particularly, in the case of heat treatment in the air, 200 ° C to 600 ° C is preferable, and in the case of heat treatment in vacuum or in an inert atmosphere, 300 ° C to 1000 ° C is preferable. The optimum heat treatment temperature depends on the molecular weight of the raw material compound, the molecular structure, the cross-linking state, the difference in the proportion of elements such as silicon, carbon, oxygen contained in the raw material molecule, and the like.

【0012】又、この熱処理物へのリチウムの吸蔵は、
次の様にして行うことが出来る。即ち、(1)該熱処理
物又は該熱処理物と導電剤及び結着剤等との混合合剤を
所定形状に成形したものを一方の電極(作用極)とし、
リチウムメタル又はリチウムを含有する物質をもう一方
の電極(対極)として、リチウムイオン導電性の非水電
解質に接して両電極を対向させて電解セルを構成し、作
用極がカソード反応をする方向に適当な電流で通電し電
気化学的にリチウムイオンを吸蔵させる方法。
The storage of lithium in this heat-treated product is
It can be done as follows. That is, (1) one of the electrodes (working electrode) is formed by molding the heat-treated product or a mixture of the heat-treated product and a conductive agent, a binder and the like into a predetermined shape.
Using lithium metal or a substance containing lithium as the other electrode (counter electrode), a lithium ion conductive non-aqueous electrolyte is brought into contact with both electrodes to form an electrolytic cell, and the working electrode is oriented in the direction of cathodic reaction. A method of occluding lithium ions electrochemically by energizing with an appropriate current.

【0013】(2)該熱処理物又は該熱処理物と導電剤
及び結着剤等との混合合剤を所定形状に成形し、これに
リチウムメタルもしくはリチウムの合金等を圧着あるい
は接触させて積層電極としたものを電極として電池に組
み込む。電池内でこの積層電極が電解質に触れることに
より自己放電し電気化学的にリチウムが吸蔵される方
法。
(2) The heat-treated product or a mixture of the heat-treated product and a conductive agent, a binder or the like is molded into a predetermined shape, and lithium metal or a lithium alloy or the like is pressure-bonded or brought into contact with the laminated electrode. These are incorporated into a battery as electrodes. A method in which this laminated electrode contacts the electrolyte in the battery and self-discharges to electrochemically occlude lithium.

【0014】(3)該熱処理物を一方の電極の活物質と
し、もう一方の電極にリチウムを含有しリチウムイオン
を吸蔵放出可能な活物質を用いた電池を構成する。電池
として使用中に充放電を行うことにより該熱処理物にリ
チウムが吸蔵される方法。この様にして得られる熱処理
物または該熱処理物にリチウムを吸蔵させたものを負極
及び/または正極の活物質として用いる。
(3) A battery is constructed using the heat-treated product as an active material for one electrode and the other electrode containing an active material containing lithium and capable of inserting and extracting lithium ions. A method in which lithium is occluded in the heat-treated product by performing charging and discharging during use as a battery. The heat-treated product thus obtained or the heat-treated product obtained by occluding lithium is used as the active material of the negative electrode and / or the positive electrode.

【0015】本発明に依る有機ケイ素化合物の熱処理物
または該熱処理物にリチウムを吸蔵させたものを活物質
とする電極は、これを正負両極に用いて二次電池を構成
することが出来るし、又、これを正極または負極の何れ
か一方の電極として用い、前述のリチウムもしくはリチ
ウムイオンを吸蔵放出可能な各種の他の負極活物質又は
正極活物質を用いた電極をもう一方の電極として組み合
わせて用いることもできる。特に、本発明の有機ケイ素
化合物の熱処理物または該熱処理物にリチウムを吸蔵さ
せたものを活物質とする電極は、金属リチウムに対する
電極電位が1V以下の卑な領域の充放電容量が大きいこ
とから、これを負極として用い、前述の金属酸化物や金
属カルコゲン化物等々の様な金属リチウムに対する電極
電位が2V以上の高電位の活物質を用いた正極と組み合
わせることにより高電圧高エネルギー密度でかつ大電流
充放電特性に優れ、過充電過放電による劣化の小さい二
次電池が得られるので、特に好ましい。
The heat-treated product of the organosilicon compound according to the present invention or the electrode having the heat-treated product obtained by occluding lithium as the active material can be used as a positive and negative electrode to form a secondary battery. Also, by using this as either the positive electrode or the negative electrode, the above-mentioned various negative electrode active materials capable of inserting and extracting lithium or lithium ions or the electrodes using the positive electrode active material are combined as the other electrode. It can also be used. In particular, a heat-treated product of the organosilicon compound of the present invention or an electrode using the heat-treated product obtained by occluding lithium as an active material has a large charge / discharge capacity in a base region where the electrode potential with respect to metallic lithium is 1 V or less. By using this as a negative electrode and combining it with a positive electrode using an active material having a high potential of 2 V or more for metal lithium such as the above-mentioned metal oxides and metal chalcogenides, a high voltage, high energy density and high It is particularly preferable because a secondary battery having excellent current charge / discharge characteristics and little deterioration due to overcharge / overdischarge can be obtained.

【0016】一方、電解質としては、γ−ブチロラクト
ン、プロピレンカ−ボネ−ト、エチレンカ−ボネ−ト、
ブチレンカ−ボネ−ト、ジメチルカーボネート、ジエチ
ルカーボネート、1、2−ジメトキシエタン、テトラヒ
ドロフラン、ジオキソラン、ジメチルフォルムアミド等
の有機溶媒の単独又は混合溶媒に支持電解質としてLi
ClO4,LiPF6,LiBF4,LiCF3SO3等の
リチウムイオン解離性塩を溶解した有機電解液、ポリエ
チレンオキシドやポリフォスファゼン架橋体等の高分子
に前記リチウム塩を固溶させた高分子固体電解質あるい
はLi3N,LiI等の無機固体電解質等のリチウムイ
オン導電性の非水電解質であれば良い。
On the other hand, as the electrolyte, γ-butyrolactone, propylene carbonate, ethylene carbonate,
Lithium as a supporting electrolyte in an organic solvent such as butylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolane or dimethylformamide, alone or in a mixed solvent.
Organic electrolyte in which a lithium ion dissociable salt such as ClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 or the like is dissolved, or a polymer in which the lithium salt is solid-dissolved in a polymer such as polyethylene oxide or polyphosphazene crosslinked A solid electrolyte or a lithium ion conductive non-aqueous electrolyte such as an inorganic solid electrolyte such as Li 3 N or LiI may be used.

