JPH05136065A - Manufacture of semiconductor - Google Patents

Manufacture of semiconductor

Info

Publication number
JPH05136065A
JPH05136065A JP29615191A JP29615191A JPH05136065A JP H05136065 A JPH05136065 A JP H05136065A JP 29615191 A JP29615191 A JP 29615191A JP 29615191 A JP29615191 A JP 29615191A JP H05136065 A JPH05136065 A JP H05136065A
Authority
JP
Japan
Prior art keywords
semiconductor
distribution
impurity
temperature
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29615191A
Other languages
Japanese (ja)
Inventor
Akito Kuramata
朗人 倉又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29615191A priority Critical patent/JPH05136065A/en
Publication of JPH05136065A publication Critical patent/JPH05136065A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a semiconductor having a uniform distribution of specific resistance by doping impurities, each of which has a distribution coefficient of mutually opposite sign, at the same time and by selecting the doping material densities of the two kinds of the impurities at a ratio to compensate the difference in temperature. CONSTITUTION:Two kinds of the same conductivity-type impurities having the temperature dependency of a distribution coefficient TetaAXTetaB<0 being implanted at a doping material density which meets CA/CB=¦TetaB/TetaA¦, a semiconductor is deposited. TetaA and TetaB are rates of change about the temperatures of distribution coefficient etaA and etaB of the impurities and CA and CB are the doping material densities of the impurities. Then, the temperature dependency of the impurity density becomes zero and therefore the impurity density in the deposited semiconductor is fixed independent of the deposition temperature and there is no distribution of the impurity density even if there is a distribution of the substrate temperature. Consequently, a semiconductor of a uniform specific resistance can be deposited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,基板上に均一な比抵抗
を有する半導体を堆積する方法に関する。基板上に不純
物を含む半導体を堆積する工程は,半導体装置,特にII
I-V 族化合物半導体を用いた装置の製造に広く使われて
いる。
FIELD OF THE INVENTION The present invention relates to a method for depositing a semiconductor having a uniform resistivity on a substrate. The process of depositing a semiconductor containing impurities on a substrate is performed in a semiconductor device, particularly II.
It is widely used to manufacture devices using Group IV compound semiconductors.

【0002】しかし,近年における大口径基板の使用,
或いは多数基板への同時堆積法の採用に伴い,温度分布
に起因して不純物濃度が不均一となるため,均一な比抵
抗の半導体を堆積することが難しくなっている。
However, the use of large-diameter substrates in recent years,
Alternatively, with the adoption of the simultaneous deposition method on a large number of substrates, the impurity concentration becomes non-uniform due to the temperature distribution, which makes it difficult to deposit a semiconductor having a uniform specific resistance.

【0003】このため,温度分布が存在しても一定の不
純物濃度を有し,均一な比抵抗の半導体を堆積する方法
が強く要求されている。
Therefore, there is a strong demand for a method of depositing a semiconductor having a constant impurity concentration and a uniform resistivity even if there is a temperature distribution.

【0004】[0004]

【従来の技術】基板上に堆積された半導体には,堆積温
度に応じた濃度の不純物がドーピングされ,この結果,
基板温度分布に起因する不純物濃度分布を生ずる。
2. Description of the Related Art A semiconductor deposited on a substrate is doped with an impurity having a concentration according to a deposition temperature.
An impurity concentration distribution is generated due to the substrate temperature distribution.

【0005】従来の方法では,かかる不純物濃度分布を
減少するために基板を回転させ,又は基板温度分布を小
さくする手段が講じられていた。しかし,基板の回転の
みでは温度分布を補償して均一な不純物濃度とすること
は困難である。また,基板温度分布を小さくすることは
極めて難しく,敢えて手段を講ずると堆積装置の大型化
を招来する。
In the conventional method, means for rotating the substrate or reducing the substrate temperature distribution has been taken in order to reduce the impurity concentration distribution. However, it is difficult to compensate the temperature distribution and obtain a uniform impurity concentration only by rotating the substrate. Also, it is extremely difficult to reduce the substrate temperature distribution, and if measures are taken intentionally, the deposition apparatus will become larger.

