JP2570924B2 - Method for preventing vibration and warpage of steel sheet passing continuously - Google Patents

Method for preventing vibration and warpage of steel sheet passing continuously

Info

Publication number
JP2570924B2
JP2570924B2 JP3180419A JP18041991A JP2570924B2 JP 2570924 B2 JP2570924 B2 JP 2570924B2 JP 3180419 A JP3180419 A JP 3180419A JP 18041991 A JP18041991 A JP 18041991A JP 2570924 B2 JP2570924 B2 JP 2570924B2
Authority
JP
Japan
Prior art keywords
steel sheet
frequency current
warpage
width direction
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3180419A
Other languages
Japanese (ja)
Other versions
JPH051362A (en
Inventor
俊雄 佐藤
俊夫 石井
峻一 杉山
明 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP3180419A priority Critical patent/JP2570924B2/en
Priority to KR1019920011047A priority patent/KR930000171A/en
Priority to CA002072210A priority patent/CA2072210A1/en
Priority to CA002072200A priority patent/CA2072200C/en
Priority to EP92110667A priority patent/EP0521385A1/en
Publication of JPH051362A publication Critical patent/JPH051362A/en
Priority to US08/150,759 priority patent/US5384166A/en
Application granted granted Critical
Publication of JP2570924B2 publication Critical patent/JP2570924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、連続通板する鋼板の振
動や板幅方向での板反り(所謂、C反り変形)を防止す
るための方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing vibration of a continuously passing steel sheet and warpage of the steel sheet in the width direction (so-called C warpage deformation).

【0002】[0002]

【従来技術】連続焼鈍炉のガスジェット冷却帯では、鋼
板はロ−ルで搬送されながら冷却されるが、ロ−ルには
高速の冷却ガスが吹付けられるため鋼板にフラッタリン
グによる振動が発生する。鋼板にこのような振動が生じ
ると、鋼板が冷却ガス吹出ノズルと接触し、鋼板面に傷
が生じるという問題がある。したがって、これを避ける
ために、冷却ガス吹出ノズルと鋼板の距離を大きく取る
必要があり、この結果、鋼板の冷却効率が低下し、さら
には、冷却の不均一化による熱座屈の発生等の問題も生
じる。また、その他にも、例えば電気めっきラインや溶
融めっきラインでは鋼板の板反りや振動に起因してめっ
き厚の不均一が生じる等、鋼板の連続通板ラインでは板
の振動や板反りに起因した様々な問題がある。
2. Description of the Related Art In a gas jet cooling zone of a continuous annealing furnace, a steel sheet is cooled while being conveyed by a roll, but vibration is generated by fluttering on the steel sheet because a high-speed cooling gas is sprayed on the roll. I do. When such vibration occurs in the steel sheet, the steel sheet comes into contact with the cooling gas blowing nozzle, and there is a problem that the steel sheet surface is damaged. Therefore, in order to avoid this, it is necessary to increase the distance between the cooling gas blow-out nozzle and the steel sheet, and as a result, the cooling efficiency of the steel sheet is reduced, and furthermore, the occurrence of thermal buckling due to uneven cooling is caused. Problems arise. In addition, for example, in an electroplating line or a hot-dip plating line, uneven plating thickness occurs due to sheet warpage or vibration of a steel sheet. There are various problems.

【0003】[0003]

【発明が解決しようとする課題】このような各種連続通
板ラインにおける鋼板の振動や板反りという問題に対
し、例えば、めっき浴中に磁性ロ−ルを設け、鋼板を磁
気力により吸引して平坦化しすることにより板反りを矯
正する方法(特開昭52−111839号)や、鋼板の
幅方向両側に磁石を置き振動を防止する方法(特開昭5
7−5853号)等も提案されているが、いずれの方法
も板反りの矯正と振動の防止を同時に達成できるような
技術ではない。
In order to solve such problems of vibration and warpage of the steel sheet in various continuous threading lines, for example, a magnetic roll is provided in a plating bath, and the steel sheet is attracted by a magnetic force. A method of correcting sheet warpage by flattening (Japanese Patent Application Laid-Open No. Sho 52-1111839) and a method of preventing vibration by placing magnets on both sides in the width direction of a steel sheet (Japanese Patent Application Laid-Open No. Sho.
No. 7-5853) have been proposed, but none of these methods is a technique capable of simultaneously achieving correction of plate warpage and prevention of vibration.

【0004】また、特公平2−16375号では、ガス
ジェット冷却ノズルの前後で鋼板を押えロ−ルで押える
ことにより振動を抑制する方法が提案されているが、こ
の方法では振動を完全に抑制できないばかりでなく、押
えロ−ルとの接触によって鋼板に表面傷が発生するとい
う問題もある。
In Japanese Patent Publication No. 2-16375, a method is proposed in which vibration is suppressed by pressing a steel plate with a holding roll before and after a gas jet cooling nozzle. In this method, vibration is completely suppressed. Not only is it impossible, but there is also the problem that the steel sheet is scratched by contact with the holding roll.

