JPH05138319A - Method and instrument for measuring molten metal surface level - Google Patents

Method and instrument for measuring molten metal surface level

Info

Publication number
JPH05138319A
JPH05138319A JP35550691A JP35550691A JPH05138319A JP H05138319 A JPH05138319 A JP H05138319A JP 35550691 A JP35550691 A JP 35550691A JP 35550691 A JP35550691 A JP 35550691A JP H05138319 A JPH05138319 A JP H05138319A
Authority
JP
Japan
Prior art keywords
molten metal
level
metal level
relationship
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35550691A
Other languages
Japanese (ja)
Inventor
Kazuharu Hanazaki
一治 花崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP35550691A priority Critical patent/JPH05138319A/en
Publication of JPH05138319A publication Critical patent/JPH05138319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To enable the measurement of an absolute value of molten metal surface level and also to restrain variation of the measured values with temp. change in the measuring surroundings. CONSTITUTION:In an operating processing part 8, in a stage from the condition, in which the molten metal does not exist in a mold, until the molten metal surface level in the mold reaches to the prescribed value, the absolute molten metal surface distance L (corresponding to the molten metal surface level) is obtd. with a first distance arithmetic part 85 based on a correcting detection output Vm related to an induction current value generated in a first receiving coil 41. After the molten metal surface level in the mold reaches to the prescribed value, a relative molten metal surface distance L (corresponding to the molten metal surface level) is obtd. with a second distance arithmetic part 89 based on a correcting detection output difference related to the difference between the induction current values generated in the first receiving coil 41 and a second receiving coil 42.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋳型内部の溶融金属湯面
レベルを測定する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the level of molten metal surface inside a mold.

【0002】[0002]

【従来の技術】連続鋳造機の操業は、上下に開口を有す
る筒型の鋳型に、溶融金属である溶鋼を注入し、該鋳型
の水冷内壁と接触させて冷却,凝固せしめ、外側を凝固
シェルにて被覆された鋳片を得て、これを鋳型の下方に
連続的に引き抜きつつ更に冷却し、内側にまで凝固が進
行した段階にて所定の長さに切断して、圧延工程等の後
工程での素材となる製品鋳片を得る手順にて行われる。
2. Description of the Related Art The operation of a continuous casting machine is carried out by injecting molten steel, which is a molten metal, into a cylindrical mold having upper and lower openings, contacting the water-cooled inner wall of the mold to cool and solidify it, and solidify the outer shell. In order to obtain a slab covered with, cool it further while continuously pulling it out below the mold, and cut it to a predetermined length at the stage where the solidification has progressed to the inside, after the rolling step, etc. It is performed in the procedure of obtaining a product slab as a raw material in the process.

【0003】このような連続鋳造機の操業に際しては、
鋳型からの溶鋼の溢出、ブレークアウト等、操業の停止
を強いる種々の不都合の発生を未然に防止すると共に、
鋳型内部での冷却,凝固状態を安定化させて、製品鋳片
の品質向上を図るべく、鋳型内部の湯面レベルを適正な
レベルに維持する湯面レベル制御が行われている。この
湯面レベル制御を行う場合、湯面レベルを測定するが、
湯面レベルの測定には、鋳型内部の溶鋼表面に臨ませて
配した励振コイルへの通電により溶鋼表面に渦電流を生
ぜしめ、これに伴って生じる磁束により受信コイルに生
じる誘導電流の電流値に基づいて湯面レベルを測定する
渦流レベル計が多く用いられている。
In operating such a continuous casting machine,
In addition to preventing the occurrence of various inconveniences that force the operation to stop, such as molten steel overflow from the mold and breakout,
In order to stabilize the cooling and solidification state inside the mold and improve the quality of the product slab, the melt level control is performed to maintain the melt level inside the mold at an appropriate level. When performing this level control, the level is measured,
To measure the molten metal level, an eddy current is generated on the molten steel surface by energizing the excitation coil placed facing the molten steel surface inside the mold, and the current value of the induced current generated in the receiving coil by the magnetic flux generated with this The eddy current level meter that measures the molten metal level based on

【0004】湯面レベルを測定するための従来の渦流レ
ベル計としては、以下に説明する2種類の装置が一般的
に用いられている。
As conventional eddy current level meters for measuring the level of molten metal, the following two types of devices are generally used.

【0005】その第1の装置は、励振コイルと受信コイ
ルとを一対、同一水平面上に配し、前記受信コイルに生
じる誘導電流の電流値を検出し、この検出結果に基づい
て、前記誘導電流の電流値と、励振コイルから湯面まで
の距離との予め定められた関係から湯面レベルの絶対値
を得るようにしたものである。
In the first device, a pair of an exciting coil and a receiving coil are arranged on the same horizontal plane, the current value of the induced current generated in the receiving coil is detected, and the induced current is detected based on the detection result. The absolute value of the level of the molten metal is obtained from the predetermined relationship between the current value of and the distance from the exciting coil to the molten metal.