【0017】[0017]

【作用】本発明の有機ケイ素化合物の熱処理物または該
熱処理物にリチウムを吸蔵させたものを活物質とする電
極は、非水電解質中に於て金属リチウムに対し少なくと
も0〜3Vの電極電位の範囲で安定に繰り返しリチウム
イオンを吸蔵放出(インターカレーション、デインター
カレーションまたはドープ、脱ドープ等)することが出
来、この様な電極反応により繰り返し充放電可能な二次
電池の負極及び/または正極として用いることが出来
る。特にリチウム基準極(リチウムメタル)に対し0〜
1Vの卑な電位領域において、安定にリチウムイオンを
吸蔵放出し繰り返し充放電できる高容量領域を有する。
A heat-treated product of the organosilicon compound of the present invention or an electrode using the heat-treated product obtained by occluding lithium as an active material has an electrode potential of at least 0 to 3 V with respect to metallic lithium in a non-aqueous electrolyte. Lithium ions can be stably occluded and released (intercalation, deintercalation or doping, dedoping, etc.) repeatedly within a range, and the negative electrode and / or the secondary battery capable of being repeatedly charged and discharged by such an electrode reaction. It can be used as a positive electrode. Especially 0 to the lithium reference electrode (lithium metal)
In a base potential region of 1 V, it has a high capacity region in which lithium ions can be occluded and released stably and repeatedly charged and discharged.

【0018】又、従来この種の電池の電極として用いら
れてきたグラファイト等の炭素質材料に比べ可逆的にリ
チウムイオンを吸蔵放出できる量即ち充放電容量が著し
く大きく、かつ充放電の分極が小さいため、大電流での
充放電が可能であり、更に過充電過放電による分解等を
原因とする劣化が殆ど見られず、極めて安定でサイクル
寿命の長い電池を得ることが出来る。
Further, as compared with a carbonaceous material such as graphite which has been conventionally used as an electrode of this type of battery, the amount capable of reversibly occluding and releasing lithium ions, that is, the charging / discharging capacity is remarkably large and the polarization of charging / discharging is small. Therefore, charging / discharging with a large current is possible, and deterioration due to decomposition or the like due to overcharging / overdischarging is hardly seen, and an extremely stable battery having a long cycle life can be obtained.

【0019】この様に優れた充放電特性が得られる理由
は必ずしも明らかではないが、本発明による新規な活物
質である有機ケイ素化合物の熱処理物は、ケイ素と酸素
の結合を主鎖とする網状構造又は3次元網目構造の高分
子化合物であり、この構造中でのリチウムイオンの移動
度が高く、且つ、リチウムイオンを吸蔵できるサイトが
非常に多いためリチウムイオンの吸蔵放出が容易である
為と推定される。
Although the reason why such excellent charge / discharge characteristics are obtained is not always clear, the heat-treated product of the organosilicon compound, which is a novel active material according to the present invention, has a network structure having a bond between silicon and oxygen as a main chain. This is because it is a polymer compound having a structure or a three-dimensional network structure, the mobility of lithium ions in this structure is high, and the number of sites that can store lithium ions is very large, so it is easy to store and release lithium ions. Presumed.

【0020】[0020]

【実施例】以下に、この発明の実施例を図に基づいて説
明する。図1は、本発明に依る非水電解質二次電池の電
極活物質の性能評価に用いたテストセルの一例を示すコ
イン型電池の断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a coin-type battery showing an example of a test cell used for performance evaluation of an electrode active material of a non-aqueous electrolyte secondary battery according to the present invention.

【0021】図1において、1は対極端子を兼ねる対極
ケースであり、外側片面をNiメッキしたステンレス鋼
製の板を絞り加工したものである。2はステンレス鋼製
のネットから成る対極集電体であり対極ケース1にスポ
ット溶接されている。対極3は、所定厚みのアルミニウ
ム板を直径15mmに打ち抜き、対極集電体2に固着
し、その上に所定厚みのリチウムフォイルを直径14m
mに打ち抜いたものを圧着したものである。7は外側片
面をNiメッキしたステンレス鋼製の作用極ケースであ
り、作用極端子を兼ねている。
In FIG. 1, reference numeral 1 denotes a counter electrode case which also serves as a counter electrode terminal, which is formed by drawing a stainless steel plate having Ni plating on one outer surface. Reference numeral 2 denotes a counter electrode current collector made of a stainless steel net, which is spot-welded to the counter electrode case 1. For the counter electrode 3, an aluminum plate having a predetermined thickness is punched out to have a diameter of 15 mm, fixed to the counter electrode current collector 2, and a lithium foil having a predetermined thickness of 14 m is fixed thereon.
It is the one punched out in m and crimped. Reference numeral 7 denotes a working electrode case made of stainless steel whose outer surface is plated with Ni, and also serves as a working electrode terminal.

