JPH051359A - Method for coating hot-dip metal coated steel sheet - Google Patents

Method for coating hot-dip metal coated steel sheet

Info

Publication number
JPH051359A
JPH051359A JP3180418A JP18041891A JPH051359A JP H051359 A JPH051359 A JP H051359A JP 3180418 A JP3180418 A JP 3180418A JP 18041891 A JP18041891 A JP 18041891A JP H051359 A JPH051359 A JP H051359A
Authority
JP
Japan
Prior art keywords
steel sheet
frequency current
steel plate
current conducting
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3180418A
Other languages
Japanese (ja)
Other versions
JP2601067B2 (en
Inventor
Toshio Sato
俊雄 佐藤
Toshio Ishii
俊夫 石井
Shunichi Sugiyama
峻一 杉山
Akira Yada
明 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3180418A priority Critical patent/JP2601067B2/en
Priority to CA002072200A priority patent/CA2072200C/en
Priority to KR1019920011048A priority patent/KR950000007B1/en
Priority to CA002072210A priority patent/CA2072210A1/en
Priority to EP92110677A priority patent/EP0525387B1/en
Priority to DE69201466T priority patent/DE69201466T2/en
Publication of JPH051359A publication Critical patent/JPH051359A/en
Priority to US08/150,759 priority patent/US5384166A/en
Application granted granted Critical
Publication of JP2601067B2 publication Critical patent/JP2601067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To provide the method enabling uniform coating at high speed while preventing warp and vibration of hot-dip metal coated steel sheet. CONSTITUTION:Above the surface of hot dipping bath 4, at the front face side and back face side of the steel sheet S drawn up from the hot dipping bath, high-frequency current conducting passages 1a, 1b parallel to the steel sheet surfaces are set near the steel sheet S, and by conducting high-frequency current sufficient to saturate magnetically the steel sheet S into each of high-frequency current conducting passages 1a, 1b, reverse phase of the high-frequency current is induced to the steel sheet. By interaction between this induction current and the high-frequency current in the above each current conducting passage, magnetic pressure acting on the steel sheet S surface is generated, and by the above magnetic pressure acted from both face sides of the steel sheet S, the molten metal stuck to the steel sheet S is wiped while preventing the warp and the vibration in the width direction of steel sheet, to execute coating to the steel sheet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連続溶融亜鉛めっき等の
溶融金属めっきにおいて、鋼板に付着した溶融金属をワ
イピングし、めっき鋼板の目付を行うための方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for wiping molten metal adhering to a steel sheet and performing a basis weight of the plated steel sheet in hot metal galvanizing such as continuous hot dip galvanizing.

【0002】[0002]

【従来技術】連続溶融めっき処理では、図17に示すよ
うに溶融めっき浴4中のシンクロ−ル5に巻付搬送され
る鋼板Sが、押えおよび板反り矯正用のピンチロ−ル6
を経て上方に引き上げられた後、通常、めっき浴面上で
ガスワイピングノズル7により余剰めっき分を絞り取ら
れ、均一なめっき厚を得るようにしている。
2. Description of the Related Art In a continuous hot dip coating process, a steel plate S wound around a synchro 5 in a hot dip bath 4 and conveyed as shown in FIG.
After being pulled up, the excess wiping amount is usually squeezed out by the gas wiping nozzle 7 on the plating bath surface to obtain a uniform plating thickness.

【0003】このようなめっき処理において、生産性を
上げるために板の通板速度を上げようとすると、鋼板S
に付随して上方に持ち上げられる溶融金属量が必然的に
多くなるため、ガスワイピングノズル7のガス圧を高め
る必要がある。しかし、このようにガスワイピングノズ
ル7のガス圧を高めると、高速で板に衝突したガスジェ
ットは余分な溶融金属を下方に掻き落すだけでなく、随
伴ガス流を発生させ、この随伴ガス流により溶融金属の
一部がスプラッシュとなり、これがガスワイピングノズ
ルに付着してノズル詰りを生じさせ、この結果ガス流の
均一性が阻害され、めっき目付量を均一にすることがで
きなくなる。このようにめっき目付量が不均一である
と、美観上の問題のみならず、めっき後の合金化の不均
一化や巻取時の荷崩れの原因となる。また、スプラッシ
ュの一部は鋼板に再付着し、鋼板傷の原因となる等の問
題もある。また、ガスワイピングノズルのガス流量を増
大させることは、コストアップや騒音発生の要因ともな
る。
In such a plating process, if an attempt is made to increase the plate passing speed in order to increase productivity, the steel plate S
As a result, the amount of molten metal that is lifted upward inevitably increases, so the gas pressure of the gas wiping nozzle 7 must be increased. However, when the gas pressure of the gas wiping nozzle 7 is increased in this way, the gas jet that collides with the plate at a high speed not only scrapes off the excess molten metal downward, but also generates an associated gas flow, and this associated gas flow A part of the molten metal becomes splash, which adheres to the gas wiping nozzle and causes nozzle clogging, which hinders the uniformity of the gas flow and makes it impossible to make the coating weight uniform. Such a non-uniform coating weight causes not only aesthetic problems but also non-uniform alloying after plating and load collapse during winding. There is also a problem that part of the splash redeposits on the steel plate, causing damage to the steel plate. In addition, increasing the gas flow rate of the gas wiping nozzle also causes a cost increase and noise generation.