【0006】また、その第2の装置は、励振コイルを挟
んでその上下に一対の受信コイルを配し、2つの受信コ
イルに生じる誘導電流の電流値の差分をとり、この差が
受信コイルから湯面までの距離の関数になることから、
その差に基づいて、予め定められた基準レベルに対する
湯面レベルの相対値を得るようにしたものである。この
第2の装置では、励振コイルと受信コイルとが縦方向に
配されているので、励振コイルと受信コイルとの間の横
方向の磁束分布は狭いから、測定時に前記磁束分布が、
鋳型を構成する銅板の影響を受けにくく、また、測定環
境の温度変化による受信コイルの誘導電流の電流値の変
化は、誘導電流の電流値の差分をとることによって相殺
されるため、測定環境の温度変化による測定値の変化が
生じないという特徴があった。
In the second device, a pair of receiving coils are arranged above and below the exciting coil, and the difference between the current values of the induced currents generated in the two receiving coils is calculated. Since it is a function of the distance to the bath surface,
Based on the difference, the relative value of the molten metal level with respect to a predetermined reference level is obtained. In this second device, since the exciting coil and the receiving coil are arranged in the vertical direction, the lateral magnetic flux distribution between the exciting coil and the receiving coil is narrow.
It is not easily affected by the copper plates that make up the mold, and changes in the current value of the induced current in the receiving coil due to temperature changes in the measurement environment are offset by taking the difference in the current value of the induced current. It was characterized in that the measured values did not change due to temperature changes.

【0007】[0007]

【発明が解決しようとする課題】ところが、前記第1の
装置では、長時間使用すると、測定環境の温度変化によ
って、受信コイルの誘導電流の電流値が変化し、測定値
が変化するという問題があった。また、前記第2の装置
では、前述した如き特徴のため、前記問題を解決できる
が、その反面、基準レベルに対する湯面レベルの相対値
しか測定できないため、鋳型の湯面レベルが所定値にな
るまで使用できないという問題があった。
However, in the first device, when used for a long time, there is a problem that the current value of the induced current in the receiving coil changes due to the temperature change of the measurement environment and the measured value changes. there were. Further, the second device can solve the above-mentioned problem because of the above-mentioned characteristics, but on the other hand, since the relative value of the molten metal level with respect to the reference level can be measured, the molten metal level of the mold becomes a predetermined value. There was a problem that it could not be used until.

【0008】本発明は斯かる事情に鑑みてなされたもの
であり、湯面レベルの絶対値の測定可能を可能とすると
共に測定環境の温度変化に対する測定値の変化を抑制す
る溶融金属湯面レベル測定方法及び装置を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and enables the absolute value of the molten metal level to be measured and suppresses the change of the measured value with respect to the temperature change of the measurement environment. It is an object of the present invention to provide a measuring method and device.

【0009】[0009]

【課題を解決するための手段】本発明に係る溶融金属湯
面レベル測定方法は、連続鋳造を行う鋳型内での溶融金
属の湯面に臨ませて、励振コイルと、該励振コイルの上
下に配された2つの受信コイルとを設け、前記励振コイ
ルへの通電によって前記湯面に渦電流を生ぜしめ、該渦
電流により生じる磁束により前記受信コイルの夫々に生
じる誘導電流の電流値を検出し、この検出結果に基づい
て溶融金属の湯面レベルの測定値を求める溶融金属湯面
レベル測定方法において、一方の受信コイルに生じる誘
導電流の電流値と、湯面レベルとの関係を表す第1の関
係及び2つの受信コイルに生じる誘導電流の電流値の差
と、湯面レベルとの関係を表す第2の関係を予め定めて
おき、鋳型内に溶融金属が存在しない状態から鋳型内で
の湯面レベルが所定値に達するまでは、第1の関係を用
いて湯面レベルの測定値を求め、鋳型内での湯面レベル
が所定値に達した後は、第2の関係を用いて湯面レベル
の測定値を求めることを特徴とする。
A molten metal molten metal level measuring method according to the present invention is such that a molten metal molten metal level in a mold for continuous casting is exposed to the excitation coil and the upper and lower sides of the excitation coil. Two receiving coils arranged are provided, an eddy current is generated in the molten metal surface by energizing the exciting coil, and a current value of an induced current generated in each of the receiving coils by the magnetic flux generated by the eddy current is detected. In a molten metal level measuring method for obtaining a measured value of molten metal level based on the detection result, a first relationship representing a relationship between a current value of an induced current generated in one receiving coil and the molten metal level Relationship and the difference between the current values of the induced currents generated in the two receiving coils, and the second relationship representing the relationship between the molten metal level and the molten metal level in the mold. Where the bath level is Until the value is reached, the measured value of the molten metal level is obtained using the first relationship, and after the molten metal level in the mold reaches the predetermined value, the molten metal level is measured using the second relationship. It is characterized in that a value is obtained.

【0010】本発明に係る溶融金属湯面レベル測定装置
は、連続鋳造を行う鋳型内での溶融金属の湯面に臨ませ
て、励振コイルと、該励振コイルの上下に配された2つ
の受信コイルとを設け、前記励振コイルへの通電によっ
て前記湯面に渦電流を生ぜしめ、該渦電流により生じる
磁束により前記受信コイルの夫々に生じる誘導電流の電
流値を検出し、この検出結果に基づいて溶融金属の湯面
レベルの測定値を求める溶融金属湯面レベル測定装置に
おいて、一方の受信コイルに生じる誘導電流の電流値と
湯面レベルとの関係を表す第1の関係を記憶する手段
と、2つの受信コイルに生じる誘導電流の電流値の差と
湯面レベルとの関係を表す第2の関係を記憶する手段
と、前記第1の関係を用いて湯面レベルの測定値を求め
る第1の湯面レベル演算手段と、前記第2の関係を用い
て湯面レベルの測定値を求める第2の湯面レベル演算手
段と、鋳型内に溶融金属が存在しない状態から鋳型内で
の湯面レベルが所定値に達するまでは、前記第1の湯面
レベル演算手段によって湯面レベルの測定値を求めさ
せ、鋳型内での湯面レベルが所定値に達した後は、前記
第2の湯面レベル演算手段によって湯面レベルの測定値
を求めさせる手段とを具備することを特徴とする。
The molten metal level measuring device according to the present invention is arranged so as to face the molten metal level in a mold for continuous casting, and an exciting coil and two receiving coils arranged above and below the exciting coil. A coil is provided to generate an eddy current in the molten metal surface by energizing the excitation coil, and the current value of the induced current generated in each of the receiving coils by the magnetic flux generated by the eddy current is detected. And a means for storing a first relationship representing a relationship between a current value of an induced current generated in one of the receiving coils and a molten metal level in the molten metal molten metal level measuring device for obtaining a measured value of the molten metal molten metal level. A means for storing a second relationship representing the relationship between the difference between the current values of the induced currents generated in the two receiving coils and the molten metal level; and a means for obtaining the measured value of the molten metal level using the first relationship. 1 surface level performance Means and a second molten metal level calculating means for obtaining a measured value of the molten metal level using the second relation, and a molten metal level in the mold from a state in which no molten metal exists in the mold to a predetermined value. Until the temperature reaches the measured value of the molten metal level by the first molten metal level calculation means, and after the molten metal level in the mold reaches a predetermined value, by the second molten metal level calculation means. And a means for obtaining a measured value of the molten metal level.