【0022】5は後述の本発明に依る活物質又は従来法
に依る比較活物質を用いて構成された作用極であり、ス
テンレス鋼製のネットからなる作用極集電体6と一体に
加圧成形されている。4はポリプロピレンの多孔質フィ
ルムからなるセパレ−タであり、電解液が含浸されてい
る。8はポリプロピレンを主体とするガスケットであ
り、対極ケース1と作用極ケース7の間に介在し、対極
と作用極との間の電気的絶縁性を保つと同時に、作用極
ケース開口縁が内側に折り曲げられカシメられることに
依って、電池内容物を密封、封止している。電解質はプ
ロピレンカ−ボネ−トと1,2−ジメトキシエタンの体
積比1:1混合溶媒に過塩素酸リチウムLiClO4
1モル/l溶解したものを用いた。電池の大きさは、外
径20mm、厚さ1.6mmであった。
Reference numeral 5 denotes a working electrode composed of an active material according to the present invention described later or a comparative active material according to a conventional method, which is integrally pressed with a working electrode current collector 6 made of a stainless steel net. It is molded. Reference numeral 4 is a separator made of a polypropylene porous film, which is impregnated with an electrolytic solution. Numeral 8 is a gasket mainly composed of polypropylene, which is interposed between the counter electrode case 1 and the working electrode case 7 to maintain the electrical insulation between the counter electrode and the working electrode, and at the same time the working electrode case opening edge is inward. By folding and crimping, the battery contents are hermetically sealed. The electrolyte used was prepared by dissolving 1 mol / l of lithium perchlorate LiClO 4 in a 1: 1 volume ratio mixed solvent of propylene carbonate and 1,2-dimethoxyethane. The battery had an outer diameter of 20 mm and a thickness of 1.6 mm.

【0023】以下に活物質の作製例を示す。 (作製例1)作用極5は次の様にして作製した。有機ケ
イ素化合物であるポリメチルフェニルシロキサン(PM
PS)をキシレンで希釈した溶液(東芝シリコ−ン社製
シリコ−ンワニスTSR117)を大気中100゜Cで
10時間溶媒を揮発させるために加熱乾燥した。次に、
この乾燥物を大気中200℃で5時間熱処理した。冷却
後、粒径53μm以下に粉砕整粒した。得られた熱処理
物を本発明に依る活物質1とし、これに導電剤としてグ
ラファイトを、結着剤として架橋型アクリル酸樹脂等を
重量比30:65:5の割合で混合して作用極合剤と
し、次にこの作用極合剤をステンレス鋼製のネットから
なる作用極集電体6と共に2ton/cm2で直径15
mm厚さ0.5mmのペレットに加圧成形した後、10
0℃で10時間減圧加熱乾燥したものを作用極とした。
この作用極を用いて、前述の構成の電池とした。
An example of producing the active material is shown below. (Production Example 1) The working electrode 5 was produced as follows. Polymethylphenyl siloxane, which is an organosilicon compound (PM
A solution obtained by diluting PS) with xylene (Silicon Varnish TSR117 manufactured by Toshiba Silicone Co., Ltd.) was heated and dried at 100 ° C. in the atmosphere for 10 hours to volatilize the solvent. next,
The dried product was heat-treated in the air at 200 ° C. for 5 hours. After cooling, the particles were pulverized and sized to a particle size of 53 μm or less. The obtained heat-treated product was used as the active material 1 according to the present invention, and graphite as a conductive agent and a cross-linked acrylic acid resin as a binder were mixed at a weight ratio of 30: 65: 5 to obtain a working electrode. Then, this working electrode mixture was used together with the working electrode current collector 6 made of a stainless steel net at a diameter of 2 ton / cm 2 and a diameter of 15
After pressure molding into pellets having a thickness of 0.5 mm and a thickness of 0.5 mm, 10
What was dried under reduced pressure at 0 ° C. for 10 hours was used as a working electrode.
Using this working electrode, the battery having the above-mentioned configuration was obtained.

【0024】この様にして作製された電池は、室温で1
週間放置エ−ジングされた後、後述の充放電試験が行わ
れた。このエ−ジングによって、対極のリチウム−アル
ミニウム積層電極は電池内で非水電解液に触れることに
より十分合金化が進行し、リチウムフォイルは実質的に
全てLi−Al合金となるため、電池電圧は、対極とし
て金属リチウムを単独で用いた場合に比べて約0.4V
低下した値となって安定した。
The battery thus produced has a temperature of 1
After being left to stand for a week, it was subjected to the charge / discharge test described below. By this aging, the lithium-aluminum laminated electrode of the counter electrode is sufficiently alloyed by touching the non-aqueous electrolytic solution in the battery, and the lithium foil becomes substantially all Li-Al alloy, so that the battery voltage is , 0.4V compared with the case where metallic lithium is used alone as the counter electrode
It became a lowered value and became stable.

【0025】以上の様に作製した電池を、0.4mAの
定電流で、充電(作用極にリチウムイオンが吸蔵される
電池反応をする電流方向)の終止電圧−0.4V、放電
(作用極からリチウムイオンが放出される電池反応をす
る電流方向)の終止電圧2.5Vの条件で充放電サイク
ルを行ったときの3サイクル目の充電特性を図2に、放
電特性を図3、1〜5サイクルのサイクル特性を図4に
示した。また、−0.8V〜2.5Vの電圧範囲での3
サイクル目の充電特性を図5に、放電特性を図6に、1
〜5サイクルのサイクル特性を図7に示した。尚、充放
電サイクルは充電からスタ−トした。
The battery produced as described above was charged with a constant current of 0.4 mA, the final voltage of charging (current direction in which battery reaction in which lithium ions are occluded in the working electrode) was −0.4 V, and discharging (working electrode). When the charge / discharge cycle is performed under the condition of a final voltage of 2.5 V (in the direction of the current in which the lithium ion is discharged from the battery), the charge characteristics at the third cycle are shown in FIG. 2, and the discharge characteristics are shown in FIGS. The cycle characteristics of 5 cycles are shown in FIG. In addition, 3 in the voltage range of -0.8V to 2.5V
Figure 5 shows the charge characteristics at the cycle and discharge characteristics in Figure 6.
The cycle characteristics of 5 cycles are shown in FIG. The charging / discharging cycle was started from charging.