【0006】[0006]

【発明が解決しようとする課題】上述の様に,従来の基
板上への半導体の堆積方法は,温度分布に起因して不純
物濃度の不均一な分布を生ずるため,均一な比抵抗の半
導体を堆積することができないという問題があった。
As described above, in the conventional method for depositing a semiconductor on a substrate, a non-uniform distribution of the impurity concentration is generated due to the temperature distribution, so that a semiconductor having a uniform specific resistance is obtained. There was a problem that it could not be deposited.

【0007】本発明は,基板温度分布から生ずる温度差
を補償して不純物を均一濃度でドーングすることによ
り,均一な比抵抗分布を有する半導体の堆積方法を提供
することを目的とする。
It is an object of the present invention to provide a method of depositing a semiconductor having a uniform resistivity distribution by compensating for the temperature difference caused by the substrate temperature distribution and doping impurities at a uniform concentration.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の本発明の第一の構成は,半導体堆積装置内のドーピン
グ原料濃度に対する堆積された半導体中の不純物濃度の
比として定義される分配係数の堆積温度に関する変化率
TηA なる第一の不純物と,分配係数の堆積温度に関
する変化率が TηB なる第二の不純物とを同時にドーピ
ングして堆積する半導体の製造方法であって, TηA ×
TηB <0であり,該半導体堆積装置内において該第一
の不純物のドーピング原料濃度を該第二の不純物のドー
ピング原料濃度の略| TηB TηA |倍とすることを
特徴して構成し,及び,第二の構成は,第一の構成の半
導体の製造方法において,該半導体はIII-V 族化合物半
導体であり,該第一の不純物のドーピング原料はSiH
4 及びSi2 6 の何れか一つであり,該第二の不純物
のドーピング原料はH2 S及びH2 Seの何れか一つで
あり,化学気相堆積法(CVD法)により該半導体を堆
積することを特徴として構成する。
[Means for Solving the Problems] To solve the above problems
The first aspect of the present invention is a dopin in a semiconductor deposition apparatus.
Of the impurity concentration in the deposited semiconductor with respect to the raw material concentration
Rate of change of partition coefficient, defined as ratio, with respect to deposition temperature
ButTηAOf the first impurity and the distribution temperature of the distribution coefficient
Change rateTηBBecome a second impurity at the same time
A method of manufacturing a semiconductor that is deposited by deposition,TηA×
TηB<0, the first in the semiconductor deposition apparatus
The doping source concentration of the impurity of the second impurity
Abbreviation of ping raw material concentration |TηB/TηA| to double
Characteristically configured, and the second configuration is a half of the first configuration
In the method of manufacturing a conductor, the semiconductor is a III-V group compound
It is a conductor, and the first impurity doping material is SiH
FourAnd Si2H 6And the second impurity
The doping material of H is2S and H2Any one of Se
Yes, the semiconductor is deposited by the chemical vapor deposition method (CVD method).
It is characterized by stacking.

【0009】[0009]

【作用】以下本発明の構成の作用を説明する。第一の不
純物のドーピング原料濃度をCA ,第二の不純物のドー
ピング原料濃度をCB とする半導体の堆積においては,
堆積された半導体中の不純物濃度nは,第一の不純物濃
度nA =ηA ×CA ,及び第二の不純物濃度nB =ηB
×CB の和であり,n=nA+nB と表される。
The operation of the constitution of the present invention will be described below. In the deposition of a semiconductor in which the doping material concentration of the first impurity is C A and the doping material concentration of the second impurity is C B ,
The impurity concentration n in the deposited semiconductor is the first impurity concentration n A = η A × C A , and the second impurity concentration n B = η B
× C B , which is expressed as n = n A + n B.