【0011】[0011]

【作用】本発明にあっては、鋳型内に溶融金属が存在し
ない状態から鋳型内での湯面レベルが所定値に達するま
では、一方の受信コイルに生じる誘導電流の電流値と、
湯面レベルとの関係から湯面レベルの絶対値が求めら
れ、鋳型内での湯面レベルが所定値に達した後は、2つ
の受信コイルに生じる誘導電流の電流値の差と、湯面レ
ベルとの関係から、前記所定値に対する湯面レベルの相
対値が求められる。一方の受信コイルに生じる誘導電流
の電流値に基づいて湯面レベルの絶対値を求める場合
は、受信コイルの電流値が測定環境の温度変化によって
影響を受け易いが、この測定期間は、鋳型内に溶融金属
が存在しない状態から鋳型内での湯面レベルが所定値に
達するまでの短い期間であり、測定環境の温度が大幅に
変化しないので、前記温度変化の影響は受け難い。ま
た、2つの受信コイルに生じる誘導電流の電流値の差に
基づいて湯面レベルの相対値を求める場合は、測定環境
の温度変化による受信コイルの誘導電流の電流値の変化
は、誘導電流の電流値の差をとることによって相殺され
るため、測定環境の温度変化によって測定値は影響を受
けない。従って、鋳型内に溶融金属が存在しない状態か
ら定常的な連続鋳造中まで、精度良く湯面レベルの測定
が行える。
In the present invention, from the state where no molten metal exists in the mold until the level of the molten metal in the mold reaches the predetermined value, the current value of the induced current generated in one of the receiving coils,
The absolute value of the molten metal level is calculated from the relationship with the molten metal level, and after the molten metal level in the mold reaches a predetermined value, the difference between the current values of the induced currents generated in the two receiving coils and the molten metal level. From the relationship with the level, the relative value of the molten metal level with respect to the predetermined value is obtained. When obtaining the absolute value of the molten metal level based on the current value of the induced current generated in one of the receiving coils, the current value of the receiving coil is easily affected by the temperature change of the measurement environment. It is a short period from when there is no molten metal until the level of the molten metal in the mold reaches a predetermined value, and the temperature of the measurement environment does not change significantly, so it is difficult to be affected by the temperature change. Further, when the relative value of the molten metal level is obtained based on the difference between the current values of the induced currents generated in the two receiving coils, the change in the current value of the induced current in the receiving coil due to the temperature change of the measurement environment is Since the difference is obtained by taking the difference between the current values, the measured value is not affected by the temperature change of the measurement environment. Therefore, the molten metal level can be accurately measured from the state where no molten metal is present in the mold to the steady continuous casting.

【0012】[0012]

【実施例】以下本発明をその実施例を示す図面に基づい
て詳述する。図1は本発明に係る溶融金属湯面レベル測
定装置の構成を示すブロック図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing the embodiments. FIG. 1 is a block diagram showing the structure of a molten metal level measuring device according to the present invention.

【0013】図中Mは、上下に開口を有し断面長方形の
筒形をなす連続鋳造用の鋳型である。鋳型Mの内部に
は、これの上方に配した図示しないタンディッシュか
ら、延設された注湯ノズル1を経て溶融金属である溶鋼
2が注入されており、この溶鋼2は、鋳型Mの水冷され
た内壁との接触により冷却され、外側を凝固シェルにて
被覆された鋳片3となり、該鋳型Mの下側開口部から連
続的に引き抜かれる。
In the figure, M is a continuous casting mold having openings at the top and bottom and having a rectangular cross section. Molten steel 2 which is a molten metal is injected into the mold M from a tundish (not shown) arranged above the mold M through a pouring nozzle 1 which is extended. The slab 3 is cooled by contact with the formed inner wall, and the outside becomes a slab 3 coated with a solidified shell, and the slab 3 is continuously withdrawn from the lower opening of the mold M.