【0026】(作製例2)前述のPMPS乾燥物の熱処
理を大気中300℃で10時間とした以外は作製例1と
同様の方法で活物質2を作製し、同様な電池を作製し
た。作製例1と同様な方法で充放電特性の測定を行い、
−0.4V〜2.5Vの電圧範囲での充放電特性を図
2、図3、図4に、また、−0.8V〜2.5Vの電圧
範囲での充電特性を図5に、放電特性を図6に、サイク
ル特性を図7に示した。
(Preparation Example 2) An active material 2 was prepared in the same manner as in Preparation Example 1 except that the heat treatment of the above-mentioned dried PMPS product was carried out at 300 ° C. for 10 hours in the atmosphere, and a similar battery was prepared. The charge and discharge characteristics were measured in the same manner as in Preparation Example 1,
The charge / discharge characteristics in the voltage range of −0.4V to 2.5V are shown in FIGS. 2, 3 and 4, and the charge characteristics in the voltage range of −0.8V to 2.5V are shown in FIG. The characteristics are shown in FIG. 6 and the cycle characteristics are shown in FIG.

【0027】(作製例3)前述のPMPS乾燥物の熱処
理を大気中400℃で10時間とした以外は作製例1と
同様の方法で活物質3を作製し、同様な電池を作製し
た。作製例1と同様な方法で充放電特性の測定を行い、
−0.4V〜2.5Vの電圧範囲での充放電特性を図
2、図3、図4に、また、−0.8V〜2.5Vの電圧
範囲での充放電特性を図5、図6、図7に示した。−
0.8V〜2.5Vの充放電を10サイクル行った後に
充電状態及び放電状態のそれぞれの電池を分解観察した
ところ、作用極側へリチウムが析出している様子もな
く、また電解質の分解等によるガス発生も極少量であ
り、作用極の充放電反応は実質的に活物質へのリチウム
イオンの吸蔵放出であることが確認された。
(Preparation Example 3) An active material 3 was prepared in the same manner as in Preparation Example 1 except that the heat treatment of the above-mentioned PMPS dried product was carried out at 400 ° C. for 10 hours in the atmosphere, and a similar battery was prepared. The charge and discharge characteristics were measured in the same manner as in Preparation Example 1,
Charge-discharge characteristics in the voltage range of -0.4V to 2.5V are shown in FIGS. 2, 3 and 4, and charge-discharge characteristics in the voltage range of -0.8V to 2.5V are shown in FIG. 5 and FIG. 6, shown in FIG. −
When the batteries in the charged state and the discharged state were disassembled and observed after 10 cycles of 0.8 V to 2.5 V charging / discharging, no lithium deposition was observed on the working electrode side, and the electrolyte was decomposed. It was confirmed that the amount of gas generated by the above was very small, and that the charge / discharge reaction of the working electrode was substantially the occlusion / release of lithium ions to / from the active material.

【0028】(作製例4)前述のPMPS乾燥物の熱処
理を大気中500℃で10時間とした以外は作製例1と
同様の方法で活物質4を作製し、同様な電池を作製し
た。作製例1と同様な方法で充放電特性の測定を行い、
−0.4V〜2.5Vの電圧範囲での充放電特性を図
2、図3、図4に、また−0.8V〜2.5Vの電圧範
囲での充放電特性を図5、図6、図7に示した。
(Preparation Example 4) An active material 4 was prepared in the same manner as in Preparation Example 1 except that the heat treatment of the above-mentioned dried PMPS product was carried out at 500 ° C. for 10 hours in the atmosphere, and a similar battery was prepared. The charge and discharge characteristics were measured in the same manner as in Preparation Example 1,
Charge-discharge characteristics in the voltage range of -0.4V to 2.5V are shown in FIGS. 2, 3, and 4, and charge-discharge characteristics in the voltage range of -0.8V to 2.5V are shown in FIGS. , Shown in FIG.

【0029】(作製例5)前述のPMPS乾燥物の熱処
理を大気中600℃で10時間とした以外は作製例1と
同様の方法で活物質5を作製し、同様な電池を作製し
た。作製例1と同様な方法で充放電特性の測定を行い、
−0.4V〜2.5Vの電圧範囲での充放電特性を図
2、図3、図4に、また−0.8V〜2.5Vの電圧範
囲での充放電特性を図5、図6、図7に示した。
Preparation Example 5 An active material 5 was prepared in the same manner as in Preparation Example 1 except that the heat treatment of the above-mentioned PMPS dried product was carried out at 600 ° C. for 10 hours in the atmosphere, and a similar battery was prepared. The charge and discharge characteristics were measured in the same manner as in Preparation Example 1,
Charge-discharge characteristics in the voltage range of -0.4V to 2.5V are shown in FIGS. 2, 3, and 4, and charge-discharge characteristics in the voltage range of -0.8V to 2.5V are shown in FIGS. , Shown in FIG.

【0030】(作製例6)前述のPMPS乾燥物の熱処
理を窒素雰囲気中500℃で5時間とした以外は作製例
1と同様の方法で活物質6を作製し、同様な電池を作製
した。作製例1と同様な方法で、−0.4V〜2.5V
の充放電特性の測定を行い、その充電特性を図8に、放
電特性を図9に、サイクル特性を図10に示した。
Preparation Example 6 An active material 6 was prepared in the same manner as in Preparation Example 1 except that the heat treatment of the dried PMPS product was carried out at 500 ° C. for 5 hours in a nitrogen atmosphere, and a similar battery was prepared. In the same manner as in Preparation Example 1, -0.4V to 2.5V
The charging / discharging characteristics were measured. The charging characteristics are shown in FIG. 8, the discharging characteristics are shown in FIG. 9, and the cycle characteristics are shown in FIG.