【0005】また、特公昭44−7444号には、溶融
めっきの絞りを目的として、めっき浴から出た鋼板を高
周波電流が流されたコイル間で通板させることにより高
周波磁場を印加する方法が提案され、その中でコイル間
を通過する鋼板は磁気的な反発力でコイル間中心にセン
タリングされるという、鋼板の振動抑制効果が期待し得
るような内容が示されている。しかし、単に鋼板に高周
波磁場を印加した場合、強磁性体である鋼板には磁気的
吸引力が強く作用するため、通板する鋼板がコイル方向
に吸引される等、到って不安定な状態が引き起こされ、
振動の抑制等は全く期待できない。このように従来、通
板する鋼板の振動や板反りを非接触で効果的に抑制でき
る方法は知られていない。
Japanese Patent Publication No. 44-7444 discloses a method of applying a high-frequency magnetic field by passing a steel sheet from a plating bath between coils through which a high-frequency current is applied, for the purpose of drawing hot-dip coating. It is proposed that the steel sheet passing between the coils is centered at the center between the coils by a magnetic repulsive force, in which the effect of suppressing the vibration of the steel sheet can be expected. However, when a high-frequency magnetic field is simply applied to a steel sheet, the magnetic attraction force acts strongly on the steel sheet, which is a ferromagnetic material. Is caused,
Vibration suppression cannot be expected at all. As described above, conventionally, there has not been known a method capable of effectively suppressing the vibration and the warpage of the steel sheet to be passed without contact.

【0006】本発明はこのような従来の問題に鑑み、比
較的簡易な装置と方法により、連続通板する鋼板の板反
りと振動を非接触でしかも効果的に抑制することができ
る方法を提供しようとするものである。
The present invention has been made in view of such conventional problems, and provides a method capable of non-contact and effectively suppressing warpage and vibration of a continuously passing steel sheet by a relatively simple apparatus and method. What you want to do.

【0007】[0007]

【課題を解決するための手段】鋼板のような強磁性体に
単に磁場を印加し、鋼板の制振等を行おうとしても、鋼
板に磁気吸引力が作用し、振動等の面で鋼板がより不安
定な状態におかれることは、上述した通りである。この
ような問題に対し本発明者らは、図12のB〜H曲線に
示されるように鋼板の強磁性を示す領域が非飽和域に限
られ、飽和域では強磁性でなくなることに着目し、鋼板
を十分に飽和させた状態で高周波磁場を印加すれば、磁
気吸引力よりも高周波電流路を流れる電流と鋼板中の誘
導電流間に生じる反発力の方が強くなり、上記磁気吸引
力に伴う不安定性が解消されることを見出し、本発明を
完成させたものである。
[Means for Solving the Problems] Even if a magnetic field is simply applied to a ferromagnetic material such as a steel sheet to control the vibration of the steel sheet, a magnetic attraction force acts on the steel sheet, and the steel sheet is not vibrated. The more unstable state is as described above. With respect to such a problem, the present inventors have paid attention to the fact that the region showing the ferromagnetism of the steel sheet is limited to the non-saturation region as shown by the B to H curves in FIG. If a high-frequency magnetic field is applied in a state where the steel sheet is sufficiently saturated, the repulsive force generated between the current flowing through the high-frequency current path and the induced current in the steel sheet becomes stronger than the magnetic attractive force. The inventor found that the accompanying instability was eliminated, and completed the present invention.

【0008】すなわち本発明は、連続通板する鋼板の前
面側および後面側に、鋼板を挾んで略対向するようにし
て鋼板面に平行な高周波電流導通路を鋼板面に近接して
配置するとともに、該高周波電流導通路近傍における鋼
板幅方向の両側外方に、鋼板幅方向を挾んで略対向する
ようにして磁石のN極およびS極を配置し、該磁石によ
り鋼板を磁気的に飽和させた状態で、鋼板前面側および
後面側の前記高周波電流導通路に周波数3kHz以上の
同位相の高周波電流を通電して鋼板に逆位相の高周波電
流を誘導させ、この誘導電流と前記各高周波電流導通路
の高周波電流との相互作用により鋼板面に働く磁気圧力
を発生させ、鋼板両面に作用する磁気圧力により鋼板の
幅方向での板反りと振動を抑制するようにしたものであ
る。ここで、鋼板の誘導電流と高周波電流導通路の高周
波電流との相互作用により鋼板面に働く「磁気圧力」と
は、高周波電流導通路を流れる高周波電流と鋼板中の誘
導電流との間に生じる磁気的な反発作用により鋼板面に
作用する磁気的な圧力を指す。
That is, according to the present invention, a high-frequency current conduction path parallel to a steel sheet surface is disposed on the front side and the rear side of a steel sheet passing continuously so as to be substantially opposed to each other with the steel sheet sandwiched therebetween. An N pole and an S pole of a magnet are arranged outside both sides in the width direction of the steel sheet in the vicinity of the high-frequency current conduction path so as to be substantially opposed to each other across the width direction of the steel sheet, and the steel sheet is magnetically saturated by the magnet. In this state, an in-phase high-frequency current having a frequency of 3 kHz or more is passed through the high-frequency current conducting paths on the front and rear sides of the steel sheet to induce a high-frequency current of opposite phase in the steel sheet. The magnetic pressure acting on the steel plate surface is generated by the interaction with the high-frequency current in the passage, and the warpage and vibration in the width direction of the steel plate are suppressed by the magnetic pressure acting on both surfaces of the steel plate. Here, the "magnetic pressure" acting on the steel sheet surface due to the interaction between the induction current of the steel sheet and the high-frequency current of the high-frequency current conduction path is generated between the high-frequency current flowing through the high-frequency current conduction path and the induction current in the steel sheet. It refers to the magnetic pressure acting on the steel sheet surface due to magnetic repulsion.