【0004】従来、高速化に対応するために余剰な溶融
金属を絞り取る方法に関し、以下のような提案がなされ
ている。 特公昭44−7444号に示されるように、鋼板に高
周波磁場を印加し、鋼板に発生する渦電流に伴うロ−レ
ンツ力を利用して溶融金属を絞り、且つガスワイピング
を併用する方法 特開昭61−227158号に示されるように、鋼板
に定常電流を流し、静磁場とのロ−レンツ力により余剰
溶融金属を下方に絞った後、ガスワイピングノズルに到
らしめる方法 特開昭61−204363号に示されるように、鋼板
の面外方向に静磁場を発生させ、鋼板の移動により発生
する溶融金属中の誘導電流と静磁場とのロ−レンツ力に
より、余剰の溶融金属を下方に絞った後、ガスワイピン
グノズルに到らしめる方法 特開昭61−266560号や特開昭62−1033
33号に示されるように、鋼板下方向に移動磁界を発生
させ余剰溶融金属を下方に絞った後、ガスワイピングノ
ズルに到らしめる方法
Conventionally, the following proposals have been made regarding a method of squeezing out excess molten metal in order to cope with speeding up. As disclosed in JP-B-44-7444, a method in which a high frequency magnetic field is applied to a steel sheet, the molten metal is squeezed by utilizing Lorentz force associated with an eddy current generated in the steel sheet, and gas wiping is also used. As disclosed in Japanese Patent Laid-Open No. 227158/1986, a method in which a stationary current is passed through a steel sheet to squeeze the excess molten metal downward by Lorentz force with a static magnetic field and then reaches a gas wiping nozzle. As shown in No. 204363, a static magnetic field is generated in the out-of-plane direction of the steel sheet, and the excess current of molten metal is lowered downward by the Lorentz force of the induced current in the molten metal generated by the movement of the steel sheet and the static magnetic field. A method of reaching the gas wiping nozzle after squeezing. JP-A-61-266560 and JP-A-62-1033.
No. 33, a method of generating a moving magnetic field in the downward direction of a steel sheet and squeezing surplus molten metal downward, and then arriving at a gas wiping nozzle.

【0005】[0005]

【発明が解決しようとする課題】しかし、これらの方法
の最大の欠点は、特に鋼板などの強磁性体に磁場を作用
させる際、鋼板は磁場の強い方に引き付けられるために
不安定な系となり、目的とするような適正な制御を行う
ことが難しいという点にある。このような制御上の問題
を回避するためには、磁場発生装置と鋼板との間隔を広
く取る必要があり、この結果、磁場の効果が極めて限定
されてしまい、本来目的としているような効果は十分に
得られない。
However, the biggest drawback of these methods is that, when a magnetic field is applied to a ferromagnetic material such as a steel sheet, the steel sheet is attracted to the strong magnetic field, resulting in an unstable system. However, it is difficult to perform proper control as intended. In order to avoid such a control problem, it is necessary to widen the gap between the magnetic field generator and the steel plate, and as a result, the effect of the magnetic field is extremely limited, and the effect originally intended is not achieved. I can't get enough.

【0006】また、溶融金属の目付量の均一化を阻害す
る要因として、鋼板の振動や幅方向での板反り(所謂C
反り)があるが、上述したいずれの提案も鋼板の制振や
板反り矯正には全く効果がない。上記の特公昭44−
7444号には、コイル間を通過する鋼板は磁気的な反
発力でコイル間中心にセンタリングされるという、鋼板
の振動抑制効果が期待し得るような内容が示されている
が、上述したように単に鋼板に高周波磁場を印加した場
合には、強磁性体である鋼板に磁気的吸引力が強く作用
するため、通板する鋼板がコイル方向に吸引される等、
却って不安定な状態が引き起こされ、振動の抑制等は全
く期待できない。
Further, as factors that hinder the uniforming of the weight per unit area of the molten metal, vibration of the steel sheet and plate warpage in the width direction (so-called C
However, none of the above-mentioned proposals has any effect on the vibration control of the steel plate and the correction of the plate warp. The above Japanese Patent Publication No.44-
No. 7444 describes that a steel sheet passing between coils is centered between the coils by a magnetic repulsive force, which is expected to have a vibration suppressing effect on the steel sheet. When a high-frequency magnetic field is simply applied to the steel sheet, the magnetic attraction force strongly acts on the steel sheet that is a ferromagnetic body, so that the steel sheet to be passed is attracted in the coil direction.
On the contrary, an unstable state is caused, and vibration suppression etc. cannot be expected at all.

【0007】このように従来の方法では、強磁性の鋼板
が磁場により吸引され、不安定な系となるという根本的
な問題があり、このため本来目的とするような十分な作
用が期待できないという欠点があった。
As described above, the conventional method has a fundamental problem that a ferromagnetic steel sheet is attracted by a magnetic field to form an unstable system. Therefore, it is not possible to expect a sufficient effect as originally intended. There was a flaw.

【0008】本発明はこのような従来の問題に鑑みなさ
れたもので、溶融めっき鋼板の板反りや振動を防止しつ
つ、高速かつ均一な目付を可能とする方法を提供しよう
とするものである。
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a method capable of high-speed and uniform basis weight while preventing the warp and vibration of the hot-dip plated steel sheet. .