【0031】(作製例7)前述のPMPS乾燥物の熱処
理を窒素雰囲気中700℃で5時間とした以外は作製例
1と同様の方法で活物質7を作製し、同様な電池を作製
した。作製例1と同様な方法で、−0.4V〜2.5V
の電圧範囲での充放電特性の測定を行い、その結果を図
8、図9、図10に示した。
(Preparation Example 7) An active material 7 was prepared in the same manner as in Preparation Example 1 except that the heat treatment of the dried PMPS product was carried out at 700 ° C. for 5 hours in a nitrogen atmosphere, and a similar battery was prepared. In the same manner as in Preparation Example 1, -0.4V to 2.5V
The charge / discharge characteristics were measured in the voltage range of, and the results are shown in FIGS. 8, 9 and 10.

【0032】(作製例8)前述のPMPS乾燥物の熱処
理を窒素雰囲気中800℃で12時間とした以外は作製
例1と同様の方法で活物質8を作製し、同様な電池を作
製した。作製例1と同様な方法で充放電特性の測定を行
い、−0.4V〜2.5Vの電圧範囲での充放電特性を
図8、図9、図10に示した。また、−0.8V〜2.
5Vの電圧範囲での充電特性を図11に、放電特性を図
12に、サイクル特性を図13に示した。
(Preparation Example 8) An active material 8 was prepared in the same manner as in Preparation Example 1 except that the heat treatment of the dried PMPS product was carried out at 800 ° C. for 12 hours in a nitrogen atmosphere, and a similar battery was prepared. The charge / discharge characteristics were measured in the same manner as in Preparation Example 1, and the charge / discharge characteristics in the voltage range of −0.4 V to 2.5 V are shown in FIGS. 8, 9 and 10. In addition, -0.8V to 2.
FIG. 11 shows the charge characteristic in the voltage range of 5 V, the discharge characteristic is shown in FIG. 12, and the cycle characteristic is shown in FIG.

【0033】(作製例9)前述のPMPS乾燥物の熱処
理を窒素雰囲気中1000℃で12時間とした以外は作
製例1と同様の方法で活物質9を作製し、同様な電池を
作製した。作製例1と同様な方法で充放電特性の測定を
行い、−0.4V〜2.5Vの電圧範囲での充放電特性
を図8、図9、図10に、また−0.8V〜2.5Vの
電圧範囲での充放電特性を図11、図12、図13に示
した。
(Production Example 9) An active material 9 was produced in the same manner as in Production Example 1 except that the heat treatment of the dried PMPS product was performed at 1000 ° C. for 12 hours in a nitrogen atmosphere, and a similar battery was produced. The charge / discharge characteristics were measured in the same manner as in Preparation Example 1, and the charge / discharge characteristics in the voltage range of −0.4 V to 2.5 V were measured as shown in FIG. 8, FIG. 9, and FIG. The charge / discharge characteristics in the voltage range of 0.5 V are shown in FIGS.

【0034】(比較例1)比較のために、作製例1にお
ける活物質1の代わりに、導電剤として用いているグラ
ファイトと同じグラファイトを活物質として用いた以外
は作製例1と同様の方法で電池を作製した。作製例1と
同様に−0.4V〜2.5Vの電圧範囲での充放電特性
を測定し、その結果を図2、図3、図4に示す。
Comparative Example 1 For comparison, the same method as in Preparation Example 1 was used except that the same graphite as the conductive material was used in place of the active material 1 in Preparation Example 1. A battery was made. The charge / discharge characteristics were measured in the voltage range of −0.4 V to 2.5 V as in Preparation Example 1, and the results are shown in FIGS. 2, 3, and 4.

【0035】(比較例2)比較のために、作製例1にお
ける活物質1の代わりに二酸化ケイ素SiO2を活物質
として用いた以外は作製例1と同様の方法で電池を作製
した。作製例1と同様に−0.4V〜2.5Vの電圧範
囲での充放電特性を測定し、その結果を図2、図3、図
4に示す。
Comparative Example 2 For comparison, a battery was manufactured in the same manner as in Manufacturing Example 1 except that silicon dioxide SiO 2 was used as the active material instead of Active Material 1 in Manufacturing Example 1. The charge / discharge characteristics were measured in the voltage range of −0.4 V to 2.5 V as in Preparation Example 1, and the results are shown in FIGS. 2, 3, and 4.

【0036】図2〜13から明らかな様に、本発明によ
る有機ケイ素化合物の熱処理物を活物質として用いた電
池はいずれも比較例1、2に比べ、充放電容量が著しく
大きく、充放電の可逆領域が著しく拡大することが分か
る。又、充放電の繰り返しによる放電容量の低下(サイ
クル劣化)が著しく小さい。更に、全充放電領域に渡っ
て充電と放電の作動電圧の差が著しく小さくなってお
り、電池の分極(内部抵抗)が著しく小さく、大電流充
放電が容易なことが分かる。これは、上述の様に本発明
に依る電池の作用極の活物質である有機ケイ素化合物の
熱処理物に於いては、ケイ素と酸素及び炭素が共存し、
それらの原子が直接相互に結合した網状構造又は3次元
網目構造を有することによりリチウムイオンの移動度が
高く、かつリチウムイオンを吸蔵できるサイトが多いた
めと推定される。
As is clear from FIGS. 2 to 13, the batteries using the heat-treated organosilicon compound according to the present invention as the active material all have significantly higher charge and discharge capacities than those of Comparative Examples 1 and 2, and thus the charge and discharge capacity is high. It can be seen that the reversible region significantly expands. Further, the decrease in discharge capacity (cycle deterioration) due to repeated charging and discharging is extremely small. Further, it can be seen that the difference between the operating voltages of charging and discharging is extremely small over the entire charging / discharging region, the polarization (internal resistance) of the battery is extremely small, and large-current charging / discharging is easy. As described above, in the heat-treated product of the organic silicon compound which is the active material of the working electrode of the battery according to the present invention, silicon, oxygen and carbon coexist,
It is presumed that the mobility of lithium ions is high and there are many sites capable of occluding lithium ions due to the network structure or the three-dimensional network structure in which those atoms are directly bonded to each other.