【0014】鋳型Mの上部には、溶鋼2の湯面レベルを
測定するための円筒形のセンサヘッド4が、その一端面
を鋳型M内に滞留する溶鋼2の表面に臨ませて配設され
ている。このセンサヘッド4の内部においては、その上
下方向の中間部に励振コイル43が配されており、励振コ
イル43の下側には、第1受信コイル41が配され、一方、
励振コイル43の上側には、第2受信コイル42が配されて
いる。励振コイル43は電源5に接続されており、湯面レ
ベルの測定の際には、電源5から励振コイル43への通電
により溶鋼2の表面に渦電流を生ぜしめ、これに伴って
生じる磁束によって第1受信コイル41及び第2受信コイ
ル42に誘導電流が生じ、第1受信コイル41に生じる誘導
電流が第1検波増幅器6によって検波増幅されて演算処
理部8に与えられ、第2受信コイル42に生じる誘導電流
が第2検波増幅器7によって検波増幅されて演算処理部
8に与えられるようになっている。
A cylindrical sensor head 4 for measuring the molten metal level of the molten steel 2 is disposed above the mold M with one end surface thereof facing the surface of the molten steel 2 retained in the mold M. ing. Inside the sensor head 4, an exciting coil 43 is arranged at an intermediate portion in the vertical direction, and a first receiving coil 41 is arranged below the exciting coil 43, while
The second receiving coil 42 is arranged above the excitation coil 43. The excitation coil 43 is connected to the power source 5, and when measuring the molten metal level, an eddy current is generated on the surface of the molten steel 2 by energization from the power source 5 to the excitation coil 43, and the magnetic flux generated by this causes an eddy current. An induced current is generated in the first receiving coil 41 and the second receiving coil 42, and the induced current generated in the first receiving coil 41 is detected and amplified by the first detection amplifier 6 and given to the arithmetic processing unit 8, and the second receiving coil 42 The induced current generated at is detected and amplified by the second detection amplifier 7 and given to the arithmetic processing unit 8.

【0015】演算処理部8はマイクロコンピュータより
なるものであり、該演算処理部8では、前記第1検波増
幅器6の検波出力及び第2検波増幅器7の夫々の検波出
力に基づいて所定の演算処理を実行し、センサヘッド4
から溶鋼2の表面までの距離である湯面距離L(湯面レ
ベルに相当)の測定値を求め、求めた湯面距離Lの測定
値を表示部9に与えるようになっている。表示部9は演
算処理部8から与えられた湯面距離Lの測定値を所定の
表示方式で表示するようになっている。
The arithmetic processing unit 8 is composed of a microcomputer, and the arithmetic processing unit 8 performs predetermined arithmetic processing based on the detection output of the first detection amplifier 6 and the detection output of the second detection amplifier 7. Sensor head 4
The measured value of the molten metal surface distance L (corresponding to the molten metal surface level), which is the distance from the surface of the molten steel 2 to the surface of the molten steel 2, is given to the display unit 9. The display unit 9 is configured to display the measured value of the molten metal surface distance L given by the arithmetic processing unit 8 in a predetermined display system.

【0016】図2は演算処理部8の演算処理機能を表し
たブロック図である。第1検波増幅器6の検波出力は、
第1A/D 変換部80によってA/D 変換され、そのディジタ
ル値のである第1検波出力V1 が、第1記憶部82,第1
演算部84及び第2演算部87の夫々に与えられるようにな
っており、第2検波増幅器7の検波出力は、第2A/D変
換部81によってA/D 変換され、そのディジタル値である
第2検波出力V2 が第2演算部87に与えられるようにな
っている。
FIG. 2 is a block diagram showing the arithmetic processing function of the arithmetic processing unit 8. The detection output of the first detection amplifier 6 is
The first detection output V 1 which is A / D converted by the first A / D conversion unit 80 and is a digital value is the first storage unit 82, first
The detection output of the second detection amplifier 7 is A / D converted by the second A / D conversion unit 81 and is a digital value thereof. The two-detection output V 2 is supplied to the second calculation unit 87.

【0017】第1記憶部82は、鋳型Mに溶鋼2が入って
いない状態での第1検波出力V1 を記憶検波出力Vm1
して記憶するようになっており、この第1記憶部82に
は、前記検波出力V1 の他に、これに与えられる第1検
波出力V1 を記憶する動作を実行させるための信号であ
る第1記憶動作信号及び記憶検波出力Vm1を出力させる
動作を実行させるための信号である第1出力動作信号が
モールド補正部83から後述するタイミングで与えられ、
第1記憶部82から出力される記憶検波出力Vm1は、第1
演算部84に与えられる。
The first storage unit 82 stores the first detection output V 1 when the molten steel 2 is not contained in the mold M as the storage detection output V m1. The first storage unit 82 stores the first detection output V m1. Executes an operation of outputting a first storage operation signal and a stored detection output V m1 which are signals for executing an operation of storing the first detection output V 1 given to the detection output V 1 in addition to the detection output V 1. A first output operation signal, which is a signal for performing the operation, is given from the mold correction unit 83 at a timing described later,
The stored detection output V m1 output from the first storage unit 82 is the first
It is given to the calculation unit 84.

【0018】第1演算部84では、第1A/D 変換部80から
与えられる第1検波出力V1 から第1記憶部82から与え
られる記憶検波出力Vm1を減算するようになっており、
その演算結果である補正検波出力VM は第1距離演算部
85に与えられるようになっている。第1距離演算部85に
は、図3に示す如き、補正検波出力VM と、距離Lとの
関係を表す第1関数が予め記憶されており、第1距離演
算部85では、鋳型Mに溶鋼2が入っていない状態から湯
面距離Lが所定の基準湯面距離L0 の状態になるまでの
間の湯面距離Lを、前記補正検波出力VM に基づき前記
関数を用いて求めるようになっている。
The first operation section 84 is adapted to subtract the stored detection output V m1 given from the first storage section 82 from the first detection output V 1 given from the first A / D conversion section 80.
The corrected detection output V M which is the calculation result is the first distance calculation unit.
To be given to 85. As shown in FIG. 3, a first function representing the relationship between the corrected detection output V M and the distance L is stored in advance in the first distance calculation unit 85. The molten metal distance L from the state in which the molten steel 2 is not contained until the molten metal distance L reaches the state of the predetermined reference molten metal distance L 0 is obtained by using the function based on the corrected detection output V M. It has become.

