JPH05140606A - High-strength structural member - Google Patents

High-strength structural member

Info

Publication number
JPH05140606A
JPH05140606A JP3261464A JP26146491A JPH05140606A JP H05140606 A JPH05140606 A JP H05140606A JP 3261464 A JP3261464 A JP 3261464A JP 26146491 A JP26146491 A JP 26146491A JP H05140606 A JPH05140606 A JP H05140606A
Authority
JP
Japan
Prior art keywords
particles
particle
composite
layer
crystal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3261464A
Other languages
Japanese (ja)
Inventor
Akihisa Inoue
明久 井上
Takeshi Masumoto
健 増本
Jun Sasahara
潤 笹原
Katsutoshi Nozaki
勝敏 野崎
Masashi Yamaguchi
正志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
YKK Corp
Original Assignee
Honda Motor Co Ltd
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, YKK Corp, Yoshida Kogyo KK filed Critical Honda Motor Co Ltd
Priority to JP3261464A priority Critical patent/JPH05140606A/en
Priority to US07/943,324 priority patent/US5436080A/en
Priority to EP92115508A priority patent/EP0532000B1/en
Priority to DE69221047T priority patent/DE69221047T2/en
Publication of JPH05140606A publication Critical patent/JPH05140606A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high-strength particle reinforced Al-matrix composite member. CONSTITUTION:A mixed particle consisting of a composite particle P obtained by coating the surface of an AlN particle (c) with an Al layer (m) and an Al alloy particle of single crystal structure is used, and the Al layer (m) of the composite particle P and Al alloy particle are sintered. In the Al layer (m) of single crystal structure and Al alloy particle, since dislocation, defect, grain boundary, etc., are not caused, the Al layer (m), etc., are hardly oxidized. Consequently, the Al layer (m) and Al alloy particle are surely sintered, and the density of the composite member is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種機械部品等として
用いられる高強度構造部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high strength structural member used as various machine parts and the like.

【0002】[0002]

【従来の技術】従来、この種構造部材として、金属単体
粒子、セラミック粒子の表面を金属層により覆った複合
粒子等の金属質粒子を用いて粉末冶金法の適用下で製造
されたものが知られている。この場合、構造部材の高強
度化を達成するため金属質粒子としては微細なものが用
いられる。
2. Description of the Related Art Heretofore, as this kind of structural member, there has been known one produced by applying a powder metallurgy method using metallic particles such as metal single particles and composite particles in which surfaces of ceramic particles are covered with a metal layer. Has been. In this case, fine particles are used as the metallic particles in order to achieve high strength of the structural member.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来材に
おける金属質粒子は、粒径が小さく、且つ表面エネルギ
が大きいため、その高い化学的活性に起因して表面が酸
化され易く、その結果、粒子表面の酸化物層が粒子相互
間の焼結を妨げるため、無加圧下での焼結処理によって
は高密度、したがって高強度な構造部材を得ることがで
きない、という問題がある。
However, since the metallic particles in the conventional material have a small particle size and a large surface energy, the surface is easily oxidized due to their high chemical activity, and as a result, the particle surface is However, there is a problem in that it is not possible to obtain a structural member having a high density and therefore a high strength by the sintering process under no pressure because the oxide layer of (1) interferes with the sintering between particles.

【0004】本発明は前記に鑑み、少なくとも表面側を
特定結晶構造にした金属質粒子を構成材料とする高強度
な前記構造部材を提供することを目的とする。
In view of the above, it is an object of the present invention to provide the above-mentioned structural member having a high strength, which is composed of metallic particles having a specific crystal structure at least on the surface side.

【0005】[0005]

【課題を解決するための手段】本発明に係る高強度構造
部材は、少なくとも表面側が単結晶構造の金属より構成
された金属質粒子相互間を接合したことを特徴とする。
A high-strength structural member according to the present invention is characterized in that metallic particles composed of a metal having a single crystal structure at least on the surface side are joined together.