【0009】[0009]

【課題を解決するための手段】鋼板のような強磁性体に
単に磁場を印加し、鋼板の制振やめっき目付を行おうと
しても、鋼板に磁気吸引力が作用し、鋼板がより不安定
な状態におかれることは、上述した通りである。このよ
うな問題に対し本発明者らは、図1のB〜H曲線に示さ
れるように鋼板の強磁性を示す領域が非飽和域に限ら
れ、飽和域では強磁性でなくなることに着目し、鋼板に
十分な飽和域に達するような高周波磁場を印加すれば、
磁気吸引力よりも高周波電流路を流れる電流と鋼板中の
誘導電流間に生じる反発力の方が強くなり、上記磁気吸
引力に伴う不安定性が解消されることを見出し、本発明
を完成させたものである。
[Means for Solving the Problems] Even if a magnetic field is simply applied to a ferromagnetic material such as a steel plate to suppress the vibration of the steel plate or to provide a coating weight, the magnetic attraction force acts on the steel plate, making the steel plate more unstable. It is as described above that it is put in such a state. With respect to such a problem, the present inventors have noticed that the region showing the ferromagnetism of the steel sheet is limited to the non-saturation region as shown by the curves B to H in FIG. , If a high frequency magnetic field is applied to the steel plate to reach a sufficient saturation range,
The inventors have found that the repulsive force generated between the current flowing through the high-frequency current path and the induced current in the steel sheet is stronger than the magnetic attraction force, and the instability associated with the magnetic attraction force is eliminated, and the present invention has been completed. It is a thing.

【0010】すなわち本発明は、溶融めっき浴の浴面上
方において、溶融めっき浴から引き出される鋼板の前面
側および後面側に、鋼板幅方向に平行な高周波電流導通
路を鋼板に近接して配置し、各高周波電流導通路に鋼板
を十分に磁気的に飽和させ得るに十分な大きさの高周波
電流を通電して鋼板に逆位相の高周波電流を誘導させ、
この誘導電流と前記各電流導通路の高周波電流との相互
作用により鋼板面に働く磁気圧力を発生させ、鋼板にそ
の両面側から作用する前記磁気圧力により、鋼板の幅方
向での板反りと振動を防止しつつ鋼板に付着した溶融金
属をワイピングし、鋼板のめっき目付を行うようにした
ものである。
That is, according to the present invention, above the bath surface of the hot dip coating bath, a high frequency current conducting path parallel to the width direction of the steel sheet is arranged close to the steel sheet on the front surface side and the rear surface side of the steel sheet drawn from the hot dipping bath. , A high-frequency current of a magnitude sufficient to magnetically saturate the steel plate in each high-frequency current conducting path is applied to induce a high-frequency current of opposite phase to the steel plate,
The interaction between this induced current and the high-frequency current in each of the current conducting paths generates a magnetic pressure acting on the steel sheet surface, and the magnetic pressure acting on the steel sheet from both sides thereof causes warpage and vibration in the width direction of the steel sheet. The molten metal adhering to the steel sheet is wiped while preventing the above, and the coating weight of the steel sheet is performed.

【0011】このような本発明において、高周波電流導
通路は鋼板通板方向で間隔をおいて2以上設けることが
できる。また、通板する鋼板の前面側と後面側の高周波
電流導通路は、一般には鋼板を挟んで略対向した位置に
配置され、この場合には、対向する両高周波電流導通路
に同位相の高周波電流が流される。但し、例えば、鋼板
の前面側と後面側にそれぞれ複数の高周波電流導通路を
配置する場合には、高周波電流導通路は必ずしも鋼板を
挟んで対向する必要はなく、鋼板通板方向で位置をずら
して配置してもよい。そしてこの場合には、上記高周波
電流導通路が鋼板を挾んで対向する場合のような電流の
位相に関する制約はない。
In the present invention as described above, two or more high frequency current conducting paths can be provided at intervals in the steel sheet passing direction. Further, the high-frequency current conducting paths on the front side and the rear side of the steel sheet to be passed are generally arranged at positions substantially opposite to each other with the steel sheet sandwiched therebetween. An electric current is passed. However, for example, when arranging a plurality of high-frequency current conducting paths on the front surface side and the rear surface side of the steel sheet, the high-frequency current conducting paths do not necessarily have to face each other across the steel sheet, but the positions are shifted in the steel sheet passing direction. You may arrange it. In this case, there is no restriction on the phase of the current as in the case where the high-frequency current conducting paths face each other across the steel plate.

【0012】高周波電流導通路は、鋼板幅方向に亘って
設ける必要があるが、必ずしも板幅方向と平行に設ける
必要はなく、高周波電流導通路全長に板幅方向に対して
傾きをもたせ、或いは高周波電流導通路の一部に板幅方
向に対して傾きをもたせるような構成とすることができ
る。鋼板エッジ部では、高周波電流導通路を流れる電流
に対して鋼板中を流れる電流の方向が90°の関係にな
るため、このエッジ部近傍で磁気圧力が弱まる傾向があ
り、このような問題に対しては、上記のように高周波電
流導通路全長に板幅方向に対して傾きをもたせ、或いは
電流導通路の鋼板エッジ部近傍に面した部分に板幅方向
に対して傾きをもたせた構成とするのが有効である。
The high-frequency current conducting path needs to be provided in the width direction of the steel plate, but it is not always necessary to provide the high-frequency current conducting path in parallel with the width direction of the steel plate. It is possible to adopt a configuration in which a part of the high-frequency current conducting path is inclined with respect to the plate width direction. At the edge of the steel sheet, the direction of the current flowing through the steel sheet is 90 ° with respect to the current flowing through the high-frequency current conducting path, so the magnetic pressure tends to weaken near this edge. As described above, the entire length of the high-frequency current conducting path is inclined with respect to the plate width direction, or the portion of the current conducting path facing the steel plate edge is inclined with respect to the plate width direction. Is effective.