【0037】又、本発明に依る活物質を用いた電池はL
i−Al合金電極に対して1.0〜2.5V(金属リチ
ウムに対して約1.4〜2.9Vに対応する)の貴な電
位領域と同様、もしくはそれ以上に、−0.4〜+0.
6V(金属リチウムに対して約0〜1Vに対応する)の
卑な電位領域の充放電容量が大きいことから、非水電解
質二次電池の正極活物質として用いられるのみならず、
負極活物質としても優れていることが判る。特に大気中
200℃〜400℃、不活性雰囲気中700℃以下で熱
処理を行った活物質1、2、3、6、7を用いた電池で
は、卑な電位領域での充放電容量がより大きく、かつよ
り卑な電位を有しており、より負極活物質として優れて
いる。
A battery using the active material according to the present invention is L
Similar to or higher than the noble potential region of 1.0 to 2.5 V (corresponding to about 1.4 to 2.9 V to metallic lithium) with respect to the i-Al alloy electrode, -0.4. ~ +0.
Since it has a large charge / discharge capacity in a base potential region of 6 V (corresponding to about 0 to 1 V with respect to metallic lithium), it is not only used as a positive electrode active material of a non-aqueous electrolyte secondary battery,
It can be seen that it is also excellent as a negative electrode active material. In particular, in the batteries using the active materials 1, 2, 3, 6, and 7 which were heat-treated in the air at 200 ° C. to 400 ° C. and in the inert atmosphere at 700 ° C. or less, the charge / discharge capacity in the base potential region was larger. It also has a more base potential and is more excellent as a negative electrode active material.

【0038】尚、実施例においては、対極としてリチウ
ム−アルミニウム合金の場合のみを示したが、本発明は
実施例に限定されず、前述の様に、金属リチウム、リチ
ウムとZn,Sn,Pb,Bi等の他金属との合金、炭
素やMoO2,WO2,Fe2O3等のリチウム挿入化合
物、ポリアセチレン,ポリピロ−ル,ポリアセン等のリ
チウムイオンをド−プ可能な導電性高分子等々のリチウ
ムを吸蔵放出可能な物質を活物質とする負極や、TiS
2,MoS2,NbSe3等の金属カルコゲン化物、Mn
2,MoO3,V25,LiXCoO2,LiXNiO2
LixMn24等の金属酸化物、ポリアニリン、ポリピ
ロール、ポリパラフェニレン、ポリアセン等の導電性高
分子、グラファイト層間化合物等々の様なリチウムカチ
オン及び/またはアニオンを吸蔵放出可能な物質を活物
質とする正極を対極として本発明に依る電極と組合わせ
て用いることが出来ることは言うまでもない。
In the examples, only the case of the lithium-aluminum alloy was shown as the counter electrode, but the present invention is not limited to the examples, and as described above, metallic lithium, lithium and Zn, Sn, Pb, alloys with other metals Bi, etc., carbon and MoO 2, WO 2, Fe 2 lithium insertion compound such as O3, polyacetylene, polypyrrole - Le, de lithium ions such as polyacene - lithium etc. flop possible conductive polymer Negative electrode that uses a substance that can store and release hydrogen as an active material, and TiS
2 , metal chalcogenides such as MoS 2 and NbSe 3 , Mn
O 2 , MoO 3 , V 2 O 5 , Li X CoO 2 , Li X NiO 2 ,
An active material that can store and release lithium cations and / or anions, such as metal oxides such as Li x Mn 2 O 4 , conductive polymers such as polyaniline, polypyrrole, polyparaphenylene, and polyacene, graphite intercalation compounds, etc. It goes without saying that the positive electrode as described above can be used as a counter electrode in combination with the electrode according to the present invention.

【0039】[0039]

【発明の効果】以上の様に、本発明は、非水電解質二次
電池の負極及び/又は正極の電極の活物質として、有機
基を有するケイ素と酸素の結合部位を少なくとも1つ以
上有する有機ケイ素化合物の熱処理物又は該熱処理物に
リチウムを吸蔵させたものから成る新規な活物質を用い
たものであり、充放電により可逆的にリチウムイオンを
吸蔵放出できる量即ち充放電容量が著しく大きく、かつ
充放電の分極が小さいため、大電流での充放電が可能で
あり、更に過充電過放電による分解や結晶崩壊等の劣化
が殆ど見られず、極めて安定でサイクル寿命の長い電池
を得ることが出来る。又、特に、本発明による該活物質
を負極活物質として用いた場合には、高電圧かつ高エネ
ルギ−密度の電池を得ることが出来る等々優れた効果を
有する。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, as an active material of the negative electrode and / or the positive electrode of a non-aqueous electrolyte secondary battery, an organic compound having at least one silicon-oxygen bonding site having an organic group is used. A heat-treated product of a silicon compound or a heat-treated product using a novel active material made of lithium occluded, the amount capable of reversibly occluding and releasing lithium ions by charging and discharging, that is, the charging and discharging capacity is extremely large, Moreover, since the polarization of charge and discharge is small, it is possible to charge and discharge with a large current, and there is almost no deterioration such as decomposition or crystal collapse due to overcharge and overdischarge, and it is possible to obtain an extremely stable battery with a long cycle life. Can be done. Further, in particular, when the active material according to the present invention is used as a negative electrode active material, it has an excellent effect such that a battery having high voltage and high energy density can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において実施した電池の構造の一例を示
した説明図である。
FIG. 1 is an explanatory diagram showing an example of the structure of a battery implemented in the present invention.

【図2】本発明による活物質1、活物質2、活物質3、
活物質4、活物質5を用いた電池と、比較例1、比較例
2による電池の−0.4V〜2.5Vの充電特性の比較
を示した説明図である。
FIG. 2 shows an active material 1, an active material 2, an active material 3 according to the present invention,
FIG. 4 is an explanatory diagram showing a comparison of charging characteristics of −0.4 V to 2.5 V between a battery using Active Material 4 and Active Material 5 and batteries according to Comparative Example 1 and Comparative Example 2.