【0009】このような本発明において、高周波電流導
通路は鋼板通板方向で間隔をおいて2以上設けることが
できる。また、鋼板幅方向を挾んで対向するようにして
配置される磁石は、電磁石および永久磁石のいずれを用
いてもよく、また、この磁石も鋼板通板方向において2
箇所以上の位置に配置することができる。
In the present invention, two or more high-frequency current conducting paths can be provided at intervals in the sheet passing direction. The magnets arranged so as to face each other across the width of the steel sheet may be either electromagnets or permanent magnets.
It can be arranged at more than two places.

【0010】高周波電流導通路は、鋼板幅方向に亘って
設ける必要があるが、必ずしも板幅方向と平行に設ける
必要はなく、高周波電流導通路全長に板幅方向に対して
傾きをもたせ、或いは高周波電流導通路の一部に板幅方
向に対して傾きをもたせるような構成とすることができ
る。鋼板エッジ部では、高周波電流導通路を流れる電流
に対して鋼板中を流れる電流の方向が90°の関係にな
るため、このエッジ部近傍で磁気圧力が弱まる傾向があ
り、このような問題に対しては、上記のように高周波電
流導通路全長に板幅方向に対して傾きをもたせ、或いは
電流導通路の鋼板エッジ部近傍に面した部分に板幅方向
に対して傾きをもたせた構成とするのが有効である。
The high-frequency current conduction path needs to be provided in the width direction of the steel sheet, but it is not always necessary to provide the high-frequency current conduction path in parallel with the width direction of the steel sheet. It is possible to adopt a configuration in which a part of the high-frequency current conduction path is inclined with respect to the plate width direction. At the edge of the steel sheet, the direction of the current flowing through the steel sheet has a relationship of 90 ° with respect to the current flowing through the high-frequency current conduction path. Therefore, the magnetic pressure tends to weaken near this edge. As described above, the entire length of the high-frequency current conduction path is inclined with respect to the plate width direction, or the portion of the current conduction path facing the vicinity of the steel sheet edge is inclined with respect to the plate width direction. Is effective.

【0011】[0011]

【作用】本発明法の作用を、強磁性体である鋼板の磁気
特性を示す図12(磁束密度と磁界の強さの関係図)と
本発明の一実施例である図1および図2に基づき説明す
る。図1は実施状況を示す側面図、図2は同じく正面図
である。
The operation of the method of the present invention is illustrated in FIG. 12 (a diagram showing the relationship between the magnetic flux density and the strength of the magnetic field) showing the magnetic properties of a ferromagnetic steel sheet and FIGS. 1 and 2 which are one embodiment of the present invention. It is explained based on. FIG. 1 is a side view showing an embodiment, and FIG. 2 is a front view of the same.

【0012】本発明法では、連続通板する鋼板1の前面
側および後面側に、鋼板を挾んで略対向するようにし
て、鋼板面に平行な高周波電流導通路2a、2bを鋼板
1に近接して配置するとともに、鋼板1の幅方向の両側
外方に、鋼板幅方向を挾んで略対向するようにして永久
磁石または電磁石からなる磁石3のN極およびS極を配
置する。この例では、鋼板両側の高周波電流導通路2
a、2bは上下2段に配され、上部の高周波電流導通路
2a、2bの上方近傍位置と下部の高周波電流導通路2
a、2bの下方近傍位置に、それぞれ磁石3が配されて
いる。
According to the method of the present invention, high-frequency current conduction paths 2a and 2b parallel to the steel sheet surface are arranged close to the steel sheet 1 so as to be substantially opposed to the front side and the rear side of the steel sheet 1 to be continuously passed through the steel sheet. The N pole and the S pole of the magnet 3 made of a permanent magnet or an electromagnet are arranged on both sides in the width direction of the steel sheet 1 so as to be substantially opposed to each other across the width direction of the steel sheet. In this example, the high-frequency current conduction paths 2 on both sides of the steel plate
a, 2b are arranged in two stages, upper and lower, near the upper portions of the upper high-frequency current conducting paths 2a, 2b and the lower high-frequency current conducting paths 2
Magnets 3 are arranged at positions near and below a and 2b, respectively.