【0010】ここで,ηA 及びηB はそれぞれ第一及び
第二の不純物についての分配係数であり,温度,装置条
件,堆積条件及びドーピング原料濃度CA に依存する。
しかし,半導体の堆積では通常,温度,装置,堆積条件
及びドーピング原料濃度は可能な限り一定に保たれる。
また基板温度分布により生ずる温度差は小さいから,こ
の温度差により装置及び堆積条件が大きく変化すること
はない。このため基板温度分布から生ずる温度差が装置
条件及び堆積条件の変化を通して分配係数を変える効果
は,分配係数が直接温度に依存して変わる変化に較べて
小さく無視してよい。即ち通常の堆積条件の変動の範囲
では,分配係数ηA ,ηB は温度に陽にのみ依存する。
Here, η A and η B are distribution coefficients for the first and second impurities, respectively, and depend on temperature, apparatus conditions, deposition conditions and doping source concentration C A.
However, in semiconductor deposition, the temperature, equipment, deposition conditions and doping source concentration are usually kept as constant as possible.
Moreover, since the temperature difference caused by the substrate temperature distribution is small, the apparatus and deposition conditions do not change significantly due to this temperature difference. Therefore, the effect that the temperature difference caused by the substrate temperature distribution changes the distribution coefficient through changes in the apparatus conditions and deposition conditions is small compared to the change in which the distribution coefficient directly depends on the temperature, and can be ignored. That is, the distribution coefficients η A and η B depend only on the temperature positively within the range of fluctuation of the usual deposition conditions.

【0011】他方,基板上の所定の堆積温度よりもΔT
高い領域上に堆積する半導体の不純物濃度nは,所定の
濃度から,
On the other hand, ΔT is higher than the predetermined deposition temperature on the substrate.
The impurity concentration n of the semiconductor deposited on the high region is

【0012】[0012]

【数1】 δn=δnA +δnB ,だけ変化する。ここ
で,通常ドーピング原料濃度CA ,CB を一定として堆
積するから,
## EQU1 ## Only changes by δn = δn A + δn B. Here, since the concentrations of the doping raw materials C A and C B are usually constant,

【0013】[0013]

【数2】 δnA TηA ×CA ×ΔT,## EQU2 ## δn A = T η A × C A × ΔT,

【0014】[0014]

【数3】 δnA TηB ×CB ×ΔT, である。なお, TηA TηB はそれぞれ分配係数
ηA ,ηB の温度に関する変化率dηA /dT,dηB
/dTである。ここで,分配係数ηA ,ηB は温度に陽
にのみ依存するという事実を用いた。
## EQU3 ## δn A = T η B × C B × ΔT. Incidentally, T η A, T η B each partition coefficient eta A, eta change rate d? A / dT regarding the temperature of the B, d? B
/ DT. Here, we use the fact that the distribution coefficients η A and η B depend only on the temperature explicitly.

【0015】数1,数2,数3から,不純物濃度の変化
量δnは,
From the equations (1), (2) and (3), the change amount δn of the impurity concentration is

【0016】[0016]

【数4】 δn=( TηA ×CA TηB ×CB )×Δ
T, と表される。本発明はかかる理論に基づき考案された。
即ち,数4で表される不純物濃度の変化量δnの温度変
化が無くなるように,
## EQU4 ## δn = ( T η A × C A + T η B × C B ) × Δ
Expressed as T ,. The present invention has been devised based on this theory.
That is, in order to eliminate the temperature change of the change amount δn of the impurity concentration expressed by the equation 4,

【0017】[0017]

【数5】 TηA × TηB <0, なる分配関数の温度依存性を有する同一伝導型の2種類
の不純物を,
## EQU00005 ## Two kinds of impurities of the same conductivity type having a temperature dependence of the distribution function such that T η A × T η B <0

【0018】[0018]

【数6】 CA /CB =| TηB TηA |, を満たすドーピング原料濃度のもとでドーピングしつ
つ,半導体を堆積するものである。
## EQU6 ## A semiconductor is deposited while doping under a doping source concentration satisfying C A / C B = | T η B / T η A |.

【0019】かかる本発明の構成では,不純物濃度の温
度依存性は零となるから,堆積された半導体中の不純物
濃度は堆積温度に依らず一定となり,基板温度分布があ
っても不純物濃度分布を生ずることはなく,従って均一
な比抵抗の半導体が堆積されるのである。
In the structure of the present invention, since the temperature dependence of the impurity concentration becomes zero, the impurity concentration in the deposited semiconductor becomes constant irrespective of the deposition temperature, and even if there is the substrate temperature distribution, the impurity concentration distribution is It does not occur, so a semiconductor of uniform resistivity is deposited.