【0013】[0013]

【作用】本発明法の作用を、強磁性体である鋼板の磁気
特性を示す図1(磁束密度と磁界の強さとの関係図)と
本発明の一実施例である図2および図3に基づき説明す
る。図2は実施状況を示す側面図、図3は同じく正面図
である。
The action of the method of the present invention is shown in FIG. 1 (relationship diagram between magnetic flux density and magnetic field strength) showing the magnetic characteristics of a steel sheet which is a ferromagnetic material, and FIGS. 2 and 3 showing one embodiment of the present invention. It will be explained based on. 2 is a side view showing an implementation state, and FIG. 3 is a front view of the same.

【0014】本発明法では、溶融めっき浴4の浴面上方
において、溶融めっき浴4から引き出され連続通板する
鋼板Sの前面側と後面側に、それぞれ鋼板面に平行な高
周波電流導通路1a、1bを鋼板Sに近接して配置す
る。高周波電流導通路1a、1bに同位相の高周波電流
を流すと、鋼板Sにはこれと逆位相の電流が流れる。こ
の鋼板を流れる電流は前記高周波電流導通路の電流とは
方向が逆となるため、磁気的な反発作用すなわち磁気圧
力が鋼板表面に作用する。しかしながら、鋼板のような
強磁性体では透磁率が高いため、上述したように単に電
流が流れただけでは、磁気吸引力が反発力を上回り、不
安定系となってしまう。ここで、高周波電流導通路1
a、1bの電流を大きくしていくと、図1に示す鋼板中
の磁界の振幅が大きくなり、全体的には飽和域に鋼板が
滞留する時間が長くなり、この結果、ある磁界の振幅以
上では磁気反発力が磁気吸引力よりはるかに支配的とな
る。本発明では、このように鋼板を磁気的に十分に飽和
させ得るに十分な大きさの高周波電流を高周波電流導通
路1a、1bに通電し、必要な磁気反発力を得る。この
磁気反発力は鋼板に対してその両側から非接触のバネが
作用するのと同じであり、鋼板の振動を抑制し、また、
C反りを矯正する。そして、このように鋼板の制振およ
び板反りの矯正がなされた状況下で、鋼板両面側から作
用する溶融金属への磁気圧力により、鋼板に付着してい
る余剰の溶融金属が絞り落され、極めて均一な目付が可
能となる。
In the method of the present invention, above the bath surface of the hot dip coating bath 4, a high frequency current conducting path 1a parallel to the steel plate surface is formed on the front surface side and the rear surface side of the steel sheet S drawn from the hot dipping bath 4 and continuously passed. 1b is arranged close to the steel plate S. When high-frequency currents of the same phase are passed through the high-frequency current conducting paths 1a, 1b, currents of opposite phases flow through the steel plate S. Since the current flowing through the steel sheet has a direction opposite to that of the current in the high-frequency current conducting path, magnetic repulsion, that is, magnetic pressure acts on the steel sheet surface. However, since the magnetic permeability of a ferromagnetic material such as a steel plate is high, the magnetic attraction force exceeds the repulsive force and an unstable system results if the current simply flows as described above. Here, the high frequency current conducting path 1
As the currents of a and 1b are increased, the amplitude of the magnetic field in the steel plate shown in FIG. 1 increases, and the time during which the steel plate stays in the saturation region becomes longer as a result. Then the magnetic repulsive force becomes much more dominant than the magnetic attractive force. In the present invention, a high-frequency current of a sufficient magnitude to sufficiently saturate the steel sheet magnetically in this way is passed through the high-frequency current conducting paths 1a, 1b to obtain the necessary magnetic repulsion force. This magnetic repulsive force is the same as that of non-contact springs acting on both sides of the steel plate, suppressing the vibration of the steel plate, and
C Correct the warp. Then, under the condition that the vibration and the warp of the steel plate are corrected in this way, the magnetic pressure to the molten metal acting from both sides of the steel plate causes the excess molten metal adhering to the steel plate to be squeezed out. An extremely uniform basis weight is possible.

【0015】[0015]

【実施例】図2ないし図11に本発明の実施例を示す。
このうち図2および図3は、上述したように鋼板Sを挾
んで対向するようにして鋼板面に平行な1対の高周波電
流導通路1a、1bを鋼板に近接して配し、これら高周
波電流導通路1a、1bに同位相の高周波電流を流すよ
うにしたものである。
2 to 11 show an embodiment of the present invention.
Of these, in FIGS. 2 and 3, as described above, a pair of high-frequency current conducting paths 1a and 1b parallel to the steel plate surface are arranged close to the steel plate S so as to face each other. High frequency currents of the same phase are made to flow through the conduction paths 1a and 1b.

【0016】また、図4および図5は、鋼板を挾んで対
向する高周波電流導通路1a、1bを上下2組配置した
例である。この例では、上下の高周波電流導通路の電流
の位相が反対となっているが、同位相でもよい。
Further, FIGS. 4 and 5 show an example in which two sets of high frequency current conducting paths 1a and 1b facing each other with a steel plate sandwiched are arranged vertically. In this example, the phases of the currents in the upper and lower high frequency current conducting paths are opposite to each other, but they may have the same phase.