【0006】[0006]

【実施例】図1は、金属質粒子としての複合粒子の製造
に用いられる装置を示す。その複合粒子は単結晶構造の
セラミック粒子の表面を単結晶構造の金属層により覆っ
たものである。
EXAMPLE FIG. 1 shows an apparatus used for producing composite particles as metallic particles. The composite particles are obtained by covering the surface of ceramic particles having a single crystal structure with a metal layer having a single crystal structure.

【0007】前記製造装置は、メインチャンバ1と、そ
のメインチャンバ1の下方に連設されたサブチャンバ2
とを有し、両チャンバ1,2はダクト3およびその下端
に取付けられたノズル4を介して連通する。メインチャ
ンバ1内に挿入されたW電極5とメインチャンバ1内に
設置されたCu製ハース6とが電源7に接続される。サ
ブチャンバ2内には可動基板8が配置されてノズル4と
対向する。メインチャンバ1は雰囲気ガス供給源9に接
続され、一方、サブチャンバ2は真空ポンプ10に接続
される。
The manufacturing apparatus comprises a main chamber 1 and a sub-chamber 2 connected below the main chamber 1.
And the chambers 1 and 2 communicate with each other through a duct 3 and a nozzle 4 attached to the lower end thereof. A W electrode 5 inserted in the main chamber 1 and a Cu hearth 6 installed in the main chamber 1 are connected to a power supply 7. A movable substrate 8 is arranged in the sub chamber 2 and faces the nozzle 4. The main chamber 1 is connected to an atmospheric gas supply source 9, while the sub chamber 2 is connected to a vacuum pump 10.

【0008】複合粒子の製造には次のような手順が採用
される。 (1) ハース6内に金属塊Mを入れる。 (2) 真空ポンプ10を作動させてサブチャンバ2内
を減圧する。 (3) 雰囲気ガス供給源9を作動させてメインチャン
バ1内に雰囲気ガスを供給し、その雰囲気ガスをダクト
3を通じてノズル4よりサブチャンバ2内に噴射させ
る。 (4) W電極5およびハース6間に電圧を印加してア
ーク放電を発生させ、これにより金属塊Mを溶融して金
属蒸気を発生させる。
The following procedure is adopted for producing the composite particles. (1) Put the metal mass M in the hearth 6. (2) The vacuum pump 10 is operated to reduce the pressure in the sub chamber 2. (3) The atmosphere gas supply source 9 is operated to supply the atmosphere gas into the main chamber 1, and the atmosphere gas is injected from the nozzle 4 into the sub chamber 2 through the duct 3. (4) A voltage is applied between the W electrode 5 and the hearth 6 to generate arc discharge, whereby the metal lump M is melted and metal vapor is generated.

【0009】この金属蒸気と雰囲気ガスとが反応するこ
とにより、セラミック粒子表面を金属層により被覆した
超微細な多面体形複合粒子が製造される。その複合粒子
の製造過程では、先ず、金属蒸気と雰囲気ガスとの反応
で、単結晶構造の多面体形セラミック粒子が生成され、
次いでそのセラミック粒子の表面に付着した金属蒸気が
エピタクシ成長して単結晶構造の多面体形金属層が生成
される、といった現象が発生する。 (5) 複合粒子はダクト3を通じてノズル4より基板
8に噴射され、その基板8上に堆積する。
By reacting the metal vapor with the atmospheric gas, ultrafine polyhedral composite particles in which the surfaces of the ceramic particles are covered with a metal layer are produced. In the manufacturing process of the composite particles, first, polyhedral ceramic particles having a single crystal structure are generated by the reaction between the metal vapor and the atmospheric gas,
Then, a phenomenon occurs in which the metal vapor adhering to the surface of the ceramic particles epitaxially grows to form a polyhedral metal layer having a single crystal structure. (5) The composite particles are jetted from the nozzle 4 to the substrate 8 through the duct 3 and are deposited on the substrate 8.