【0020】数5及び数6を満たす本発明の条件の下で
は,さらにn=nA+nB に,nA =ηA ×CA ,nA
=ηB ×CB ,及び数6を代入して,不純物濃度と各ド
ーピング原料濃度との関係として,
Under the conditions of the present invention satisfying the equations (5) and (6), n = n A + n B , and n A = η A × C A , n A
= Η B × C B , and substituting equation 6, the relationship between the impurity concentration and the concentration of each doping material is

【0021】[0021]

【数7】 n=CA ηA (1−( TηA TηB )×
(ηB /ηA )),
N = C A η A (1- ( T η A / T η B ) ×
B / η A )),

【0022】[0022]

【数8】 n=CB ηB (1−( TηB TηA )×
(ηA /ηB )), を得る。従って本発明の方法を適用して所定の不純物濃
度n0 の半導体の堆積をするには,ドーピング原料濃度
を,数7,数8でn=n0 とおいたときの各ドーピング
原料濃度,
N = C B η B (1- ( T η B / T η A ) ×
A / η B )), is obtained. Therefore, in order to deposit a semiconductor having a predetermined impurity concentration n 0 by applying the method of the present invention, the doping raw material concentrations are n = n 0 in Equations 7 and 8,

【0023】[0023]

【数9】 CA = (n0/ηA ) /(1-( TηA
TηB )×(ηB /ηA )),
[Equation 9] C A = (n 0 / η A ) / (1- ( T η A /
T η B ) × (η B / η A )),

【0024】[0024]

【数10】 CB =(n0/ηB )/(1-( TηB
TηA )×(ηA /ηB )), により実現される。即ち,数9及び数10に従い各ドー
ピング原料濃度を決定することにより,所望の不純物濃
度n0 の半導体を堆積することができる。
C B = (n 0 / η B ) / (1- ( T η B /
T η A ) × (η A / η B )), That is, by determining the concentration of each doping material according to the equations 9 and 10, it is possible to deposit a semiconductor having a desired impurity concentration n 0 .

【0025】なお,本発明は気相からの堆積,及び溶液
からの堆積に適用されることはいうまでもない。次に,
III-V 族化合物半導体を化学気相堆積法(CVD法)に
より基板上に堆積する方法では,半導体中のSi濃度
は,SiH4 又はSi2 6 をドーピング原料とすると
き温度変化に対して正の変化を有し,他方,H2 S又は
2 Seをドーピング原料とするとき温度変化に対して
負の変化を有する。従って基板表面内に温度差が生じて
も2種の不純物が互いに補償し合い,全体として不純物
濃度を一定にすることができる。これらの不純物は何れ
もドナーを形成するから,かかる方法により堆積された
III-V 族化合物半導体の比抵抗は一定になる。
Needless to say, the present invention is applied to deposition from a gas phase and deposition from a solution. next,
In the method of depositing a III-V group compound semiconductor on a substrate by a chemical vapor deposition method (CVD method), the Si concentration in the semiconductor changes with temperature when SiH 4 or Si 2 H 6 is used as a doping raw material. It has a positive change, while when H 2 S or H 2 Se is used as a doping material, it has a negative change with respect to temperature change. Therefore, even if a temperature difference occurs in the substrate surface, the two kinds of impurities compensate each other, and the impurity concentration can be kept constant as a whole. Since all of these impurities form donors, they were deposited by such a method.
The resistivity of III-V group compound semiconductors is constant.

【0026】[0026]

【実施例】本発明を実施例を参照して説明する。本実施
例は,GaAsをCVD法により堆積する例である。
EXAMPLES The present invention will be described with reference to examples. The present embodiment is an example of depositing GaAs by the CVD method.

【0027】先ず,高抵抗GaAs基板を半導体堆積装
置内に載置し,真空中で加熱して表面を清浄にする。次
いで,基板温度を680℃に保ち0.1気圧の減圧下
で,原料ガスとして流量0.25sccmのTEGa(Tetr
aethyl gallium)及び流量10sccmのAsH3 をドーピ
ング原料ガスと共に供給して,不純物ドープされたGa
As単結晶層を堆積する。ドーピング原料ガスにはSi
4 及びH2 Sを用いた。
First, a high resistance GaAs substrate is placed in a semiconductor deposition apparatus and heated in vacuum to clean the surface. Next, the substrate temperature was maintained at 680 ° C. and the TEGa (Tetr (Tetr)
agallium) and a flow rate of 10 sccm of AsH 3 are supplied together with the doping source gas, and Ga is doped with impurities.
Deposit As single crystal layer. Si for the doping source gas
H 4 and H 2 S were used.