【0019】ここで、第1関数の特性について説明す
る。図3は第1関数の特性図であり、縦軸に補正検波出
力VM 、横軸に湯面距離Lを夫々とり、これらの関係を
表してある。第1関数は、補正検波出力VM と、湯面距
離Lとが反比例する特性を表しており、補正検波出力V
M から湯面距離Lが求められる。この第1距離演算部85
で求められた湯面距離Lは、湯面レベルを表す情報とし
て表示部9及び実湯補正部86に与えられるようになって
いる。
Here, the characteristics of the first function will be described. FIG. 3 is a characteristic diagram of the first function, in which the vertical axis represents the corrected detection output V M and the horizontal axis represents the molten metal surface distance L, and the relationship between them is represented. The first function represents the characteristic that the corrected detection output V M and the molten metal surface distance L are inversely proportional to each other.
The surface level L is calculated from M. This first distance calculator 85
The molten metal surface distance L obtained in step 1 is provided to the display unit 9 and the actual molten metal correction unit 86 as information indicating the molten metal surface level.

【0020】また、第2演算部87では、前記第1検波出
力V1 から前記第2検波出力V2 を減算するようになっ
ており、その演算結果である検波出力差ΔVは、第2記
憶部88と、第2距離演算部89とに与えられるようになっ
ている。第2記憶部88は、湯面距離Lが基準湯面距離L
0 になった時の検波出力差ΔVを記憶検波出力差ΔVm
として記憶するようになっており、この第2記憶部88に
は、前記検波出力差ΔVの他に、これに与えられる検波
出力差ΔVを記憶する動作を実行させるための信号であ
る第2記憶動作信号及び前記記憶検波出力差ΔVm を出
力する動作を実行させるための信号である第2出力動作
信号が後述するタイミングで実湯補正部86から与えら
れ、第2記憶部88から出力される記憶検波出力差ΔVm
は、第2距離演算部89に与えられるようになっている。
Further, the second calculation section 87 is adapted to subtract the second detection output V 2 from the first detection output V 1 , and the detection output difference ΔV as the calculation result is stored in the second storage. It is provided to the section 88 and the second distance calculation section 89. In the second storage unit 88, the bath surface distance L is the reference bath surface distance L.
The detection output difference ΔV when it becomes 0 is stored in the memory detection output difference ΔV m
In addition to the detection output difference ΔV, the second storage unit 88 has a second storage that is a signal for executing an operation of storing the detection output difference ΔV provided to the second storage unit 88. An operation signal and a second output operation signal, which is a signal for executing the operation of outputting the stored detection output difference ΔV m, are given from the actual hot water correction unit 86 at a timing described later and output from the second storage unit 88. Memory detection output difference ΔV m
Is given to the second distance calculation unit 89.

【0021】第2距離演算部89には、前記検波出力差Δ
V及び前記記憶検波出力差ΔVm の他に、基準湯面距離
0 を表す信号が実湯補正部86から与えられるようにな
っている。第2距離演算部89には、図4に示す如き、検
波出力差ΔVから記憶検波出力差ΔVm を減算した結果
である補正検波出力差ΔVM と、湯面距離Lとの関係を
表す第2関数が予め記憶されており、第2距離演算部89
では、湯面距離Lが所定の基準湯面距離L0 になった状
態以後の湯面距離Lを、前記補正検波出力差ΔVM に基
づき前記第2関数を用いて求めるようになっている。
The second distance calculating section 89 includes a detection output difference Δ
In addition to V and the stored detection output difference ΔV m , a signal representing the reference molten metal surface distance L 0 is supplied from the actual molten metal correction unit 86. As shown in FIG. 4, the second distance calculation unit 89 indicates the relationship between the level L and the corrected detection output difference ΔV M , which is the result of subtracting the stored detection output difference ΔV m from the detection output difference ΔV. Two functions are stored in advance, and the second distance calculation unit 89
Then, the molten metal distance L after the molten metal distance L reaches a predetermined reference molten metal distance L 0 is obtained using the second function based on the corrected detection output difference ΔV M.

【0022】ここで、第2関数の特性について説明す
る。図4は第2関数の特性図であり、縦軸に湯面距離
L、横軸に補正検波出力差ΔVM を夫々とり、これらの
関係を表してある。第2関数は、補正検波出力差ΔVM
と、湯面距離Lとが比例する特性を表しており、この特
性において、湯面距離Lは、基準湯面距離L0 を基準点
として、補正検波出力差ΔVM が正方向に増加するに従
って比例的に減少し、補正検波出力差ΔVM が負方向に
増加するに従って比例的に増加するようになっており、
補正検波出力差ΔVM から湯面距離Lが求められる。こ
の第2距離演算部89で求められた湯面距離Lは、湯面レ
ベルを表す情報として表示部9に与えられるようになっ
ている。
The characteristics of the second function will be described. FIG. 4 is a characteristic diagram of the second function, in which the vertical axis represents the molten metal surface distance L and the horizontal axis represents the corrected detection output difference ΔV M, and the relationship between them is represented. The second function is the corrected detection output difference ΔV M
And the molten metal surface distance L are proportional to each other. In this characteristic, the molten metal surface distance L is based on the reference molten metal surface distance L 0 as the correction detection output difference ΔV M increases in the positive direction. It decreases proportionally, and increases proportionally as the corrected detection output difference ΔV M increases in the negative direction.
The molten metal surface distance L is obtained from the corrected detection output difference ΔV M. The molten metal surface distance L obtained by the second distance calculation unit 89 is provided to the display unit 9 as information indicating the molten metal surface level.