【0013】鋼板1を挾んで対向する高周波電流導通路
2a、2bに同位相の高周波電流を流すと、鋼板1には
これと逆位相の電流が流れる。この鋼板1を流れる電流
は前記高周波電流導通路2a、2bの電流とは方向が逆
となるため、高周波電流導通路2a、2bの電流と鋼板
1を流れる電流との間に磁気的な反発作用が生じ、これ
が磁気圧力として鋼板表面に作用する。しかしながら、
鋼板のような強磁性体では透磁率が高いため、上述した
ように単に電流が流れただけでは、磁気的吸引力が反発
力を上回り、不安定な系となってしまう。鋼板両端に配
置した磁石3はこのような不安定性を除去するため、鋼
板を磁気的に飽和させる作用をする。すなわち、この磁
石の作用により鋼板中の磁場は図12に示す磁気的な飽
和域に存在することになり、高周波電流によって発生す
る磁場変動の範囲も図12で示す磁気飽和域の中に存在
することになる。このように強磁性体を磁気的に飽和さ
せ常磁性化することにより、磁気的吸引力による不安定
性を解消でき、鋼板は高周波電流導通路からの反発力の
みを受けることになる。すなわち、この作用は図13に
示すような非接触のバネと同じような作用であり、これ
により鋼板の振動が抑制され、また、板反りも矯正され
る。本発明において高周波電流導通路に通電させる高周
波電流の周波数は、後述する実施例の結果から3kHz
以上とする。また、高周波電流の大きさは電流の周波数
と高周波電流導通路−鋼板間の設定距離に応じて適宜選
択され、例えば、後述する実施例の場合のように高周波
電流導通路−鋼板間の設定距離が15mm、周波数が3
kHzの場合には電流値を3×104A程度、また例え
ば周波数が20kHzの場合には同様の高周波電流導通
路−鋼板間の設定距離において電流値を500A程度と
すればよい。
When a high-frequency current having the same phase flows through the high-frequency current conducting paths 2a and 2b opposed to each other with the steel sheet 1 interposed therebetween, a current having the opposite phase flows through the steel sheet 1. Since the direction of the current flowing through the steel sheet 1 is opposite to the direction of the current flowing through the high-frequency current conducting paths 2a and 2b, a magnetic repulsion occurs between the current flowing through the high-frequency current conducting paths 2a and 2b and the current flowing through the steel sheet 1. This acts on the steel sheet surface as magnetic pressure. However,
Since a ferromagnetic material such as a steel plate has a high magnetic permeability, the magnetic attraction force exceeds the repulsion force and the system becomes unstable if the current simply flows as described above. The magnets 3 disposed at both ends of the steel plate act to magnetically saturate the steel plate in order to remove such instability. That is, by the action of this magnet, the magnetic field in the steel sheet exists in the magnetic saturation region shown in FIG. 12, and the range of the magnetic field fluctuation generated by the high-frequency current also exists in the magnetic saturation region shown in FIG. Will be. By thus magnetically saturating and paramagnetic the ferromagnetic material, instability due to magnetic attraction can be eliminated, and the steel sheet receives only the repulsive force from the high-frequency current conduction path. That is, this action is similar to the action of a non-contact spring as shown in FIG. 13, thereby suppressing the vibration of the steel sheet and correcting the sheet warpage. In the present invention, the frequency of the high-frequency current applied to the high-frequency current conduction path is 3 kHz from the result of the embodiment described later.
Above. Further, the magnitude of the high-frequency current is appropriately selected according to the frequency of the current and the set distance between the high-frequency current conduction path and the steel sheet. Is 15mm, frequency is 3
In the case of kHz, the current value is about 3 × 104 A. For example, in the case of a frequency of 20 kHz, the current value may be about 500 A at the same set distance between the high-frequency current conducting path and the steel sheet.

【0014】[0014]

【実施例】図1ないし図11に本発明の実施例を示す。
このうち図1および図2は、上述したように鋼板1を挾
んで対向するようにして鋼板面に平行な高周波電流導通
路2a、2bを上下方向で2組配し、これら2組の高周
波電流導通路の上部近傍位置および下部近傍位置に、鋼
板幅方向を挟むようにしてそれぞれ磁石3(永久磁石)
のN極、S極を配したものである。鋼板1を挟んで対向
する高周波電流導通路2a、2bには、同位相の高周波
電流が流される。なお、この例では上下の高周波電流導
通路の電流の位相は反対となっているが、同位相でもよ
い。
1 to 11 show an embodiment of the present invention.
1 and 2 show two sets of high-frequency current conducting paths 2a and 2b parallel to the surface of the steel sheet arranged vertically so as to face each other with the steel sheet 1 interposed therebetween as described above. Magnets 3 (permanent magnets) at positions near the upper and lower portions of the conduction path so as to sandwich the steel sheet in the width direction.
N and S poles are arranged. In-phase high-frequency currents are passed through the high-frequency current conducting paths 2a and 2b opposed to each other with the steel plate 1 interposed therebetween. In this example, the phases of the currents in the upper and lower high-frequency current conducting paths are opposite, but may be the same.