【0028】かかる原料ガスを用いたCVD法における
不純物濃度nD は,, 結晶中で不純物と置換されるサイ
トを構成している原子の濃度をN,その原子を供給する
原料ガスの分圧をpO,ドーピング原料ガスの分圧をpD
として,
The impurity concentration n D in the CVD method using such a source gas is expressed by the following: N is the concentration of atoms constituting the sites in the crystal that are replaced by impurities, and N is the partial pressure of the source gas supplying the atoms. p O, the partial pressure of the doping source gas is p D
As,

【0029】[0029]

【数11】 D /N=kD D/O , となる場合がJ.Crystal Growth vol.75 (1986)p.91-100
に記載されている。ここで,kD はアレニウス型の温度
依存をする係数であって物質固有の定数kD0,ΔED
用いて,
[Equation 11] When n D / N = k D p D / p O, J. Crystal Growth vol.75 (1986) p.91-100
It is described in. Here, k D is an Arrhenius-type temperature-dependent coefficient, and using the constants k D0 and ΔE D peculiar to the substance ,

【0030】[0030]

【数12】 D =kD0exp(ΔED/T) と表される。従って, 数11,数12から不純物の分配
係数ηDは,
[Equation 12] It is expressed as k D = k D0 exp (ΔE D / T). Therefore , from equations 11 and 12, the distribution coefficient η D of impurities is

【0031】[0031]

【数13】 ηD =kD0NC0 exp(ΔED/T), となる。ここでC0 は置換されるサイトを構成している
原子を供給する原料ガスの濃度であり,数13の導出の
際に,分圧比は原料ガス濃度比に等しいことを用いた。
[Equation 13] η D = k D0 NC 0 exp (ΔE D / T). Here, C 0 is the concentration of the source gas that supplies the atoms that form the site to be replaced, and when deriving Eq. 13, the partial pressure ratio is equal to the source gas concentration ratio.

【0032】数13を温度について微分し,温度に対す
る変化率 TηD
Equation 13 is differentiated with respect to temperature, and the rate of change with respect to temperature T η D ,

【0033】[0033]

【数14】 TηD =−(ΔED /T2 )ηD を得る。数14を TηD = TηA , 又は TηD = TηB
とおき, それぞれ数9,数10に代入して,
(14) T η D = − (ΔE D / T 2 ) η D is obtained. Formula 14 is T η D = T η A , or T η D = T η B
Substituting into equation 9 and equation 10 , respectively,

【0034】[0034]

【数15】 CA =(n0 /ηA )/(1−ΔEA /Δ
B ),
C A = (n 0 / η A ) / (1−ΔE A / Δ
E B ),

【0035】[0035]

【数16】 CB =(n0 /ηB )/(1−ΔEB /Δ
A ), を得る。所望濃度n0 =8.96×1015として,Si
4 及びH2 Sをドーピング原料ガスとする本実施例で
は,硫黄の分配係数ηA =9.85×1019,及びシリ
コンの分配係数ηB =3.48×1020,硫黄の活性化
エネルギーΔEA =12000,及びシリコンの活性化
エネルギーΔEB =−18900を用いて, H2 Sガスの濃度CA は,CA =5.56×10-5, SiH4 ガスの濃度CB は,CB =1.00×10-5, となる。
C B = (n 0 / η B ) / (1−ΔE B / Δ
E A ), is obtained. With the desired concentration n 0 = 8.96 × 10 15 ,
In the present embodiment using H 4 and H 2 S as the doping source gas, the distribution coefficient of sulfur η A = 9.85 × 10 19 , the distribution coefficient of silicon η B = 3.48 × 10 20 , and the activation of sulfur. Using the energy ΔE A = 12000 and the silicon activation energy ΔE B = −18900, the H 2 S gas concentration C A is C A = 5.56 × 10 −5 , and the SiH 4 gas concentration C B is , C B = 1.00 × 10 −5 .