【図3】本発明による活物質1、活物質2、活物質3、
活物質4、活物質5を用いた電池と、比較例1、比較例
2による電池の−0.4V〜2.5Vの放電特性の比較
を示した説明図である。
FIG. 3 shows an active material 1, an active material 2, an active material 3 according to the present invention,
FIG. 6 is an explanatory diagram showing a comparison of the discharge characteristics of −0.4 V to 2.5 V of the batteries using the active materials 4 and 5 and the batteries of Comparative Examples 1 and 2.

【図4】本発明による活物質1、活物質2、活物質3、
活物質4、活物質5を用いた電池と、比較例1、比較例
2による電池の−0.4V〜2.5Vのサイクル特性の
比較を示した説明図である。
FIG. 4 shows an active material 1, an active material 2, an active material 3 according to the present invention,
FIG. 6 is an explanatory diagram showing a comparison of cycle characteristics of −0.4 V to 2.5 V between a battery using Active Material 4 and Active Material 5 and batteries according to Comparative Example 1 and Comparative Example 2.

【図5】本発明による活物質2、活物質3、活物質4、
活物質5を用いた電池の−0.8V〜2.5Vの充電特
性を示した説明図である。
FIG. 5 shows an active material 2, an active material 3, an active material 4, according to the present invention,
It is explanatory drawing which showed the charging characteristic of -0.8V-2.5V of the battery using the active material 5.

【図6】本発明による活物質2、活物質3、活物質4、
活物質5を用いた電池の−0.8V〜2.5Vの放電特
性を示した説明図である。
FIG. 6 shows an active material 2, an active material 3, an active material 4, according to the present invention,
It is explanatory drawing which showed the discharge characteristic of -0.8V-2.5V of the battery using the active material 5.

【図7】本発明による活物質2、活物質3、活物質4、
活物質5を用いた電池の−0.8V〜2.5Vのサイク
ル特性を示した説明図である。
FIG. 7 shows an active material 2, an active material 3, an active material 4, according to the present invention,
It is explanatory drawing which showed the cycle characteristic of -0.8V-2.5V of the battery which used the active material 5.

【図8】本発明による活物質6、活物質7、活物質8、
活物質9を用いた電池と、比較例1、比較例2による電
池の−0.4V〜2.5Vの充電特性の比較を示した説
明図である。
FIG. 8 shows an active material 6, an active material 7, an active material 8 according to the present invention,
FIG. 6 is an explanatory diagram showing a comparison of charging characteristics of −0.4 V to 2.5 V between a battery using the active material 9 and batteries according to Comparative Example 1 and Comparative Example 2.

【図9】本発明による活物質6、活物質7、活物質8、
活物質9を用いた電池と、比較例1、比較例2による電
池の−0.4V〜2.5Vの放電特性の比較を示した説
明図である。
FIG. 9 shows an active material 6, an active material 7, an active material 8 according to the present invention,
FIG. 6 is an explanatory diagram showing a comparison of the discharge characteristics of −0.4 V to 2.5 V between the battery using the active material 9 and the batteries according to Comparative Example 1 and Comparative Example 2.

【図10】本発明による活物質6、活物質7、活物質
8、活物質9を用いた電池と、比較例1、比較例2によ
る電池の−0.4V〜2.5Vのサイクル特性の比較を
示した説明図である。
FIG. 10 shows cycle characteristics of −0.4 V to 2.5 V of batteries using active material 6, active material 7, active material 8, and active material 9 according to the present invention, and batteries of Comparative Examples 1 and 2. It is explanatory drawing which showed comparison.

【図11】本発明による活物質8、活物質9を用いた電
池の−0.8V〜2.5Vの充電特性を示した説明図で
ある。
FIG. 11 is an explanatory diagram showing charging characteristics of −0.8V to 2.5V of batteries using the active materials 8 and 9 according to the present invention.

【図12】本発明による活物質8、活物質9を用いた電
池の−0.8V〜2.5Vの放電特性を示した説明図で
ある。
FIG. 12 is an explanatory diagram showing a discharge characteristic of −0.8 V to 2.5 V of a battery using the active material 8 and the active material 9 according to the present invention.

【図13】本発明による活物質8、活物質9を用いた電
池の−0.8V〜2.5Vのサイクル特性を示した説明
図である。
FIG. 13 is an explanatory diagram showing cycle characteristics of −0.8 V to 2.5 V of batteries using the active materials 8 and 9 according to the present invention.

【符号の説明】[Explanation of symbols]

1 対極ケース 2 対極集電体 3 対極 4 セパレータ 5 作用極 6 作用極集電体 7 作用極ケース 8 ガスケット 1 counter electrode case 2 counter electrode current collector 3 counter electrode 4 separator 5 working electrode 6 working electrode current collector 7 working electrode case 8 gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 英樹 宮城県仙台市太白区西多賀5丁目30番1号 セイコー電子部品株式会社内 (72)発明者 矢作 誠治 東京都江東区亀戸6丁目31番1号 セイコ ー電子工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hideki Ishikawa 5-30-1 Nishitaga, Taihaku-ku, Sendai-shi, Miyagi Seiko Electronic Components Co., Ltd. (72) Seiji Yahagi 6-31-1, Kameido, Koto-ku, Tokyo No. Seiko Electronics Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負極と正極とリチウムイオン導電性の非
水電解質とから少なくとも成る非水電解質二次電池にお
いて、負極及び/又は正極の電極の活物質として、有機
基を有するケイ素と酸素の結合部位を少なくとも1つ以
上有する有機ケイ素化合物の熱処理物又は前記熱処理物
にリチウムを吸蔵させたものを用いたことを特徴とする
非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising at least a negative electrode, a positive electrode and a lithium ion conductive non-aqueous electrolyte, wherein a bond between silicon and oxygen having an organic group is used as an active material of the negative electrode and / or the positive electrode. A non-aqueous electrolyte secondary battery comprising a heat-treated product of an organosilicon compound having at least one site or a product obtained by occluding lithium in the heat-treated product.
【請求項2】 前記有機ケイ素化合物を200℃から1
000℃の温度範囲で熱処理する事を特徴とする請求項
1記載の非水電解質二次電池用の負極活物質及び/又は
正極活物質の製造方法。
2. The organosilicon compound is added at 200 ° C. to 1 ° C.
The method for producing a negative electrode active material and / or a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the heat treatment is performed in a temperature range of 000 ° C.
JP4227646A 1992-08-26 1992-08-26 Nonaqueous electrolytic secondary battery and manufacture of active material used therefor Pending JPH0696759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4227646A JPH0696759A (en) 1992-08-26 1992-08-26 Nonaqueous electrolytic secondary battery and manufacture of active material used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4227646A JPH0696759A (en) 1992-08-26 1992-08-26 Nonaqueous electrolytic secondary battery and manufacture of active material used therefor