【0017】図6は、鋼板両側の高周波電流導通路1を
鋼板を挾んで対向させることなく、上下にずらして配置
し、全体として高周波電流導通路1を千鳥状に配置した
場合の例であり、鋼板Sの前面側と後面側にそれぞれ複
数の高周波電流導通路1を配置する場合には、このよう
な配置とすることが可能である。この場合には、各個別
の高周波電流導通路1の高周波電流に対応して、鋼板内
にこれと逆位相の電流が流れ、鋼板Sには鋼板通板方向
で交互に反対方向からの磁気圧力が作用することにな
る。なお、この例では鋼板の前面側と後面側で高周波電
流導通路を流れる電流の位相が逆となっているが、位相
が同一であってもよい。すなわち、高周波電流導通路を
流れる電流の位相は任意である。
FIG. 6 shows an example in which the high-frequency current conducting paths 1 on both sides of the steel sheet are arranged vertically without being sandwiched between the steel sheets, and the high-frequency current conducting paths 1 are arranged in a staggered manner as a whole. When a plurality of high-frequency current conducting paths 1 are arranged on the front surface side and the rear surface side of the steel plate S, such an arrangement is possible. In this case, a current having a phase opposite to that of the high-frequency current flowing in each individual high-frequency current conducting path 1 flows in the steel sheet, and the steel sheet S is alternately subjected to magnetic pressure from the opposite direction in the steel sheet passing direction. Will work. In this example, the phases of the currents flowing through the high-frequency current conducting path are opposite between the front side and the rear side of the steel sheet, but the phases may be the same. That is, the phase of the current flowing through the high frequency current conducting path is arbitrary.

【0018】図7は、各高周波電流導通路1a、1bの
鋼板対向面側を除く周囲を、透磁率が高く飽和磁束密度
の高い電磁材料2で囲み、その内部を水冷箱3とした例
であり、磁気抵抗が低いため比較的少ない電流でも鋼板
を十分飽和させるだけの磁場を効率的に印加し、高い磁
気圧力の発生を可能としたものである。図8は、鋼板の
端部に特に強い磁気圧力をかけるため、各高周波電流導
通路1の鋼板エッジ部近傍と対向する部分に、鋼板通板
ライン方向に沿った屈曲部11を形成したものである。
このような構成は上述した各実施例に適用可能である。
FIG. 7 shows an example in which the periphery of each high-frequency current conducting path 1a, 1b except for the steel sheet facing surface side is surrounded by an electromagnetic material 2 having a high magnetic permeability and a high saturation magnetic flux density, and the inside thereof is a water-cooled box 3. Since the magnetic resistance is low, a magnetic field sufficient to saturate the steel sheet can be efficiently applied even with a relatively small current, and a high magnetic pressure can be generated. FIG. 8 shows a bent portion 11 formed along the steel sheet passing line direction in the portion of each high-frequency current conducting path 1 facing the vicinity of the steel sheet edge portion in order to apply particularly strong magnetic pressure to the end portion of the steel sheet. is there.
Such a configuration is applicable to each of the above-described embodiments.

【0019】また、鋼板エッジ部では、高周波電流導通
路を流れる電流に対して鋼板中を流れる電流の方向が9
0°の関係になるため、このエッジ部近傍で磁気圧力が
弱まる傾向があり、このような問題に対しては、高周波
電流導通路全長を板幅方向に対して傾け、或いは電流導
通路の鋼板エッジ部近傍と対向する部分に板幅方向に対
し傾きをもたせる方法が有効である。図9および図10
は前者の例を示すもので、鋼板両側の高周波電流導通路
1a,1bの全長に板幅方向に対して適当な傾きをもた
せたものである。また、図11は鋼板エッジ部近傍に面
した高周波電流導通路1a,1bの部分12に板幅方向
に対する傾きをもたせたものである。以上のような構成
は上記各実施例に適用可能である。
At the edge of the steel sheet, the direction of the current flowing through the steel sheet is 9 with respect to the current flowing through the high frequency current conducting path.
Since the relationship is 0 °, the magnetic pressure tends to weaken in the vicinity of this edge portion. To solve such a problem, the total length of the high frequency current conducting path is inclined with respect to the plate width direction, or the steel plate of the current conducting path is inclined. A method is effective in which a portion facing the vicinity of the edge portion is inclined with respect to the plate width direction. 9 and 10
Shows the former example, in which the entire length of the high-frequency current conducting paths 1a and 1b on both sides of the steel plate has an appropriate inclination with respect to the plate width direction. Further, in FIG. 11, the portions 12 of the high-frequency current conducting paths 1a and 1b facing the vicinity of the edge of the steel plate are inclined with respect to the plate width direction. The configuration as described above is applicable to each of the above embodiments.