【0036】かかる濃度を実現するために,以下に述べ
るようにガスを供給する。数15,数16から,
In order to achieve such a concentration, gas is supplied as described below. From equations 15 and 16,

【0037】[0037]

【数17】 CA /CB =−(ηB /ηA)(ΔEB
ΔEA ), である。この関係は分配係数がアレニウス型となる堆積
方法,例えばCVD法について成立する。
C A / C B = − (η B / η A ) (ΔE B /
ΔE A ), This relationship holds for a deposition method with a distribution coefficient of Arrhenius type, for example, a CVD method.

【0038】本実施例では,H2 SガスとSiH4 ガス
とを数17で与えられる比CA /C B =5.56で混合
されたガスをドーピング原料ガスとして使用する。これ
により,原料ガスの濃度が変化しても,堆積された半導
体中の全不純物濃度は堆積温度には依存しないという本
発明の効果を常に維持することができるのである。
In this embodiment, H2S gas and SiHFourgas
And the ratio C given byA/ C B= Mixed at 5.56
The obtained gas is used as a doping raw material gas. this
Even if the concentration of the source gas changes due to the
The book that the total impurity concentration in the body does not depend on the deposition temperature
The effect of the invention can always be maintained.

【0039】具体的には,上記CA /CB =5.56の
比で混合された,H2 S濃度が5.56×10-5及びS
iH4 濃度が1.00×10-5の混合ガスを,AsH3
の流量10sccmと同流量供給する。これにより所望の濃
度の半導体が堆積される。
Specifically, the H 2 S concentration of 5.56 × 10 -5 and S mixed in the above C A / C B = 5.56 ratio was obtained.
A mixed gas having an iH 4 concentration of 1.00 × 10 −5 was added to AsH 3
The same flow rate of 10 sccm is supplied. As a result, a semiconductor having a desired concentration is deposited.

【0040】なお,全不純物濃度は原料ガス濃度に依存
する。従って,一つの原料ガスの濃度を制御するだけ
で,本発明の効果を奏しつつ,不純物濃度の絶対値を制
御することができる。即ち,不純物濃度を一つのガス流
量の増減のみで自由に選ぶことができる。このため,異
なる不純物濃度の半導体を成長するときにも,各ドーピ
ング原料ガス流量を格別に制御する必要はないから,制
御が容易であり,その結果精密な不純物濃度を有する半
導体を堆積することができるのである。
The total impurity concentration depends on the source gas concentration. Therefore, only by controlling the concentration of one source gas, the absolute value of the impurity concentration can be controlled while exhibiting the effect of the present invention. That is, the impurity concentration can be freely selected by only increasing or decreasing one gas flow rate. For this reason, even when growing semiconductors with different impurity concentrations, it is not necessary to control the flow rates of the respective doping raw material gases, so that it is easy to control, and as a result, a semiconductor having a precise impurity concentration can be deposited. You can do it.

【0041】[0041]

【発明の効果】本発明によれば,互いに反対符号の分配
係数を有する不純物が同時にドーピングされ,かつ2種
類の不純物のドーピング原料濃度は温度差を補償する比
に選定されているから,基板温度分布があっても全不純
物濃度は一定となるという効果を奏し,均一な比抵抗を
有する半導体を堆積でき,半導体装置の性能向上に寄与
するところが大きい。
According to the present invention, the impurities having the distribution coefficients of opposite signs are doped at the same time, and the doping raw material concentrations of the two kinds of impurities are selected to be ratios for compensating for the temperature difference. Even if there is a distribution, there is an effect that the total impurity concentration becomes constant, a semiconductor having a uniform specific resistance can be deposited, and it greatly contributes to the performance improvement of the semiconductor device.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体堆積装置内のドーピング原料濃度
に対する堆積された半導体中の不純物濃度の比として定
義される分配係数の堆積温度に関する変化率が TηA
る第一の不純物と, 分配係数の堆積温度に関する変化率が TηB なる第二の
不純物とを同時にドーピングして堆積する半導体の製造
方法であって, T ηA × TηB <0であり, 該半導体堆積装置内において該第一の不純物のドーピン
グ原料濃度を該第二の不純物のドーピング原料濃度の略
TηB TηA |倍とすることを特徴とする半導体の
製造方法。
1. A first impurity having a change rate of T η A of a distribution coefficient, which is defined as a ratio of an impurity concentration in a deposited semiconductor to a doping source concentration in a semiconductor deposition apparatus, and a distribution coefficient of the distribution coefficient A method for manufacturing a semiconductor, which comprises simultaneously doping and depositing a second impurity having a change rate with respect to a deposition temperature of T η B , wherein T η A × T η B <0, and A method of manufacturing a semiconductor, wherein the doping raw material concentration of one impurity is approximately | T η B / T η A | times the doping raw material concentration of the second impurity.
【請求項2】 請求項1記載の半導体の製造方法におい
て, 該半導体はIII-V 族化合物半導体であり, 該第一の不純物のドーピング原料はSiH4 及びSi2
6 の何れか一つであり, 該第二の不純物のドーピング原料はH2 S及びH2 Se
の何れか一つであり, 化学気相堆積法(CVD法)により該半導体を堆積する
ことを特徴とする半導体の製造方法。
2. The method for manufacturing a semiconductor according to claim 1, wherein the semiconductor is a III-V group compound semiconductor, and the first impurity doping material is SiH 4 and Si 2.
One of H 6 and the second impurity doping material is H 2 S and H 2 Se.
The method for manufacturing a semiconductor, wherein the semiconductor is deposited by a chemical vapor deposition method (CVD method).
JP29615191A 1991-11-13 1991-11-13 Manufacture of semiconductor Withdrawn JPH05136065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29615191A JPH05136065A (en) 1991-11-13 1991-11-13 Manufacture of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29615191A JPH05136065A (en) 1991-11-13 1991-11-13 Manufacture of semiconductor

Publications (1)

Publication Number Publication Date
JPH05136065A true JPH05136065A (en) 1993-06-01

Family

ID=17829818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29615191A Withdrawn JPH05136065A (en) 1991-11-13 1991-11-13 Manufacture of semiconductor

Country Status (1)

Country Link
JP (1) JPH05136065A (en)

Similar Documents

Publication Publication Date Title
KR20210128924A (en) Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
KR920004173B1 (en) Method of growing a single crystalline beta-sic layer on a silicon substrate
EP0632145B1 (en) Method of forming crystalline silicon carbide coatings
US20140087544A1 (en) Tin precursors for vapor deposition and deposition processes
JP2018522412A (en) Growth of epitaxial 3C-SiC on single crystal silicon
GB1589312A (en) Growing semiconductor crystals
Knauf et al. Comparison of ethyldimethylindium (EDMIn) and trimethylindium (TMIn) for GaInAs and InP growth by LP-MOVPE
EP0148357B1 (en) A metal organic chemical vapour deposition process for depositing silicon doped intermetallic semiconductor compounds
WO2004081986A2 (en) Method to planarize and reduce defect density of silicon germanium
WO2001022482A9 (en) Method of producing relaxed silicon germanium layers
US5229319A (en) Method for producing compound semiconductors and apparatus therefor
JPH05136065A (en) Manufacture of semiconductor
US4798743A (en) Vapor deposition method for the GaAs thin film
JPS63129609A (en) Method of adding impurity for iii-v compound semiconductor single crystal thin film
JPH04162418A (en) Chemical vapor growth method
JPH01220432A (en) Manufacture of compound semiconductor layer
JPH03280419A (en) Method for formation of compound semiconductor thin film
JPS62123094A (en) Susceptor for vapor growth of semiconductor
JPH07226380A (en) Atomic layer crystal growth method
JPS62219614A (en) Method for growth of compound semiconductor
JP2736417B2 (en) Semiconductor element manufacturing method
JPS62167290A (en) Vapor growth method for iii-v compound semiconductor
JPH0222814A (en) Manufacture of compound semiconductor device
JPS62124735A (en) Susceptor for vapor growth of semiconductor
JP2018104278A (en) Compound semiconductor substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204