【0023】次に、以上の如き構成の演算処理部8の動
作について説明する。鋳造が開始されると、まず、モー
ルド補正部83から第1記憶部82に第1記憶動作信号が与
えられ、第1記憶部82は、鋳型Mに溶鋼2が入っていな
い状態での第1検波出力V1 を記憶検波出力Vm1として
記憶する。
Next, the operation of the arithmetic processing unit 8 having the above configuration will be described. When casting is started, first, the mold correction unit 83 gives a first storage operation signal to the first storage unit 82, and the first storage unit 82 stores the first storage operation signal when the molten steel 2 is not contained in the mold M. The detected output V 1 is stored as the stored detected output V m1 .

【0024】その記憶後、モールド補正部83から第1記
憶部82に第1出力動作信号が与えられ、記憶検波出力V
m1は、第1演算部84に与えられる。第1演算部84は第1
検波出力V1 から記憶検波出力Vm1を減算することによ
って、第1検波出力V1 における鋳型Mの影響による出
力増加分が除去された補正検波出力VM が得られる。
After the storage, the mold correction unit 83 gives a first output operation signal to the first storage unit 82, and the stored detection output V
m1 is provided to the first calculation unit 84. The first calculation unit 84 is the first
By subtracting the stored detection output V m1 from the detection output V 1 , the corrected detection output V M in which the output increase due to the influence of the template M in the first detection output V 1 is removed is obtained.

【0025】第1距離演算部85では、補正検波出力VM
に基づき前記第1関数を用いて湯面距離L(絶対値)を
求め、求めた湯面距離Lを表示部9が、湯面レベルを表
す情報として表示する。
In the first distance calculator 85, the corrected detection output V M
Based on the above, the first surface function is used to obtain the molten metal surface distance L (absolute value), and the determined molten metal surface distance L is displayed on the display unit 9 as information indicating the molten metal surface level.

【0026】そして、鋳型Mの湯面レベルが上昇し、湯
面距離Lが基準湯面距離L0 に達すると、実湯補正部86
から第2記憶部88に第2記憶動作信号が与えられ、第2
記憶部88は、湯面距離Lが基準湯面距離L0 の状態での
検波出力差ΔVを記憶検波出力差ΔVm として記憶す
る。その記憶後、実湯補正部86から第2記憶部88に第2
出力動作信号が与えられ、記憶検波出力差ΔVm は、第
2距離演算部89に与えられる。
When the molten metal level of the mold M rises and the molten metal distance L reaches the reference molten metal distance L 0 , the actual molten metal correction unit 86.
From the second storage unit 88 to the second storage operation signal,
The storage unit 88 stores the detected output difference ΔV when the molten metal distance L is the reference molten metal distance L 0 as a stored detected output difference ΔV m . After the memory is stored, the actual hot water correction unit 86 stores the second data in the second storage unit 88.
The output operation signal is given, and the memory detection output difference ΔV m is given to the second distance calculating section 89.

【0027】第2距離演算部89では、検波出力差ΔV,
記憶検波出力差ΔVm 及び基準湯面距離L0 に基づき前
記第2関数を用いて、湯面距離L(相対値)を求め、求
めた湯面距離Lを表示部9が、湯面レベルを表す情報と
して表示する。
In the second distance calculator 89, the detection output difference ΔV,
Based on the stored detection output difference ΔV m and the reference molten metal surface distance L 0 , the molten metal surface distance L (relative value) is calculated using the second function, and the calculated molten metal surface distance L is displayed on the display unit 9 as the molten metal level. It is displayed as information.

【0028】このような動作により、演算処理部8で
は、鋳型Mに溶鋼2が入っていない状態から湯面距離L
が基準湯面距離L0 になるまでは、第1検波出力V1
基づいて湯面距離Lの絶対値を測定し、湯面距離Lが基
準湯面距離L0 になった後は、第1検波出力V1 と、第
2検波出力V2 とに基づいて得られる検波出力差ΔVに
基づいて湯面距離Lの相対値を測定する。
Due to such an operation, in the arithmetic processing section 8, the molten metal level 2 is changed from the state in which the molten steel 2 is not contained in the mold M to the molten metal level L.
Until the reference level L 0 is reached, the absolute value of the level L is measured based on the first detection output V 1 , and after the level L reaches the reference level L 0 , The relative value of the molten metal surface distance L is measured based on the detection output difference ΔV obtained based on the first detection output V 1 and the second detection output V 2 .

【0029】前述の如く第1検波出力V1 に基づいて湯
面距離Lの絶対値を測定する場合は、その測定値が測定
環境の温度変化によって第1受信コイル41の誘導電流の
電流値が影響を受けやすいが、この測定は、湯面距離L
が基準湯面距離L0 になるまでの短い時間に行われるの
で、測定環境の温度変化による影響は少ない。また、そ
の後、検波出力差ΔVに基づいて湯面距離Lの相対値を
測定する場合は、実質的な連続鋳造中の長時間の測定に
なるが、測定環境の温度変化による第1受信コイル41及
び第2受信コイル42の誘導電流の電流値の変化は、誘導
電流の電流値の差分(検波出力差ΔV)をとることによ
って相殺されるため、測定環境の温度変化による測定値
の変化は生じない。
As described above, when the absolute value of the molten metal surface distance L is measured based on the first detection output V 1 , the measured value is the current value of the induced current of the first receiving coil 41 due to the temperature change of the measurement environment. It is easily affected, but this measurement is
Is performed in a short time until the reference molten metal surface distance L 0 is reached, so that there is little influence due to the temperature change of the measurement environment. Further, when the relative value of the molten metal surface distance L is subsequently measured based on the detection output difference ΔV, the measurement is performed for a long time during substantially continuous casting, but the first receiving coil 41 due to the temperature change of the measurement environment is used. And the change in the current value of the induced current in the second receiving coil 42 is canceled by taking the difference in the current value of the induced current (detection output difference ΔV), so that the change in the measured value due to the temperature change in the measurement environment occurs. Absent.