【0020】本発明者等は、本発明の効果を検証するた
め以下のようなシュミレ−ション解析を行った。この解
析は、図4に示す高周波電流導通路の配置例のものにつ
いて、以下の解析条件に基づき、 コイル断面寸法:30×50mm コイル電流 :3×104A 周波数 :3000Hz 鋼板厚さ :2.3mm 鋼板比透磁率 :1 鋼板が両高周波電流導通路からそれぞれ15mmずつ離
れたセンタ位置にある場合、鋼板が上記センタ位置から
片側の高周波電流導通路側にそれぞれ5mm、10mm
ずつずれた場合の3水準について行った。この解析モデ
ルを図12に示す。この解析の結果、本条件における磁
界の強さの片振幅は160000A/mであり、図1お
よび表1に示すような代表的B〜H曲線を持つ鋼板で
は、鋼板は完全に飽和域にあることが判った。図13は
この場合における最大磁気圧力の1サイクルの解析例で
あり、これによれば磁気的吸引力が磁気圧力を上回る時
間は6%以下となり、且つ磁気圧力の最大値は磁気吸引
力の5倍以上であること、このため鋼板が強磁性体であ
るにもかかわらず、磁気圧力を極めて安定して鋼板に印
加できることが判明した。
The present inventors conducted the following simulation analysis in order to verify the effect of the present invention. This analysis is based on the following analysis conditions for the arrangement example of the high-frequency current conducting path shown in FIG. 4, based on the following analysis conditions: Coil cross-sectional dimension: 30 × 50 mm Coil current: 3 × 10 4 A Frequency: 3000 Hz Steel plate thickness: 2. 3 mm Steel plate relative permeability: 1 When the steel plates are located at center positions 15 mm apart from both high-frequency current conducting paths, the steel plates are 5 mm and 10 mm from the center position on one side of the high-frequency current conducting paths, respectively.
It carried out about 3 levels at the time of shifting each. This analytical model is shown in FIG. As a result of this analysis, the one-sided amplitude of the magnetic field strength under this condition is 160000 A / m, and in the steel sheet having typical B to H curves as shown in FIG. 1 and Table 1, the steel sheet is completely in the saturated region. I knew that. FIG. 13 is an analysis example of one cycle of the maximum magnetic pressure in this case. According to this, the time when the magnetic attraction force exceeds the magnetic pressure is 6% or less, and the maximum value of the magnetic pressure is 5 times the magnetic attraction force. It is found that the magnetic pressure can be applied to the steel sheet extremely stably even though the steel sheet is a ferromagnetic material.

【0021】次に、鋼板面上の時間平均した磁気圧力平
均値の分布を解析した例を示す。図14は鋼板が両電流
導通路のセンタ位置にある場合、また図15、図16は
鋼板が上記センタ位置よりも片側の電流導通路側にそれ
ぞれ5mm、10mmずれた場合の各磁気圧力の分布を
示している。これによれば、鋼板がセンタ位置からずれ
た場合、全体として中心へ押しやろうとする力が働くこ
とが示されている。この磁気圧力は高周波電流導通路に
鋼板が近づくにしたがって大きくなるため、鋼板のセン
タリング作用に有効に働き、振動防止に効果がある。ま
た、C反りの矯正力としても有効であり、ト−タルのC
反り量を0.5mm以内に押えられることが判る。
Next, an example of analyzing the distribution of the magnetic pressure average value obtained by time averaging on the steel plate surface will be shown. FIG. 14 shows the distribution of the magnetic pressures when the steel sheet is at the center position of both current conducting paths, and FIGS. Shows. According to this, when the steel plate deviates from the center position, a force to push it toward the center as a whole works. This magnetic pressure increases as the steel sheet approaches the high-frequency current conducting path, so that it effectively acts on the centering action of the steel sheet and is effective in preventing vibration. It is also effective as a correction force for C warpage, and the C of total
It can be seen that the warp amount can be suppressed within 0.5 mm.

【0022】また、図14に示すように磁気圧力は最大
13452Paあり、鋼板表面の溶融金属のワイピング
に十分な圧力であることが判った。これらの結果を踏ま
え、図17に示すような従来のめっき設備において、ガ
スワイピングノズル7に代えて図4および図5に相当す
る装置をめっき浴面上400mmの位置に設置し、溶融
亜鉛めっき鋼板の目付を実施した。この実験では、鋼板
の板幅、電流条件は上記のシュミレ−ション解析と同様
とし、ラインスピ−ドを150m/minに設定して行
った。
Further, as shown in FIG. 14, the maximum magnetic pressure was 13452 Pa, which was found to be sufficient for wiping the molten metal on the surface of the steel sheet. Based on these results, in the conventional plating equipment as shown in FIG. 17, instead of the gas wiping nozzle 7, an apparatus corresponding to FIG. 4 and FIG. Was carried out. In this experiment, the plate width of the steel sheet and the current conditions were the same as in the above simulation analysis, and the line speed was set to 150 m / min.

【0023】この結果、本発明法によるワイピング箇所
における鋼板のC反りは完全に矯正され、振動も1mm
以内の振幅に押えることができ、また、ガスワイピング
ノズルを使用した場合のようなスプラッシュや騒音の発
生もなく、極めて均一なめっき目付を行うことができ
た。また、従来のガスワイピング方式において150m
/minのラインスピ−ドでは困難であった35g/m
2の目付の亜鉛めっきも容易に実施可能であることが確
認できた。なお、以上述べたように本発明法はそれ自体
で溶融めっきの目付を行うことができるものであるが、
従来のガスワイピングノズルによるめっき絞りと併用す
ることを妨げるものではない。
As a result, the C-warp of the steel sheet at the wiping point according to the method of the present invention was completely corrected and the vibration was 1 mm.
It was possible to suppress the amplitude within the range, and it was possible to perform extremely uniform plating areal without generation of splash and noise as in the case of using the gas wiping nozzle. Also, 150m in the conventional gas wiping method
35 g / m, which was difficult with a line speed of 1 / min
It was confirmed that galvanization with the second unit weight can be easily performed. As described above, the method of the present invention can perform the basis weight of hot dip plating by itself.
It does not prevent its use in combination with the conventional plating diaphragm using a gas wiping nozzle.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】以上述べた本発明によれば、従来連続溶
融めっきの高速化でネックとなっていたガスワイピング
ノズル回りの問題を解消し、均一な膜厚の高速めっきを
可能とするものである。
According to the present invention described above, the problem around the gas wiping nozzle, which has been a bottleneck in the conventional high speed continuous hot dip plating, is solved, and high speed plating with a uniform film thickness is made possible. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼板の磁束密度と磁界の強さとの関係図[Fig. 1] Relationship diagram between magnetic flux density of steel sheet and magnetic field strength

【図2】本発明の一実施例を示す側面図2 is a side view showing an embodiment of the present invention.