【0010】構造部材としての粒子強化金属基複合部材
(以下、PRMと称す)の製造に当っては、複合粒子を
単独で用いるか、または他の単結晶構造の金属単体粒子
を併用して、圧粉成形、焼結処理を順次行うことにより
複合粒子の金属層相互間を接合してPRMを製造する。
複合粒子と金属単体粒子との混合粒子を用いる場合に
は、複合粒子中に存在するセラミック粒子の、PRM全
体に対する体積分率Vfは1%以上に設定される。
In the production of a particle-reinforced metal-based composite member (hereinafter referred to as PRM) as a structural member, the composite particles may be used alone or in combination with other single metal particles having a single crystal structure. The PRM is manufactured by joining the metal layers of the composite particles to each other by sequentially performing the powder compacting and the sintering treatment.
When the mixed particles of the composite particles and the simple metal particles are used, the volume fraction Vf of the ceramic particles present in the composite particles with respect to the entire PRM is set to 1% or more.

【0011】単結晶構造の金属層等においては、転位、
欠陥、結晶粒界等が生じていないため化学的活性が低
く、したがって金属層等は極めて酸化しにくいという特
性を有する。
In a metal layer having a single crystal structure, dislocations,
Since no defects and crystal grain boundaries are generated, the chemical activity is low, and therefore the metal layer has a characteristic that it is extremely difficult to oxidize.

【0012】これにより、焼結段階において粒子相互間
の焼結を確実に行って、金属マトリックスに超微細なセ
ラミック粒子を均一に分散させた高密度な高強度PRM
が得られる。
[0012] As a result, in the sintering stage, the particles are reliably sintered together, and the ultra-fine ceramic particles are uniformly dispersed in the metal matrix to provide a high density and high strength PRM.
Is obtained.

【0013】セラミック粒子としては、アスペクト比を
有するものが良い。この場合、アスペクト比は長さをL
とし、粒径をDとしたとき、L/Dで表わされる。した
がってセラミック粒子は非球状であって略短柱状とな
る。
The ceramic particles preferably have an aspect ratio. In this case, the aspect ratio is L
And the particle diameter is D, it is represented by L / D. Therefore, the ceramic particles are non-spherical and have a substantially short columnar shape.

【0014】PRMにおける粒子強化機構は、その粒子
回りの金属マトリックスが粒子の存在によってひずみを
受け、そのひずみに破壊時のクラック、転位等がとらえ
られて、その伝播が抑制される、ということにある。し
たがってセラミック粒子が球状でなく、略短柱状をなす
方が、周囲の金属マトリックスに与えるひずみが大きく
なり、転位等の伝播をより一層抑制することができる。
The particle strengthening mechanism in PRM is that the metal matrix around the particles is strained by the presence of particles, and cracks, dislocations, etc. at the time of fracture are caught by the strain, and their propagation is suppressed. is there. Therefore, when the ceramic particles are not spherical but have a substantially short columnar shape, the strain applied to the surrounding metal matrix is large, and the propagation of dislocations and the like can be further suppressed.

【0015】金属塊Mとしては、Fe、Al、Ti等の
単体または合金が用いられる。
As the metal block M, a simple substance such as Fe, Al, Ti or an alloy thereof is used.

【0016】雰囲気ガスとしては、N2 ガス、O2
ス、CH4 ガス、ジボランガス等が用いられ、また必要
に応じてArガスが併用される。したがって、セラミッ
ク粒子は、前記金属の窒化物、炭化物、ホウ化物または
酸化物である。
As the atmosphere gas, N 2 gas, O 2 gas, CH 4 gas, diborane gas, etc. are used, and Ar gas is also used together if necessary. Therefore, the ceramic particles are nitrides, carbides, borides or oxides of said metals.

【0017】次に、具体例について説明する。Next, a specific example will be described.

【0018】図1の装置を用いた前記製造方法におい
て、金属塊として純Alを用い、また雰囲気ガスとして
純度99.99%のN2 ガスおよび純度99.99%の
Arガスを用いて、サブチャンバ内の気圧10-2Torr、
ノズルの直径0.8mmの条件下で複合粒子を製造した。
In the manufacturing method using the apparatus of FIG. 1, pure Al is used as the metal mass, and N 2 gas having a purity of 99.99% and Ar gas having a purity of 99.99% are used as the atmosphere gas. Air pressure in chamber 10 -2 Torr,
Composite particles were produced under conditions where the nozzle diameter was 0.8 mm.

【0019】図2は、複合粒子Pの結晶構造を示す顕微
鏡写真(30万倍)であり、また図3は図2に対応する
複合粒子Pの概略横断面図である。その複合粒子Pは、
単結晶構造で横断面六角形の八面体形AlN粒子(セラ
ミック粒子)cと、その表面を被覆する単結晶構造で横
断面六角形の八面体形Al層(金属層)mとよりなる。
Al層mはAlN粒子c表面にエピタクシ成長してお
り、これによりAlN粒子cとAl層mとの間の接合強
度が高くなる。またAlN粒子cは、C軸方向において
或程度のアスペクト比を有するもので、略短六角柱状を
なす。
FIG. 2 is a photomicrograph (300,000 times) showing the crystal structure of the composite particle P, and FIG. 3 is a schematic cross-sectional view of the composite particle P corresponding to FIG. The composite particles P are
It is composed of octahedral AlN particles (ceramic particles) c having a single-crystal structure and a hexagonal cross section, and octahedral Al layers (metal layers) m having a single-crystal structure and a hexagonal cross-section covering the surface thereof.
The Al layer m is epitaxially grown on the surface of the AlN particle c, which increases the bonding strength between the AlN particle c and the Al layer m. Also, the AlN particles c have a certain aspect ratio in the C-axis direction, and have a substantially short hexagonal column shape.

【0020】各種複合粒子Pにおいて、ガス分圧と複合
比との関係は表1の通りである。なお、複合比は、図3
において、複合粒子Pの中心とAl層mの1つの稜部と
の間の間隔をd1 とし、また前記中心とAlN粒子cの
1つの稜部との間の間隔をd2 としたとき、d2 /d1
で表わされる。
Table 1 shows the relationship between the gas partial pressure and the composite ratio in various composite particles P. The composite ratio is shown in FIG.
In the above, when the distance between the center of the composite particle P and one edge of the Al layer m is d 1, and the distance between the center and one edge of the AlN particle c is d 2 , d 2 / d 1
It is represented by.

【0021】[0021]

【表1】 表1より、N2 ガス分圧の上昇に伴い複合比が増加する
ことが判る。この場合、複合粒子Pの前記間隔d1 の2
倍を粒径とすると、複合粒子Pの平均粒径は40〜12
0nmであり、超微細である。
[Table 1] It can be seen from Table 1 that the composite ratio increases as the partial pressure of N 2 gas increases. In this case, the distance d 1 of the composite particles P is 2
The average particle diameter of the composite particles P is 40 to 12
It is 0 nm and is ultrafine.

【0022】次に、平均粒径100nmの複合粒子およ
び単結晶構造で平均粒径100nmのAl合金粒子(2
024材)とよりなる混合粒子を用い、加圧力4t/cm
2 にて直径10mm、厚さ3mmであって相対密度85%の
圧粉体を成形し、その後圧粉体に真空中にて12時間の
焼結処理を施して各種PRMを製造した。この場合のA
lN粒子の体積分率Vfは10%である。
Next, composite particles having an average particle size of 100 nm and Al alloy particles having a single crystal structure and an average particle size of 100 nm (2
024 material) and a pressure of 4 t / cm
2, a green compact having a diameter of 10 mm and a thickness of 3 mm and a relative density of 85% was molded, and then the green compact was subjected to a sintering treatment in a vacuum for 12 hours to produce various PRMs. A in this case
The volume fraction Vf of 1N particles is 10%.

【0023】図4、線aはPRMにおける焼結温度と相
対密度との関係を示す。図中、線bは、平均粒径100
nmの多結晶構造Al合金粒子(2024材)を用いて
前記と同一条件で製造された比較例を示す。
FIG. 4, line a shows the relationship between the sintering temperature and the relative density in PRM. In the figure, line b is an average particle size of 100.
A comparative example manufactured using the Al alloy particles (2024 material) having a polycrystalline structure of 20 nm under the same conditions as described above will be shown.

【0024】線aおよびbを比較すると明らかなよう
に、180℃程度で焼結が開始されて相対密度の上昇が
見られるが、その後の焼結進行度合は、線aで示すPR
Mの方が線bの比較例に比べて急速に上昇する。
As is clear from the comparison between the lines a and b, the sintering starts at about 180 ° C. and the relative density increases, but the degree of progress of the sintering thereafter is PR.
M increases more rapidly than the comparative example of line b.

【0025】このような現象の発生は、線aの本発明に
おいては、金属層mおよびAl合金粒子が単結晶構造で
あってそれらの表面に酸化物層が無いか、または在って
も僅少である、ということに起因し、一方、線bの場合
は、Al合金粒子が微細で且つ多結晶構造であるため、
粒子表面が酸化物層により覆われている、ということに
起因する。
In the present invention of the line a, the occurrence of such a phenomenon is such that the metal layer m and the Al alloy particles have a single crystal structure and there is no oxide layer on their surface, or even if they exist, they are very small. On the other hand, in the case of the line b, on the other hand, since the Al alloy particles are fine and have a polycrystalline structure,
This is because the particle surface is covered with the oxide layer.

【0026】なお、前記複合粒子には、セラミック粒子
表面を金属層により完全被覆していないものも含まれ
る。
The composite particles include those in which the surface of ceramic particles is not completely covered with a metal layer.

【0027】[0027]

【発明の効果】本発明によれば、前記のような特定結晶
構造を有する金属質粒子を用いることによって、高強度
な構造部材を提供することができる。
According to the present invention, a structural member having high strength can be provided by using the metallic particles having the above-mentioned specific crystal structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】複合粒子製造装置の概略断面図である。FIG. 1 is a schematic sectional view of an apparatus for producing composite particles.

【図2】複合粒子の結晶構造を示す顕微鏡写真である。FIG. 2 is a micrograph showing a crystal structure of composite particles.

【図3】複合粒子の概略横断面図である。FIG. 3 is a schematic cross-sectional view of composite particles.

【図4】焼結温度と相対密度との関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between sintering temperature and relative density.

【符号の説明】[Explanation of symbols]

P 複合粒子 c AlN粒子(セラミック粒子) m Al層(金属層) P composite particles c AlN particles (ceramic particles) m Al layer (metal layer)

フロントページの続き (71)出願人 000005326 本田技研工業株式会社 東京都港区南青山二丁目1番1号 (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住宅 11−806 (72)発明者 増本 健 宮城県仙台市青葉区上杉3丁目8−22 (72)発明者 笹原 潤 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 野崎 勝敏 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 山口 正志 宮城県仙台市太白区鹿野3−24−23Front page continuation (71) Applicant 000005326 Honda Motor Co., Ltd. 1-1-1, Minami-Aoyama, Minato-ku, Tokyo (72) Inventor Akihisa Inoue Kawauchi Muzenchi, Aoba-ku, Sendai-shi, Miyagi 11-806 (72) Inventor Ken Masumoto 3-8-22 Uesugi, Aoba-ku, Sendai City, Miyagi Prefecture (72) Inventor Jun Sasahara 1-4-1 Chuo, Wako City, Saitama Prefectural Institute of Technology (72) Inventor Katsutoshi Nozaki Saitama Prefecture 1-4-1 Chuo, Wako-shi, Ltd., Honda R & D Co., Ltd. (72) Inventor Masashi Yamaguchi 3-24-23, Kano, Taishiro-ku, Sendai-shi, Miyagi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表面側が単結晶構造の金属よ
り構成された金属質粒子相互間を接合してなる高強度構
造部材。
1. A high-strength structural member in which metallic particles composed of a metal having a single crystal structure at least on the surface side are joined together.
【請求項2】 前記金属質粒子のうち少なくとも一部
が、セラミック粒子の表面を金属層により覆った複合粒
子であり、前記セラミック粒子はアスペクト比を有す
る、請求項1記載の高強度構造部材。
2. The high-strength structural member according to claim 1, wherein at least a part of the metallic particles is a composite particle in which the surface of the ceramic particle is covered with a metal layer, and the ceramic particle has an aspect ratio.
JP3261464A 1991-09-13 1991-09-13 High-strength structural member Pending JPH05140606A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3261464A JPH05140606A (en) 1991-09-13 1991-09-13 High-strength structural member
US07/943,324 US5436080A (en) 1991-09-13 1992-09-10 High strength structural member and process for producing the same
EP92115508A EP0532000B1 (en) 1991-09-13 1992-09-10 High strength structural member and process for producing the same
DE69221047T DE69221047T2 (en) 1991-09-13 1992-09-10 Construction element with high strength and method of its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3261464A JPH05140606A (en) 1991-09-13 1991-09-13 High-strength structural member

Publications (1)

Publication Number Publication Date
JPH05140606A true JPH05140606A (en) 1993-06-08

Family

ID=17362264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3261464A Pending JPH05140606A (en) 1991-09-13 1991-09-13 High-strength structural member

Country Status (1)

Country Link
JP (1) JPH05140606A (en)

Similar Documents

Publication Publication Date Title
US5436080A (en) High strength structural member and process for producing the same
Liu et al. Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques
US6183690B1 (en) Method of bonding a particle material to near theoretical density
CN110592412B (en) Nano AlN particle reinforced mixed crystal heat-resistant aluminum-based composite material and preparation method thereof
US5346667A (en) Method of manufacturing sintered aluminum alloy parts
Wen et al. Processing of fine-grained aluminum foam by spark plasma sintering
EP0203197A1 (en) Process for producing super-heat-resistant alloy material
CN111705252A (en) Al (aluminum)2O3Nano-particle reinforced CrCoNi intermediate entropy alloy-based composite material and preparation method thereof
CN114318039B (en) Element alloying preparation method of metal matrix composite material with three-peak grain structure
JP2003055758A (en) Tungsten sintered compact target for sputtering, and its manufacturing method
JPH05140606A (en) High-strength structural member
JPH05117800A (en) Production of oxide-dispersed and reinforced iron base alloy
JP3396737B2 (en) Control method of porosity distribution of metallic porous body by combining electric discharge machining and plastic machining
JP3023808B2 (en) Particle reinforced metal matrix composite
JP2002256422A (en) W-Ti TARGET AND MANUFACTURING METHOD THEREFOR
JPH05140605A (en) Production of particle reinforced metal-matrix composite member
JPS5913037A (en) Production of w-ni-fe sintered alloy
CN107470625A (en) A kind of powder metallurgy process for preparing high-purity material
US6967001B2 (en) Method for sintering a carbon steel part using a hydrocolloid binder as carbon source
JPH05140603A (en) Production of high-strength structural member
JPH05140604A (en) Production of high-strength structural member
US5217815A (en) Arc sprayed continously reinforced aluminum base composites
JPH0257121B2 (en)
JPH04224601A (en) Manufacture of titanium-based composite material
JPH059509A (en) Sintered body of high-alloy tool steel and production thereof