Publications (1)

Publication Number Publication Date
JPH0696759A true JPH0696759A (en) 1994-04-08

Family

ID=16864140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4227646A Pending JPH0696759A (en) 1992-08-26 1992-08-26 Nonaqueous electrolytic secondary battery and manufacture of active material used therefor

Country Status (1)

Country Link
JP (1) JPH0696759A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692833A1 (en) * 1994-07-08 1996-01-17 Moli Energy (1990) Limited Carbonaceous insertion compounds and use as anodes in rechargeable batteries
FR2731216A1 (en) * 1995-03-03 1996-09-06 Moli Energy Ltd CARBON INSERTING COMPOUNDS AND THEIR USE AS ANODES IN RECHARGEABLE BATTERIES
US5624606A (en) * 1994-05-03 1997-04-29 Moli Energy (1990) Limited Carbonaceous host compounds and use as anodes in rechargeable batteries
EP0813258A1 (en) * 1996-06-11 1997-12-17 Dow Corning Corporation Electrodes for lithium ion batteries using polysiloxanes
EP0817296A1 (en) * 1996-07-05 1998-01-07 Saft Electrode for rechargeable electrochemical generator with liquid organic electrolyte and process for producing the same
CN100341197C (en) * 2003-01-09 2007-10-03 三星Sdi株式会社 Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US7883801B2 (en) 2005-11-15 2011-02-08 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
US7914931B2 (en) 2005-12-21 2011-03-29 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery, rechargeable lithium battery including the same, and method for preparing rechargeable lithium battery
US8753775B2 (en) 2004-07-09 2014-06-17 Samsung Sdi Co., Ltd. Rechargeable lithium battery with an electrode active material including a multi-phase alloy powder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624606A (en) * 1994-05-03 1997-04-29 Moli Energy (1990) Limited Carbonaceous host compounds and use as anodes in rechargeable batteries
EP0692833A1 (en) * 1994-07-08 1996-01-17 Moli Energy (1990) Limited Carbonaceous insertion compounds and use as anodes in rechargeable batteries
US5587256A (en) * 1994-07-08 1996-12-24 Moli Energy (1990) Limited Carbonaceous insertion compounds and use as anodes in rechargeable batteries
FR2731216A1 (en) * 1995-03-03 1996-09-06 Moli Energy Ltd CARBON INSERTING COMPOUNDS AND THEIR USE AS ANODES IN RECHARGEABLE BATTERIES
EP0813258A1 (en) * 1996-06-11 1997-12-17 Dow Corning Corporation Electrodes for lithium ion batteries using polysiloxanes
US5824280A (en) * 1996-06-11 1998-10-20 Dow Corning Corporation Electrodes for lithium ion batteries using polysiloxanes
FR2750800A1 (en) * 1996-07-05 1998-01-09 Accumulateurs Fixes RECHARGEABLE ELECTROCHEMICAL GENERATOR ELECTRODE WITH ORGANIC LIQUID ELECTROLYTE AND MANUFACTURING METHOD THEREOF
EP0817296A1 (en) * 1996-07-05 1998-01-07 Saft Electrode for rechargeable electrochemical generator with liquid organic electrolyte and process for producing the same
CN100341197C (en) * 2003-01-09 2007-10-03 三星Sdi株式会社 Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US7351501B2 (en) * 2003-01-09 2008-04-01 Samsung Sdi Co., Ltd Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US8753775B2 (en) 2004-07-09 2014-06-17 Samsung Sdi Co., Ltd. Rechargeable lithium battery with an electrode active material including a multi-phase alloy powder
US7883801B2 (en) 2005-11-15 2011-02-08 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
US7914931B2 (en) 2005-12-21 2011-03-29 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery, rechargeable lithium battery including the same, and method for preparing rechargeable lithium battery

Similar Documents

Publication Publication Date Title
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
KR102543109B1 (en) Lithium secondary battery and method of manufacturing the same
JP2997741B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US5506075A (en) Non-aqueous electrolyte secondary battery and method of producing the same
JPH05174818A (en) Manufacture of nonaqueous electrolyte secondary battery and negative electrode active material thereof
EP1487048A2 (en) Battery
US7767350B2 (en) Nonaqueous electrolyte battery
US6984471B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
KR102539669B1 (en) Lithium secondary battery
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
JPH0696759A (en) Nonaqueous electrolytic secondary battery and manufacture of active material used therefor
KR20230127189A (en) Lithium secondary battery
JP3060077B2 (en) Non-aqueous electrolyte secondary battery and method for producing active material thereof
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP3390195B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
EP4053934A2 (en) Lithium secondary battery
KR20190059483A (en) Lithium secondary battery
JPH1050312A (en) Nonaqueous electrolyte secondary battery
JPH06275269A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2952367B2 (en) Non-aqueous electrolyte secondary battery