【図3】図2に示す実施例の正面図FIG. 3 is a front view of the embodiment shown in FIG.

【図4】本発明の他の実施例を示す側面図FIG. 4 is a side view showing another embodiment of the present invention.

【図5】図4に示す実施例の正面図5 is a front view of the embodiment shown in FIG.

【図6】本発明の他の実施例を示す側面図FIG. 6 is a side view showing another embodiment of the present invention.

【図7】本発明の他の実施例を示す側面図FIG. 7 is a side view showing another embodiment of the present invention.

【図8】本発明の他の実施例を示す正面図FIG. 8 is a front view showing another embodiment of the present invention.

【図9】本発明の他の実施例を示す正面図FIG. 9 is a front view showing another embodiment of the present invention.

【図10】図9に示す実施例の側面図FIG. 10 is a side view of the embodiment shown in FIG.

【図11】本発明の他の実施例を示す正面図FIG. 11 is a front view showing another embodiment of the present invention.

【図12】高周波電流導通路によって鋼板に及ぼされる
磁気圧力を算定するためのシュミレ−ションにおける解
析モデルを示す説明図
FIG. 12 is an explanatory diagram showing an analytical model in a simulation for calculating a magnetic pressure exerted on a steel sheet by a high frequency current conducting path.

【図13】図12の解析において、最大磁気圧力の1サ
イクルの解析例を示すグラフ
FIG. 13 is a graph showing an example of analysis of one cycle of maximum magnetic pressure in the analysis of FIG.

【図14】図12の解析において、鋼板がセンタ位置に
ある場合の磁気圧力の分布を示すグラフ
FIG. 14 is a graph showing the distribution of magnetic pressure when the steel plate is at the center position in the analysis of FIG.

【図15】図12の解析において、鋼板がセンタ位置よ
り5mmずれた場合の磁気圧力の分布を示すグラフ
15 is a graph showing the distribution of magnetic pressure when the steel plate is displaced from the center position by 5 mm in the analysis of FIG.

【図16】図12の解析モデルにおいて、鋼板がセンタ
位置より10mmずれた場合の磁気圧力の分布を示すグ
ラフ
16 is a graph showing the distribution of magnetic pressure when the steel plate is displaced 10 mm from the center position in the analytical model of FIG.

【図17】従来の溶融めっきおよび目付方法を示す説明
FIG. 17 is an explanatory diagram showing a conventional hot dip plating and basis weight method.

【符号の説明】[Explanation of symbols]

1、1a、1b…高周波電流導通路、4…溶融めっき
浴、11…屈曲部、12…部分、S…鋼板
1, 1a, 1b ... High-frequency current conducting path, 4 ... Hot dip plating bath, 11 ... Bent portion, 12 ... Portion, S ... Steel sheet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢田 明 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akira Yada             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶融めっき浴の浴面上方において、溶融
めっき浴から引き出される鋼板の前面側および後面側
に、鋼板面に平行な高周波電流導通路を鋼板に近接して
配置し、各高周波電流導通路に鋼板を十分に磁気的に飽
和させ得るに十分な大きさの高周波電流を通電して鋼板
に逆位相の高周波電流を誘導させ、この誘導電流と前記
各電流導通路の高周波電流との相互作用により鋼板面に
働く磁気圧力を発生させ、鋼板にその両面側から作用す
る前記磁気圧力により、鋼板の幅方向での板反りと振動
を防止しつつ鋼板に付着した溶融金属をワイピングし、
鋼板のめっき目付を行うことを特徴とする溶融めっき鋼
板の目付方法。
1. A high-frequency current conducting path parallel to the steel plate surface is arranged close to the steel plate above the bath surface of the hot-dip galvanizing bath, on the front side and the rear surface side of the steel sheet drawn out from the hot dipping bath. A high-frequency current of a sufficient magnitude to sufficiently magnetically saturate the steel sheet in the conduction path is applied to induce a high-frequency current of opposite phase in the steel sheet, and this induced current and the high-frequency current of each current conduction path Generates a magnetic pressure acting on the steel plate surface by the interaction, the magnetic pressure acting on the steel plate from both sides thereof, wipes the molten metal adhered to the steel plate while preventing plate warpage and vibration in the width direction of the steel plate,
A coating method for a hot dip plated steel sheet, which comprises performing a coating weight for the steel sheet.
【請求項2】 溶融めっき浴から引き出される鋼板の前
面側および後面側に、鋼板を挟んで略対向するようにし
て鋼板面に平行な高周波電流導通路を鋼板に近接して配
置し、該高周波電流導通路に鋼板を十分に磁気的に飽和
させ得るに十分な大きさの同位相の高周波電流を通電す
ることを特徴とする請求項1に記載の溶融めっき鋼板の
目付方法。
2. A high-frequency current conducting path parallel to a steel plate surface is arranged close to the steel plate on the front surface side and the rear surface side of the steel plate drawn out from the hot dip bath so as to be substantially opposed to each other with the steel plate interposed therebetween. 2. The hot-dip galvanized steel sheet basis weight method according to claim 1, wherein a high-frequency current of the same phase that is large enough to sufficiently magnetically saturate the steel sheet is passed through the current conducting path.
JP3180418A 1991-06-25 1991-06-25 Hot-dip galvanized steel sheet Expired - Fee Related JP2601067B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3180418A JP2601067B2 (en) 1991-06-25 1991-06-25 Hot-dip galvanized steel sheet
KR1019920011048A KR950000007B1 (en) 1991-06-25 1992-06-24 Method of controlling coating weight on a hot-dipping steel strip
CA002072210A CA2072210A1 (en) 1991-06-25 1992-06-24 Method for continuously moving a steel strip
CA002072200A CA2072200C (en) 1991-06-25 1992-06-24 Method for controlling coating weight on a hot-dipping steel strip
EP92110677A EP0525387B1 (en) 1991-06-25 1992-06-25 Method for controlling the coating weight on a hot-dip coated steel strip
DE69201466T DE69201466T2 (en) 1991-06-25 1992-06-25 Method for checking the coating weight of a hot-metallized steel strip.
US08/150,759 US5384166A (en) 1991-06-25 1993-11-10 Method for controlling coating weight on a hot-dipped steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3180418A JP2601067B2 (en) 1991-06-25 1991-06-25 Hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPH051359A true JPH051359A (en) 1993-01-08
JP2601067B2 JP2601067B2 (en) 1997-04-16