【0015】図3および図4は、上下2組の高周波電流
導通路2a、2bの間に磁石3のN極、S極を配したも
のであり、上下の高周波電流導通路に流す電流について
は上記実施例と同様である。図5および図6は、図1お
よび図2に示されると同様の高周波電流導通路および磁
石配置構成において、磁石3を電磁石で構成したもので
あり、4は電磁石を構成するヨ−ク、5は同じくコイル
である。
FIGS. 3 and 4 show an arrangement in which the N pole and the S pole of the magnet 3 are disposed between two upper and lower sets of high-frequency current conducting paths 2a and 2b. This is the same as the above embodiment. FIGS. 5 and 6 show a high-frequency current conducting path and a magnet arrangement similar to those shown in FIGS. 1 and 2, in which the magnet 3 is constituted by an electromagnet, and 4 is a yoke constituting the electromagnet. Is also a coil.

【0016】図7および図8は、それぞれ鋼板の端部に
特に強い磁気圧力をかけるため、各高周波電流導通路2
の鋼板エッジ部近傍と対向する部分に、鋼板通板方向に
沿った屈曲部21を形成したものである。この実施例で
も高周波電流導通路は上下2組設けられ、磁石3はこの
上下の高周波電流導通路間に配されている。このような
構成は上述した各実施例に適用可能である。
FIGS. 7 and 8 show that each of the high-frequency current conducting paths 2
A bent portion 21 is formed in a portion facing the vicinity of the steel plate edge portion along the steel plate passing direction. Also in this embodiment, two sets of upper and lower high-frequency current paths are provided, and the magnet 3 is disposed between the upper and lower high-frequency current paths. Such a configuration is applicable to each of the embodiments described above.

【0017】また、鋼板エッジ部では、高周波電流導通
路を流れる電流に対して鋼板中を流れる電流の方向が9
0°の関係になるため、このエッジ部近傍で磁気圧力が
弱まる傾向があり、このような問題に対しては、高周波
電流導通路全長を板幅方向に対して傾け、或いは電流導
通路の鋼板エッジ部近傍と対向する部分に板幅方向に対
し傾きをもたせる方法が有効である。図9および図10
は前者の場合の電流導通路の配置例を示すもので、鋼板
両側の高周波電流導通路2a,2bの全長に板幅方向に
対して適当な傾きをもたせたものである。また、図11
は鋼板エッジ部近傍に面した高周波電流導通路2a,2
bの部分22に板幅方向に対する傾きをもたせたもので
ある。以上のような構成は上記各実施例に適用可能であ
る。
At the edge of the steel sheet, the direction of the current flowing through the steel sheet is 9 with respect to the current flowing through the high-frequency current conduction path.
Because of the relationship of 0 °, the magnetic pressure tends to weaken in the vicinity of the edge portion. To solve such a problem, the entire length of the high-frequency current conduction path is inclined with respect to the sheet width direction, or the steel sheet of the current conduction path is It is effective to make the portion facing the vicinity of the edge portion inclined in the plate width direction. 9 and 10
The figure shows an example of the arrangement of the current conducting paths in the former case, in which the entire length of the high-frequency current conducting paths 2a and 2b on both sides of the steel sheet is appropriately inclined with respect to the sheet width direction. FIG.
Are the high-frequency current conducting paths 2a, 2 facing the steel sheet edge.
The part 22 of b is inclined with respect to the plate width direction. The above configuration is applicable to each of the above embodiments.

【0018】本発明者らは、本発明の効果を検証するた
め以下のようなシュミレ−ション解析を行った。この解
析では、まず第1に電磁石により鋼板が磁気的に飽和す
ることを確認するため、図5および図6に示すような装
置構成における電磁石と鋼板の静磁場解析を行った。図
14に解析モデルを示すが、ここでは対称性を考慮し、
1/2のモデルで解析を行った。その解析条件は以下の
通りである。 鉄芯比透磁率:1000 コイル電流 :2.6×105AT 鋼板寸法 :幅1800mm×板厚2.3mm
The present inventors conducted the following simulation analysis to verify the effect of the present invention. In this analysis, first, in order to confirm that the steel sheet is magnetically saturated by the electromagnet, static magnetic field analysis was performed on the electromagnet and the steel sheet in an apparatus configuration shown in FIGS. 5 and 6. FIG. 14 shows an analysis model. Here, in consideration of symmetry,
Analysis was performed with a 1/2 model. The analysis conditions are as follows. Iron core relative permeability: 1000 Coil current: 2.6 × 10 5 AT Steel plate dimensions: width 1800 mm × sheet thickness 2.3 mm

【0019】図15に解析で得られた磁界の分布を示
す。ここで得られた磁性体中の磁界の強さは1.6×1
5A/m以上を示しており、鋼板が磁気的に十分に飽
和していること、つまり、鋼板が図12の飽和域にある
ことを示している。
FIG. 15 shows the distribution of the magnetic field obtained by the analysis. The strength of the magnetic field in the magnetic material obtained here was 1.6 × 1
0 5 A / m or more indicates that the steel sheet is magnetically sufficiently saturated, that is, the steel sheet is in the saturation region of FIG.

【0020】次に、高周波電流導通路によって鋼板に及
ぼされる磁気圧力を算定するためのシュミレ−ションを
行った。図16に解析したモデルを示す。各高周波電流
導通路には図5に示すような位相の電流が流れると想定
し、対称性を考慮し1/2のモデルで解析を行った。そ
の解析条件は以下の通りである。鋼板は磁気的に飽和し
ているため鋼板の比透磁率は1とした。 コイル断面寸法:30×50mm コイル電流 :3×104A 周波数 :3000Hz 鋼板厚 :2.3mm 鋼板比透磁率 :1
Next, a simulation was performed to calculate the magnetic pressure exerted on the steel sheet by the high-frequency current conduction path. FIG. 16 shows the analyzed model. Assuming that a current having a phase as shown in FIG. 5 flows in each high-frequency current conduction path, analysis was performed using a half model in consideration of symmetry. The analysis conditions are as follows. Since the steel sheet is magnetically saturated, the relative magnetic permeability of the steel sheet was set to 1. Coil cross-sectional dimension: 30 × 50 mm Coil current: 3 × 10 4 A Frequency: 3000 Hz Steel plate thickness: 2.3 mm Steel plate relative permeability: 1

【0021】この解析では鋼板が対向する高周波電流導
通路間で振動することを考え、図16に示すように鋼板
が両電流導通路のセンタ位置にある場合と、このセンタ
位置からそれぞれ5mm、10mmずつずれた場合の3
水準について解析を行った。図17は鋼板が両電流導通
路のセンタ位置にある場合、また、図18および図19
は鋼板がセンタ位置よりそれぞれ5mm、10mmずれ
た場合の各磁気圧力の分布を示している。これによれ
ば、鋼板がセンタ位置からずれた場合、全体としてセン
タ位置へ押しやろうとする磁気圧力が働くことが示され
ている。この磁気圧力は高周波電流導通路に鋼板が近づ
くにしたがって大きくなるため、鋼板のセンタリング作
用に有効に働き、振動防止に効果がある。また、Cぞり
の矯正力としても有効で、ト−タルのCぞり量を0.5
mm以内に押えられることが判る。
In this analysis, it is considered that the steel sheet vibrates between the opposing high-frequency current paths. As shown in FIG. 16, the steel sheet is located at the center position of both current paths, and 5 mm and 10 mm from the center position. 3 when it is shifted by
An analysis was performed on the levels. FIG. 17 shows the case where the steel plate is at the center position of both current conducting paths, and FIGS.
Shows the distribution of each magnetic pressure when the steel plate is shifted from the center position by 5 mm and 10 mm, respectively. According to this, it is shown that when the steel plate is displaced from the center position, a magnetic pressure is exerted to push the steel plate to the center position as a whole. Since the magnetic pressure increases as the steel sheet approaches the high-frequency current conduction path, it works effectively for the centering action of the steel sheet and is effective in preventing vibration. It is also effective as a C-slewing correction force.
It can be seen that it is pressed within mm.

【0022】これらの結果を踏まえ、図5および図6に
示す装置を約2mの間隔で3基電気めっきラインに設置
し、実機試験を行った。この試験での寸法、電流等の条
件は上記シュミレ−ションで採用した条件と同一とし
た。この試験によれば、従来約7mm程度生じていた板
幅方向のC反りは約0.5mm程度まで減少し、また板
の振動もほぼ完全に抑えることができた。このため、め
っきの板幅方向での付着量分布は、従来±50%程度で
あったものを±7%以内まで改善することができた。
Based on these results, the apparatus shown in FIGS. 5 and 6 was installed on three electroplating lines at intervals of about 2 m, and an actual machine test was performed. The conditions such as dimensions and current in this test were the same as those used in the above simulation. According to this test, the C warpage in the sheet width direction, which had conventionally occurred about 7 mm, was reduced to about 0.5 mm, and the vibration of the sheet could be almost completely suppressed. For this reason, the distribution of the coating amount in the plate width direction of the plating was improved from ± 50% in the past to ± 7% or less.

【0023】以上のような本発明法は、あらゆる種類の
鋼板連続通板ラインに適用でき、特に、従来問題となっ
ている連続焼鈍炉のガスジェット冷却帯における鋼板の
振動防止、溶融めっき設備におけるガスワイピング位置
での鋼板の振動および板反り防止、さらには電気めっき
ラインにおける鋼板の板反り防止等に極めて有用なもの
である。
The method of the present invention as described above can be applied to all kinds of continuous steel sheet passing lines. In particular, it is a method for preventing the vibration of a steel sheet in a gas jet cooling zone of a continuous annealing furnace, which is a conventional problem, and in a hot-dip coating equipment. It is extremely useful for preventing the steel sheet from vibrating and warping at the gas wiping position, and also for preventing the steel sheet from warping in an electroplating line.

【0024】[0024]

【発明の効果】以上述べたように本発明によれば、鋼板
両側の高周波電流導通路から鋼板に対して安定的な磁気
圧力を及ぼすことができるため、比較的簡易な装置と方
法によって、連続通板する鋼板の板反りと振動を非接触
でしかも効果的に抑制することができ、しかも、あらゆ
る種類の連続通板ラインに適用できるという汎用性を有
している。
As described above, according to the present invention, a stable magnetic pressure can be applied to the steel sheet from the high-frequency current conduction paths on both sides of the steel sheet. It has the versatility of being able to effectively and effectively suppress the warpage and vibration of a steel sheet to be passed without contact, and can be applied to all types of continuous sheet passing lines.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す側面図FIG. 1 is a side view showing one embodiment of the present invention.

【図2】図1に示す実施例の正面図FIG. 2 is a front view of the embodiment shown in FIG. 1;

【図3】本発明の他の実施例を示す側面図FIG. 3 is a side view showing another embodiment of the present invention.

【図4】図3に示す実施例の正面図FIG. 4 is a front view of the embodiment shown in FIG. 3;

【図5】本発明の他の実施例を示す側面図FIG. 5 is a side view showing another embodiment of the present invention.

【図6】図5に示す実施例の正面図FIG. 6 is a front view of the embodiment shown in FIG. 5;

【図7】本発明の他の実施例を示す側面図FIG. 7 is a side view showing another embodiment of the present invention.

【図8】図7に示す実施例の正面図FIG. 8 is a front view of the embodiment shown in FIG. 7;

【図9】本発明の他の実施例を示す正面図FIG. 9 is a front view showing another embodiment of the present invention.

【図10】図9に示す実施例の側面図FIG. 10 is a side view of the embodiment shown in FIG. 9;

【図11】本発明の他の実施例を示す正面図FIG. 11 is a front view showing another embodiment of the present invention.

【図12】鋼板の磁束密度と磁界の強さの関係図FIG. 12 is a diagram showing the relationship between the magnetic flux density of a steel sheet and the magnetic field strength.

【図13】本発明の効果を模式的に示す説明図FIG. 13 is an explanatory view schematically showing the effect of the present invention.

【図14】磁石により鋼板が磁気的に飽和することを確
認するためのシュミレ−ションにおける解析モデルを示
す説明図
FIG. 14 is an explanatory diagram showing an analysis model in a simulation for confirming that a steel sheet is magnetically saturated by a magnet.

【図15】図14の解析で得られた磁界の分布を示す説
明図
15 is an explanatory diagram showing the distribution of the magnetic field obtained by the analysis of FIG.

【図16】高周波電流導通路によって鋼板に及ぼされる
磁気圧力を算定するためのシュミレ−ションにおける解
析モデルを示す説明図
FIG. 16 is an explanatory diagram showing an analysis model in a simulation for calculating a magnetic pressure exerted on a steel sheet by a high-frequency current conduction path.

【図17】図16の解析において、鋼板がセンタ位置に
ある場合の磁気圧力を示すグラフ
FIG. 17 is a graph showing the magnetic pressure when the steel plate is at the center position in the analysis of FIG. 16;

【図18】図16の解析において、鋼板がセンタ位置よ
り5mmずれた場合の磁気圧力の分布を示すグラフ
FIG. 18 is a graph showing the distribution of magnetic pressure when the steel plate is shifted by 5 mm from the center position in the analysis of FIG.

【図19】図16の解析モデルにおいて、鋼板がセンタ
位置より10mmずれた場合の磁気圧力の分布を示すグ
ラフ
FIG. 19 is a graph showing the distribution of magnetic pressure when the steel plate is shifted by 10 mm from the center position in the analysis model of FIG.

【符号の説明】[Explanation of symbols]

1…鋼板、2a、2b…高周波電流導通路、3…磁石 DESCRIPTION OF SYMBOLS 1 ... Steel plate, 2a, 2b ... High frequency current conduction path, 3 ... Magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢田 明 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平3−173755(JP,A) 特開 平3−253549(JP,A) 特開 平4−228528(JP,A) 実開 昭62−194757(JP,U) 特公 昭44−7444(JP,B1) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akira Yada 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56) References JP-A-3-173755 (JP, A) JP-A-3 253549 (JP, A) JP-A-4-228528 (JP, A) Jpn.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続通板する鋼板の前面側および後面側
に、鋼板を挾んで略対向するようにして鋼板面に平行な
高周波電流導通路を鋼板面に近接して配置するととも
に、該高周波電流導通路近傍における鋼板幅方向の両側
外方に、鋼板幅方向を挾んで略対向するようにして磁石
のN極およびS極を配置し、該磁石により鋼板を磁気的
に飽和させた状態で、鋼板前面側および後面側の前記高
周波電流導通路に周波数3kHz以上の同位相の高周波
電流を通電して鋼板に逆位相の高周波電流を誘導させ、
この誘導電流と前記各高周波電流導通路の高周波電流と
の相互作用により鋼板面に働く磁気圧力を発生させ、鋼
板両面に作用する磁気圧力により鋼板の幅方向での板反
りと振動を抑制することを特徴とする連続通板する鋼板
の振動および板反り防止方法。
1. A high-frequency current conduction path parallel to and parallel to a steel sheet surface is disposed on the front side and the rear side of the steel sheet to be continuously passed, and is substantially opposed to each other with the steel sheet interposed therebetween. N-poles and S-poles of magnets are arranged outwardly on both sides in the width direction of the steel sheet in the vicinity of the current conducting path so as to be substantially opposed to each other across the width direction of the steel sheet .
In the saturated state, a high-frequency current of the same phase having a frequency of 3 kHz or more is supplied to the high-frequency current conduction path on the front side and the rear side of the steel sheet to induce a high-frequency current of the opposite phase to the steel sheet,
The interaction between the induction current and the high-frequency current of each of the high-frequency current conducting paths generates a magnetic pressure acting on the steel sheet surface, and the magnetic pressure acting on both surfaces of the steel sheet suppresses sheet warpage and vibration in the width direction of the steel sheet. A method for preventing vibration and warpage of a continuously passing steel sheet, characterized in that:
JP3180419A 1991-06-25 1991-06-25 Method for preventing vibration and warpage of steel sheet passing continuously Expired - Lifetime JP2570924B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3180419A JP2570924B2 (en) 1991-06-25 1991-06-25 Method for preventing vibration and warpage of steel sheet passing continuously
KR1019920011047A KR930000171A (en) 1991-06-25 1992-06-24 Continuous movement method of steel strip
CA002072210A CA2072210A1 (en) 1991-06-25 1992-06-24 Method for continuously moving a steel strip
CA002072200A CA2072200C (en) 1991-06-25 1992-06-24 Method for controlling coating weight on a hot-dipping steel strip
EP92110667A EP0521385A1 (en) 1991-06-25 1992-06-25 Method for damping vibration of a continuously moved steel strip
US08/150,759 US5384166A (en) 1991-06-25 1993-11-10 Method for controlling coating weight on a hot-dipped steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3180419A JP2570924B2 (en) 1991-06-25 1991-06-25 Method for preventing vibration and warpage of steel sheet passing continuously

Publications (2)

Publication Number Publication Date
JPH051362A JPH051362A (en) 1993-01-08
JP2570924B2 true JP2570924B2 (en) 1997-01-16

Family

ID=16082933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3180419A Expired - Lifetime JP2570924B2 (en) 1991-06-25 1991-06-25 Method for preventing vibration and warpage of steel sheet passing continuously

Country Status (1)

Country Link
JP (1) JP2570924B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1016623A4 (en) 2005-06-02 2007-03-06 Ct Rech Metallurgiques Asbl DEVICE FOR THE PNEUMATIC STABILIZATION OF A METAL STRIP IN CONTINUOUS SCROLL.
BE1023837B1 (en) 2016-01-29 2017-08-09 Centre De Recherches Metallurgiques Asbl DEVICE FOR THE HYDRODYNAMIC STABILIZATION OF A CONTINUOUSLY CONTINUOUS METAL STRIP

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181808A (en) * 1984-09-09 1986-04-25 Kayaba Ind Co Ltd Vehicle height control method

Also Published As

Publication number Publication date
JPH051362A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
US4795872A (en) Electromagnetic induction heating apparatus including a magnetic flux diverting assembly
CA2072200C (en) Method for controlling coating weight on a hot-dipping steel strip
JP2570924B2 (en) Method for preventing vibration and warpage of steel sheet passing continuously
KR950000007B1 (en) Method of controlling coating weight on a hot-dipping steel strip
CA1154100A (en) Horizontal electro-slag welding method for surfacing using magnetic field components
JP2556217B2 (en) Method for preventing vibration and plate warpage of continuously passing steel plates
JP2601067B2 (en) Hot-dip galvanized steel sheet
JPH0424233B2 (en)
EP0521385A1 (en) Method for damping vibration of a continuously moved steel strip
JP2556220B2 (en) Hot-dip galvanized steel sheet
JP2601068B2 (en) Hot-dip galvanized steel sheet
JPH11100651A (en) Continuous hot dip metal coating device
JPH06179956A (en) Method and device for coating hot-dip coated steel sheet
JPH08155610A (en) Method for continuously casting molten metal
JP2001205325A (en) Electromagnet for nuncontacting control of steel sheet
JPH0586446A (en) Hot dip coating method for metallic strip
JPH06179957A (en) Method and device for coating hot-dip coated steel sheet
JP3409326B2 (en) Non-contact control device for thin steel plate
JPH1060545A (en) Method for continuously passing steel strip restraining vibration and curl shaped warp and device therefor
JPH0411290B2 (en)
JPH10109149A (en) Method for controlling fluidity of molten steel in continuous casting mold
JPS6312556A (en) Steering device for conveying metal plate
JPH06142898A (en) Device for controlling fluidity of molten material
JPH0810846A (en) Shape straightening device for strip
JPH0734050Y2 (en) Iron plate separation device