【0030】以上の如き測定方法により、本実施例の溶
融金属湯面レベル測定装置では、連続鋳造における湯面
レベルの全域で測定環境の温度変化の影響を受け難いた
め、測定精度が向上する。
With the above-described measuring method, the molten metal molten metal level measuring apparatus of the present embodiment is less likely to be affected by the temperature change of the measuring environment over the entire molten metal level in continuous casting, so that the measuring accuracy is improved.

【0031】[0031]

【発明の効果】以上詳述した如く、本発明においては、
鋳型内に溶融金属が存在しない状態から鋳型内での湯面
レベルが所定値に達するまでは、一方の受信コイルに生
じる誘導電流の電流値と、湯面レベルとの関係から湯面
レベルの絶対値が求められ、鋳型内での湯面レベルが所
定値に達した後は、2つの受信コイルに生じる誘導電流
の電流値の差と、湯面レベルとの関係から、前記所定値
に対する湯面レベルの相対値が求められるが、湯面レベ
ルの絶対値を求めるときは、鋳型内に溶融金属が存在し
ない状態から鋳型内での湯面レベルが所定値に達するま
での、測定環境の温度変化が少ない状態であるので、測
定環境の温度変化に影響をほとんど受けない湯面レベル
の絶対値を求めることができ、また、2つの受信コイル
に生じる誘導電流の電流値の差に基づいて湯面レベルの
絶対値を求めるときは、測定環境の温度変化による受信
コイルの誘導電流の電流値の変化は、誘導電流の電流値
の差をとることによって相殺され、測定環境の温度変化
によって測定値は影響を受けない。従って、湯面レベル
の絶対値の測定可能となると共に測定環境の温度変化に
対する測定値の変化を抑制できる等、本発明は優れた効
果を奏する。
As described above in detail, in the present invention,
From the state where no molten metal is present in the mold until the level of the molten metal in the mold reaches a specified value, the absolute value of the molten metal level is determined from the relationship between the current level of the induced current generated in one receiving coil and the molten metal level. After the value is obtained and the level of the molten metal in the mold reaches a predetermined value, the molten metal level with respect to the predetermined value is determined from the relationship between the difference between the current values of the induced currents generated in the two receiving coils and the molten metal level. The relative value of the level is obtained, but when obtaining the absolute value of the molten metal level, the temperature change of the measurement environment from the state where no molten metal is present in the mold until the molten metal level in the mold reaches the specified value. Since there is only a small amount of water, it is possible to obtain the absolute value of the molten metal level that is hardly affected by temperature changes in the measurement environment, and based on the difference between the current values of the induced currents generated in the two receiving coils, When you find the absolute value of the level The change in the current value of the induced current in the receiving coil due to a change in temperature of the measurement environment is canceled by taking the difference between the current value of the induced current, the measured value by the temperature changes in the measurement environment is not affected. Therefore, the present invention has an excellent effect that the absolute value of the molten metal level can be measured and the change of the measured value due to the temperature change of the measurement environment can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る溶融金属湯面レベル測定装置の構
成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a molten metal level measuring apparatus according to the present invention.

【図2】演算処理部の演算処理機能を表したブロック図
である。
FIG. 2 is a block diagram showing an arithmetic processing function of an arithmetic processing unit.

【図3】第1関数の特性図である。FIG. 3 is a characteristic diagram of a first function.

【図4】第2関数の特性図である。FIG. 4 is a characteristic diagram of a second function.

【符号の説明】[Explanation of symbols]

2 溶鋼 6 第1検波増幅器 7 第2検波増幅器 8 演算処理部 41 第1受信コイル 42 第2受信コイル 43 励振コイル 83 モールド補正部 85 第1距離演算部 86 実湯補正部 89 第2距離演算部 M 鋳型 2 Molten steel 6 First detection amplifier 7 Second detection amplifier 8 Arithmetic processing unit 41 First receiving coil 42 Second receiving coil 43 Excitation coil 83 Mold correction unit 85 First distance calculation unit 86 Actual bath correction unit 89 Second distance calculation unit M mold

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造を行う鋳型内での溶融金属の湯
面に臨ませて、励振コイルと、該励振コイルの上下に配
された2つの受信コイルとを設け、前記励振コイルへの
通電によって前記湯面に渦電流を生ぜしめ、該渦電流に
より生じる磁束により前記受信コイルの夫々に生じる誘
導電流の電流値を検出し、この検出結果に基づいて溶融
金属の湯面レベルの測定値を求める溶融金属湯面レベル
測定方法において、 一方の受信コイルに生じる誘導電流の電流値と、湯面レ
ベルとの関係を表す第1の関係及び2つの受信コイルに
生じる誘導電流の電流値の差と、湯面レベルとの関係を
表す第2の関係を予め定めておき、鋳型内に溶融金属が
存在しない状態から鋳型内での湯面レベルが所定値に達
するまでは、第1の関係を用いて湯面レベルの測定値を
求め、鋳型内での湯面レベルが所定値に達した後は、第
2の関係を用いて湯面レベルの測定値を求めることを特
徴とする溶融金属湯面レベル測定方法。
1. An exciting coil and two receiving coils arranged above and below the exciting coil are provided so as to face the molten metal surface in a mold for continuous casting, and the exciting coil is energized. Produces an eddy current on the molten metal surface, detects the current value of the induced current generated in each of the receiving coils by the magnetic flux generated by the eddy current, and based on this detection result, the measured value of the molten metal molten metal level is obtained. In the required molten metal level measuring method, a first relationship indicating the relationship between the current level of the induced current generated in one receiving coil and the level of the molten metal and a difference between the current values of the induced current generated in the two receiving coils. , A second relationship representing the relationship with the molten metal level is determined in advance, and the first relationship is used from the state where no molten metal is present in the mold until the molten metal level in the mold reaches a predetermined value. Measured value of level Determined, after molten metal surface level in the mold reaches a predetermined value, the molten metal bath level level measurement wherein the obtaining the measurement value of the molten metal surface level using the second relationship.
【請求項2】 連続鋳造を行う鋳型内での溶融金属の湯
面に臨ませて、励振コイルと、該励振コイルの上下に配
された2つの受信コイルとを設け、前記励振コイルへの
通電によって前記湯面に渦電流を生ぜしめ、該渦電流に
より生じる磁束により前記受信コイルの夫々に生じる誘
導電流の電流値を検出し、この検出結果に基づいて溶融
金属の湯面レベルの測定値を求める溶融金属湯面レベル
測定装置において、 一方の受信コイルに生じる誘導電流の電流値と湯面レベ
ルとの関係を表す第1の関係を記憶する手段と、 2つの受信コイルに生じる誘導電流の電流値の差と湯面
レベルとの関係を表す第2の関係を記憶する手段と、 前記第1の関係を用いて湯面レベルの測定値を求める第
1の湯面レベル演算手段と、 前記第2の関係を用いて湯面レベルの測定値を求める第
2の湯面レベル演算手段と、 鋳型内に溶融金属が存在しない状態から鋳型内での湯面
レベルが所定値に達するまでは、前記第1の湯面レベル
演算手段によって湯面レベルの測定値を求めさせ、鋳型
内での湯面レベルが所定値に達した後は、前記第2の湯
面レベル演算手段によって湯面レベルの測定値を求めさ
せる手段とを具備することを特徴とする溶融金属湯面レ
ベル測定装置。
2. An exciting coil and two receiving coils arranged above and below the exciting coil are provided so as to face the molten metal surface in a mold for continuous casting, and the exciting coil is energized. Produces an eddy current on the molten metal surface, detects the current value of the induced current generated in each of the receiving coils by the magnetic flux generated by the eddy current, and based on this detection result, the measured value of the molten metal molten metal level is obtained. In the required molten metal level measuring device, means for storing a first relationship representing the relationship between the current level of the induced current generated in one of the receiving coils and the molten metal level, and the current of the induced current generated in the two receiving coils Means for storing a second relationship representing a relationship between the value difference and the molten metal level; first molten metal level calculating means for obtaining a measured value of the molten metal level using the first relationship; Using the relationship of 2 Second molten metal level calculating means for obtaining the measured value of the molten metal, and the first molten metal level calculating means from the state in which no molten metal exists in the mold until the molten metal level in the mold reaches a predetermined value. And a means for obtaining the measured value of the molten metal level by the second molten metal level calculation means after the molten metal level in the mold reaches a predetermined value. A molten metal level measuring device characterized by:
JP35550691A 1991-11-21 1991-11-21 Method and instrument for measuring molten metal surface level Pending JPH05138319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35550691A JPH05138319A (en) 1991-11-21 1991-11-21 Method and instrument for measuring molten metal surface level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35550691A JPH05138319A (en) 1991-11-21 1991-11-21 Method and instrument for measuring molten metal surface level

Publications (1)

Publication Number Publication Date
JPH05138319A true JPH05138319A (en) 1993-06-01

Family

ID=18444348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35550691A Pending JPH05138319A (en) 1991-11-21 1991-11-21 Method and instrument for measuring molten metal surface level

Country Status (1)

Country Link
JP (1) JPH05138319A (en)

Similar Documents

Publication Publication Date Title
JP4842195B2 (en) Slab surface temperature measuring device and slab surface temperature measuring method
JPH05138319A (en) Method and instrument for measuring molten metal surface level
JPH06304727A (en) Device for controlling casting velocity
JP3307170B2 (en) Flow velocity measuring method and its measuring device, continuous casting method and its device
JPH0194201A (en) Method and apparatus for measuring thickness of molten slag
TW201606270A (en) Eddy current mold level measuring device and mold level measuring method
JPH06320245A (en) Heat extraction control device in mold
JPS60127060A (en) Measuring device for level of molten metal surface
JPH02117750A (en) Method for detecting molten metal surface level in metal strip continuous casting
JPH0242409B2 (en)
JP3088917B2 (en) Continuous casting method of molten metal
JPS61279351A (en) Method and mold for continuous casting
JPH0515960A (en) Instrument for measuring molten metal surface level
JPS60133955A (en) Method for electromagnetic stirring in continuous casting
JPH08211085A (en) Flow velocity measuring device
JP3779809B2 (en) Method and apparatus for continuous casting of molten metal
JPH05138318A (en) Method for measuring molten metal surface level
JP3221990B2 (en) Mold level measuring device
JPH0361536B2 (en)
JP4414609B2 (en) Method and apparatus for detecting drift in molten steel in continuous casting of steel
JP2638369B2 (en) Pouring method of continuous casting mold
JP3832358B2 (en) Control method of hot water level meter in mold at the start of continuous casting
JP2714437B2 (en) Method and apparatus for measuring meniscus flow velocity of molten metal
JP4505536B2 (en) Slab surface temperature measuring device and slab surface temperature measuring method
JPS6324789B2 (en)