Family

ID=16082915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3180418A Expired - Fee Related JP2601067B2 (en) 1991-06-25 1991-06-25 Hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP2601067B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728274A (en) * 1996-08-13 1998-03-17 Hoshizaki Denki Kabushiki Kaisha Production system of electrolyzed water
JP2004027315A (en) * 2002-06-27 2004-01-29 Jfe Steel Kk Method and apparatus for manufacturing hot dip metal-coated steel plate
JP2006131983A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Method of and device for controlling deposition of continuous hot metal dip coating
JP2008542542A (en) * 2005-06-03 2008-11-27 アーベーベー・アーベー Device and method for coating elongated metal elements with a layer of metal
JP2009500520A (en) * 2005-06-30 2009-01-08 アーベーベー・アーベー Device and method for controlling thickness

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220187A (en) 2005-02-09 2006-08-24 Honda Motor Co Ltd Propeller shaft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181808A (en) * 1984-09-09 1986-04-25 Kayaba Ind Co Ltd Vehicle height control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181808A (en) * 1984-09-09 1986-04-25 Kayaba Ind Co Ltd Vehicle height control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728274A (en) * 1996-08-13 1998-03-17 Hoshizaki Denki Kabushiki Kaisha Production system of electrolyzed water
JP2004027315A (en) * 2002-06-27 2004-01-29 Jfe Steel Kk Method and apparatus for manufacturing hot dip metal-coated steel plate
JP2006131983A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Method of and device for controlling deposition of continuous hot metal dip coating
JP4661172B2 (en) * 2004-11-09 2011-03-30 Jfeスチール株式会社 Adhesion amount control method and adhesion amount control device for continuous molten metal plating
JP2008542542A (en) * 2005-06-03 2008-11-27 アーベーベー・アーベー Device and method for coating elongated metal elements with a layer of metal
JP2009500520A (en) * 2005-06-30 2009-01-08 アーベーベー・アーベー Device and method for controlling thickness

Also Published As

Publication number Publication date
JP2601067B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US5384166A (en) Method for controlling coating weight on a hot-dipped steel strip
JPH051359A (en) Method for coating hot-dip metal coated steel sheet
EP0525387B1 (en) Method for controlling the coating weight on a hot-dip coated steel strip
JP2556220B2 (en) Hot-dip galvanized steel sheet
EP2167697B1 (en) Method and device for controlling the thickness of coating of a flat metal product
JPH11100651A (en) Continuous hot dip metal coating device
JP2601068B2 (en) Hot-dip galvanized steel sheet
JP2556217B2 (en) Method for preventing vibration and plate warpage of continuously passing steel plates
JPH06179956A (en) Method and device for coating hot-dip coated steel sheet
JPH06136502A (en) Method for controlling coating weight in hot-dip metal plated steel strip by electromagnetic force
JP4547818B2 (en) Method for controlling the coating amount of hot dip galvanized steel sheet
JPH06179957A (en) Method and device for coating hot-dip coated steel sheet
JPH1060614A (en) Method for adjusting coating weight of plating utilizing electromagnetic force and apparatus therefor
JP2570924B2 (en) Method for preventing vibration and warpage of steel sheet passing continuously
JP2619474B2 (en) High-speed hot-dip galvanizing method
JPH02254147A (en) Method for controlling coating weight on hot dip metal coated steel sheet
JPH09143652A (en) Method for preventing vibration of metallic strip for hot dip metal coating line and apparatus therefor
EP0521385A1 (en) Method for damping vibration of a continuously moved steel strip
JP5644141B2 (en) Metal band damping and position correcting apparatus, and hot-dip plated metal band manufacturing method using the apparatus
JP2837037B2 (en) Hot-dip metal plating equipment
JPH0586446A (en) Hot dip coating method for metallic strip
JPH01136954A (en) Hot dip metal coating apparatus which gives thin thickness
JP3810545B2 (en) Hot pot for floating metal plating
JP2005256055A (en) Consecutive hot dip metal coating method and its apparatus
JPH02217454A (en) Method for preventing edge overcoating and surface flaw of hot dipping steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees