JPH0513349A - Photo-excited cvd device - Google Patents

Photo-excited cvd device

Info

Publication number
JPH0513349A
JPH0513349A JP18588991A JP18588991A JPH0513349A JP H0513349 A JPH0513349 A JP H0513349A JP 18588991 A JP18588991 A JP 18588991A JP 18588991 A JP18588991 A JP 18588991A JP H0513349 A JPH0513349 A JP H0513349A
Authority
JP
Japan
Prior art keywords
light transmitting
nozzle
transmitting window
window
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18588991A
Other languages
Japanese (ja)
Inventor
Saburo Adaka
三郎 阿高
Hiroshi Yuasa
博司 湯浅
Atsushi Iwasaki
淳 岩崎
Yuuta Tezeni
雄太 手銭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP18588991A priority Critical patent/JPH0513349A/en
Publication of JPH0513349A publication Critical patent/JPH0513349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent the clouding of a light transmitting window, easily remove a matter adhered on the light transmitting window and provide a photo-excited CVD device which forms a thick film and that allows high versatility. CONSTITUTION:A reacting gas supplying nozzle 5 and a shared nozzle 6 used for diluted gas supply and etching gas supply are arranged in the vicinity of a light transmitting window 3, and the shared nozzle 6 is provided with a high- frequency applying means 18. The diluted gas prevents reacting gas from diffusing to the light transmitting window 3, a deposited matter on the light transmitting window 3 is suppressed and the deposited matter on the light transmitting window 3 is easily removed by blowing out the etching gas from the shared nozzle 6. Thus, thick film formation, continuous use and versatility are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光励起による成膜装置に
係り、特に光透過窓への折出物の付着を抑制し、広範囲
の膜厚の成膜の連続製造を実現した汎用性の高い光励起
CVD装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming apparatus by photoexcitation, and in particular, it suppresses adhesion of protrusions to a light transmitting window and realizes continuous manufacture of film forming in a wide range of thickness, which has high versatility. The present invention relates to a photo-excited CVD apparatus.

【0002】[0002]

【従来技術】従来の光励起CVD装置は、基本的に紫外
線光光源部と排気ポンプ系と紫外光透過窓とから構成さ
れる。図3はSiO2の成膜装置であり、SiH4及びO
2からなる反応ガス(B)27と、希釈ガスN2(C)2
6とを隔離板29で隔離した状態で装置内に導き、整流
板28を経て反応室25へ供給する。反応室25内で低
圧水銀ランプ24の紫外光が合成石英ガラスからなる光
透過窓23を介して反応ガス(B)27に照射される
と、予め所定温度に昇温してあるターンテーブル22上
の基板21にSiO2が堆積される。この場合、SiO2
は基板21上のほかに、反応室25の壁面、特に光透過
窓23上に堆積することにより、低圧水銀ランプ24の
照度低下(紫外光を吸収しやすい膜のため)を起こした
り、また、光透過窓23上に付着した膜がはがれ、パー
ティクル(ゴミ)の発生原因となる。このような照度低
下は、光吸収係数の大きなSiN及びa−Si(アモル
ファスシリコン)では、顕著であり、通常は光透過窓の
クリーニングを行わなければ、2回目成膜が不可能であ
ると共に、約500nm程度の厚膜を作ることができな
い。しかも反応ガスが光透過窓から漏れるのを防ぐため
に、密閉性を高めた構造となっている。したがって、光
透過窓上の折出物を除去するためには、大気開放を行わ
なければならない。一度大気開放を行なうと、復元する
のまでに時間がかかることはよく知られていることであ
る。
2. Description of the Related Art A conventional photo-excited CVD apparatus basically comprises an ultraviolet light source, an exhaust pump system and an ultraviolet light transmitting window. FIG. 3 shows a film-forming apparatus for SiO 2 , which includes SiH 4 and O.
2 reaction gas (B) 27 and dilution gas N 2 (C) 2
6 is guided to the inside of the apparatus in a state of being separated by a separating plate 29, and is supplied to the reaction chamber 25 via the rectifying plate 28. When the reaction gas (B) 27 is irradiated with the ultraviolet light of the low-pressure mercury lamp 24 in the reaction chamber 25 through the light transmission window 23 made of synthetic quartz glass, the temperature of the turntable 22 is raised to a predetermined temperature in advance. SiO 2 is deposited on the substrate 21 of FIG. In this case, SiO 2
Is deposited not only on the substrate 21 but also on the wall surface of the reaction chamber 25, particularly on the light transmission window 23, thereby causing a decrease in illuminance of the low-pressure mercury lamp 24 (because of a film that easily absorbs ultraviolet light), and The film adhered on the light transmitting window 23 peels off, which causes generation of particles (dust). Such a decrease in illuminance is remarkable in SiN and a-Si (amorphous silicon) having a large light absorption coefficient. Normally, the second film formation is impossible unless the light transmission window is cleaned, and It is not possible to form a thick film of about 500 nm. Moreover, in order to prevent the reaction gas from leaking through the light transmitting window, the structure is improved in hermeticity. Therefore, in order to remove the protrusions on the light transmitting window, the atmosphere must be opened. It is well known that once released to the atmosphere, it takes time to restore.

【0003】また、光透過窓の窓くもりを生じた場合に
は、プラズマ室に窓を移動してプラズマエッチングを行
い、窓への付着物を除去した後、成膜室にもどし成膜を
行う方式がよく知られている。すなわち、光励起CVD
装置は成膜室とプラズマ室との2チャンバ方式が一般的
である。この種の装置として関連するものには、特開昭
60−167318号に記載の装置が挙げられる。この
ような従来装置では成膜中での窓くもり対策が取られて
おらず、SiN1a−S1のような光吸収係数の大きな膜
では高々膜厚100〜200nmの成膜までしかでき
ず、実用的でない。実用化するためには一回成膜で約5
00nmの膜厚が必要である。また1チャンバ内にプラ
ズマ電極を設けた例として特開昭61−216318号
記載の装置があるが、これも上記と同じく窓くもり対策
が取られておらず、高々膜厚100〜200nmが限度
であり実用的でない。その上この場合には、プラズマ電
極が可動である上に、さらに基板が下置きになっている
ため、ゴミの落下により欠陥が発生しやすく、実用化は
できない。
Further, when the window of the light transmitting window is clouded, the window is moved to the plasma chamber for plasma etching to remove the deposits on the window and then to return to the film forming chamber for film formation. The method is well known. That is, photo-excited CVD
The apparatus is generally of a two-chamber system having a film forming chamber and a plasma chamber. Related to this type of apparatus, there is an apparatus described in JP-A-60-167318. In such a conventional apparatus, no measure against window fog during film formation is taken, and a film having a large light absorption coefficient such as SiN 1 a-S 1 can be formed only up to a film thickness of 100 to 200 nm. Not practical. Approximately 5 per film formation for practical use
A film thickness of 00 nm is required. Further, as an example of providing a plasma electrode in one chamber, there is an apparatus described in Japanese Patent Laid-Open No. 61-216318. However, like this, no measure against window clouding is taken and the film thickness is limited to 100 to 200 nm at the maximum. Yes Not practical. Moreover, in this case, since the plasma electrode is movable and the substrate is placed underneath, defects easily occur due to the fall of dust, and it cannot be put to practical use.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術は光透過
窓の窓くもり、パーティクル(ゴミ)の発生、連続成膜
等についての配慮がなされておらず、実用に供しえない
という課題があった。本発明の目的は窓くもり防止対策
と、プラズマエッチングによるクリーニングを可能と
し、広範囲の膜種に対応できる汎用性の高い光励起CV
D装置を提供することにある。
The above-mentioned prior art has a problem that it cannot be put to practical use because no consideration is given to clouding of a light transmitting window, generation of particles (dust), continuous film formation, and the like. . An object of the present invention is a highly versatile photo-excited CV capable of preventing window fog and cleaning by plasma etching and capable of supporting a wide range of film types.
It is to provide a D device.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、紫外線を採り入れる光透過窓と、成膜堆積用の基板
との間の光透過窓近傍に、反応ガス用ノズルと、希釈ガ
スとエッチングガスとの共有ノズルとを配設し、反応ガ
スは希釈ガスによって前記光透過窓への拡散を阻止され
ると共に、エッチングガス供給時には共用ノズルに高周
波を印加することにより、光透過窓上の折出物に対する
プラズマエッチングを可能としたものである。
In order to solve the above-mentioned problems, a reaction gas nozzle and a diluent gas are provided in the vicinity of a light transmission window between a light transmission window for introducing ultraviolet rays and a substrate for film deposition and deposition. A common nozzle for the etching gas is provided, and the reaction gas is prevented from diffusing into the light transmitting window by the diluting gas, and a high frequency is applied to the common nozzle when the etching gas is supplied. It is possible to perform plasma etching on a protrusion.

【0006】[0006]

【作用】管状のノズルからの反応ガスを基板の方向へ、
また希釈ガスを光透過窓の方向へ流す。反応室内へ紫外
線が光透過窓を介して照射されると、基板上に所望の膜
が堆積される。この際光透過窓上への希釈用ガスの吹き
付けにより光透過窓へ反応ガスの拡散を防ぐことによ
り、光透過窓の窓くもりを緩和することができる。長時
間使用により光透過窓に窓くもりが生じた場合は、希釈
ガスに代えて共用ノズルにエッチングガスを供給し共用
ノズルのプラズマ電極6に高周波を印加させ、光透過窓
の近傍にエッチングガスのプラズマ励起されたクラスタ
を生じさせ、これにより窓くもりの原因である窓への付
着物をエッチングして取り除く。これにより光透過窓3
上のゴミも同時にエッチングされ、反応室外に除去され
る。したがって、窓を大気開放してクリーニングする必
要がないので、成膜の再現性低下及びゴミによる汚染が
ない。
[Function] The reaction gas from the tubular nozzle is directed toward the substrate,
Moreover, the diluent gas is caused to flow toward the light transmitting window. When the reaction chamber is irradiated with ultraviolet light through the light transmission window, a desired film is deposited on the substrate. At this time, by blowing the diluting gas onto the light transmitting window to prevent the reaction gas from diffusing into the light transmitting window, it is possible to reduce the window fog of the light transmitting window. When window clouding occurs in the light transmitting window due to long-term use, etching gas is supplied to the common nozzle instead of the diluting gas, a high frequency is applied to the plasma electrode 6 of the common nozzle, and the etching gas is generated near the light transmitting window. Plasma-excited clusters are created, which etch away the deposits on the windows that are responsible for the window haze. This allows the light transmission window 3
The dust on the top is also etched and removed outside the reaction chamber. Therefore, since it is not necessary to open the window to the atmosphere for cleaning, the reproducibility of film formation is not deteriorated and contamination by dust does not occur.

【0007】[0007]

【実施例】以下に本発明の実施例を説明する。図1は光
励起CVD装置の概略構成図である。装置は、反応室内
の上部に設けられた基板(A)1と、基板1を加熱する
ヒータ2と、反応室の一部に設けられ紫外線を透過する
光透過窓3と、紫外線を発生させる低圧水銀ランプ4
と、反応ガス(A)8及び希釈ガス(A)7を供給する
ノズル(A)5と、酸化性ガス又はエッチングガス9及
び希釈ガス10を供給するノズル(B)6と、反応室内
の圧力を調整する可変バルブ11、ロードロック室15
内の圧力を調整するバルブ12、排気ポンプ(A)1
3、(B)14、反応室とロードロック室15との間の
ゲート弁16等で構成され、図2のノズル平面図に示す
如く、ノズル(A)5の吹き出し口17aは基板1側を
向いて、ノズル(B)6の吹き出し口17bは基板1と
反対側の光透過窓3側を向いて各々形成されている。そ
して、ノズル(B)6には高周波印加手段18が設けら
れている。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a schematic configuration diagram of a photoexcitation CVD apparatus. The apparatus comprises a substrate (A) 1 provided in the upper part of the reaction chamber, a heater 2 for heating the substrate 1, a light transmission window 3 provided in a part of the reaction chamber for transmitting ultraviolet rays, and a low pressure for generating ultraviolet rays. Mercury lamp 4
A nozzle (A) 5 for supplying a reaction gas (A) 8 and a dilution gas (A) 7, a nozzle (B) 6 for supplying an oxidizing gas or etching gas 9 and a dilution gas 10, and a pressure in the reaction chamber. Variable valve 11, load lock chamber 15 for adjusting
Valve 12 for adjusting the internal pressure, exhaust pump (A) 1
3, (B) 14, a gate valve 16 between the reaction chamber and the load lock chamber 15, and the like. As shown in the nozzle plan view of FIG. The nozzle (B) 6 has a blowout port 17b facing the light transmission window 3 side opposite to the substrate 1. The nozzle (B) 6 is provided with high frequency applying means 18.

【0008】この装置を用いて、いくつかの種類の膜を
形成してみた。これらを以下に使用例1〜3として示
す。
Several types of films were formed by using this apparatus. These are shown below as Use Examples 1 to 3.

【0009】使用例1はSiO2の成膜である。図1に
おいて、先ず、基板1をロードロック室15に設置して
から、バルブ12を開け、排気ポンプ14で0.000001T
orrまで排気後、ヒータ2で所定温度に昇温させたサ
セプター30上にゲート弁16を介して図1のように載
置した。基板の載置後、あらかじめ点灯した低圧水銀ラ
ンプ4の紫外線を吹き出しノズル(A)5から出た反応
ガス(A)8(SiH4またはN2で希釈されたSi
4)と吹き出しノズル(B)6から出た酸化性ガス9
(O2、O3、N2Oなど)に照射することにより、基板
(シリコン、ヒ化ガリウムなど)1上にSiO2を成膜
した。この場合吹き出しノズル(B)6の吹き出し穴は
ノズル(A)と正反対の光透過窓3側に向いており、光
透過窓3への反応ガス(A)8の拡散を抑制することに
より、光透過窓3の膜付着による窓くもりを緩和するこ
とができた。また長時間連続成膜した後には光透過窓3
に窓くもりが生じたため、エッチングガス(例えばCF
4、NF3、CHF3など)を高周波(13、56MHZ
を印加したノズル(B)6から反応室内へ導入して、プ
ラズマを発生させ、光透過窓3上の付着物をエッチング
を行なった。これにより、、光透過窓3の回復が可能と
なり、大気開放して光透過窓のクリーニングが不要とな
るため、著しく成膜の再現性が向上した。
Use example 1 is a film formation of SiO 2 . In FIG. 1, first, the substrate 1 is installed in the load lock chamber 15, then the valve 12 is opened, and the exhaust pump 14 is used for 0.000001T.
After exhausting to orr, the heater 2 was placed on the susceptor 30 heated to a predetermined temperature via the gate valve 16 as shown in FIG. After the substrate is placed, the reaction gas (A) 8 (Si diluted with SiH 4 or N 2 ) emitted from the nozzle (A) 5 that emits ultraviolet rays from the low-pressure mercury lamp 4 that has been turned on in advance.
H 4 ) and the oxidizing gas 9 discharged from the blowing nozzle (B) 6
By irradiating (O 2 , O 3 , N 2 O, etc.), a SiO 2 film was formed on the substrate (silicon, gallium arsenide, etc.) 1. In this case, the blowout hole of the blowout nozzle (B) 6 faces the side of the light transmitting window 3 which is the exact opposite of the nozzle (A), and the diffusion of the reaction gas (A) 8 into the light transmitting window 3 is suppressed, thereby It was possible to mitigate the clouding of the window due to the film adhesion of the transmission window 3. After the continuous film formation for a long time, the light transmission window 3
Since window clouding occurred in the etching gas (for example, CF
4 , NF 3 , CHF 3, etc.) at high frequency (13, 56 MH Z )
Was introduced into the reaction chamber from the nozzle (B) 6 to which was applied, plasma was generated, and the deposit on the light transmitting window 3 was etched. As a result, the light transmitting window 3 can be recovered, and it is not necessary to clean the light transmitting window by opening to the atmosphere, so that reproducibility of film formation is significantly improved.

【0010】使用例2はSiNの成膜である。使用例1
と同様に、図1のように基板1を所定位置に載置後、反
応ガス(A)8(SiH4またはN2で希釈されたSiH
4)を吹き出しノズル(A)5より、基板1の方向19
に流し、またNH3(N2で希釈された場合も含む)を吹
き出しノズル(B)6より、光透過窓3の方向20に流
すと、基板1上にSiNが堆積した。この場合にも、吹
き出しノズル(B)6から光透過窓3の方向20に、そ
れだけでは固体を生成しないNH3、N2を流したため
に、SiH4の光透過窓3への拡散がないので、窓くも
りが抑制された。図4にその結果を示す。縦軸は光透過
窓に用いた合成石英ガラスの光透過率を、横軸は基板に
堆積したSiNの膜厚である。これによると、従来の光
CVD装置では、100nmのSiNを堆積すると光透
過窓の合成石英ガラスの光透過率が膜付着により約10
%(λ=254nm)と低下した。このため従来の装置
では膜厚が約100nm位しか得られないのに対して、
本発明では同じ光透過率になるまでには、約700nm
と約7倍の膜厚が得られた。
The second use example is the film formation of SiN. Usage example 1
Similarly to FIG. 1, after placing the substrate 1 at a predetermined position as shown in FIG. 1, the reaction gas (A) 8 (SiH 4 or SiH diluted with N 2 is used).
4 ) from the blow-out nozzle (A) 5 in the direction 19 of the substrate 1.
Then, NH 3 (including the case of being diluted with N 2 ) was flown from the blowing nozzle (B) 6 in the direction 20 of the light transmission window 3 to deposit SiN on the substrate 1. In this case as well, since NH 3 and N 2 that do not generate solids by themselves flow in the direction 20 of the light transmitting window 3 from the blowing nozzle (B) 6, there is no diffusion of SiH 4 into the light transmitting window 3. , Window fog was suppressed. The results are shown in FIG. The vertical axis represents the light transmittance of the synthetic quartz glass used for the light transmission window, and the horizontal axis represents the film thickness of SiN deposited on the substrate. According to this, in the conventional photo-CVD apparatus, when 100 nm of SiN is deposited, the light transmittance of the synthetic quartz glass in the light-transmitting window is about 10 due to the film adhesion.
% (Λ = 254 nm). Therefore, in the conventional device, the film thickness can be obtained only about 100 nm.
In the present invention, it takes about 700 nm until the same light transmittance is obtained.
And about 7 times the film thickness was obtained.

【0011】使用例3はa−Siの成膜である。使用例
1と同様に、図1のように基板1(ガラス板)を所定位
置に載置後、反応ガス(A)(Si26またはN2で希
釈されたSi26)を吹き出しノズル(A)5より基板
の方向19に流し、またN2を吹き出しノズル(B)6
により光透過窓3の方向20に流すと、実施例1及び2
と同様に光透過窓3へのa−Si(アモルファスシリコ
ン)の折出を防ぐため、光透過窓3の窓くもりが緩和さ
れると共に、基板1上にa−Si(アモルファスシリコ
ン)を光励起CVDにより堆積することができた。この
場合にも、窓くもりの緩和効果は図4に示すように、S
iNの場合と同様な傾向となった。
Use example 3 is film formation of a-Si. As with Use Example 1, blown substrate 1 after standing mounting (glass plate) to a predetermined position, the reaction gas (A) (Si 2 H 6 diluted with Si 2 H 6 or N 2) as shown in FIG. 1 Flow from the nozzle (A) 5 in the direction 19 of the substrate, and N 2 is blown out from the nozzle (B) 6.
When flowing in the direction 20 of the light transmission window 3 by
In order to prevent the protrusion of a-Si (amorphous silicon) to the light transmitting window 3 in the same manner as described above, the window haze of the light transmitting window 3 is alleviated, and a-Si (amorphous silicon) is photoexcited on the substrate 1 by photoexcitation CVD. Could be deposited by. Also in this case, the effect of alleviating the window fog is as shown in FIG.
The tendency was similar to that of iN.

【0012】このように、本発明の実施例では、図2に
示すように、ガス吹き出し孔の正反対のノズル(A)及
びノズル(B)を形成し、固体を生成する反応ガスは光
透過窓と反対側の基板側に噴出させているため、光透過
窓側への拡散抑制と希釈効果により、光透過窓の窓くも
りを緩和することができる。また、ノズル(B)にエッ
チングガスを導入し、かつ高周波を印加することによ
り、プラズマを発生させ、光透過窓3上の堆積物をエッ
チングして取り除くことができる。また光透過窓3の窓
くもりの緩和効果を上げるために、ノズル(A)5をで
きるだけ基板に近づけ、ノズル(B)6を光透過窓に近
づけることにより、一層緩和効果を向上させ得ることは
いうまでもない。また基板が上置きであるため、パーテ
ィクル(ゴミ)の落下がなく、成膜歩留りを著しく向上
させることができる。
As described above, in the embodiment of the present invention, as shown in FIG. 2, the nozzle (A) and the nozzle (B) opposite to the gas blowing holes are formed, and the reaction gas for producing solid is a light transmitting window. Since it is ejected to the side of the substrate opposite to the side, the window haze of the light transmitting window can be mitigated by the diffusion suppression and the dilution effect to the light transmitting window side. Further, by introducing an etching gas into the nozzle (B) and applying a high frequency, plasma can be generated and the deposit on the light transmitting window 3 can be removed by etching. In order to improve the window clouding mitigating effect of the light transmitting window 3, the nozzle (A) 5 is brought as close as possible to the substrate, and the nozzle (B) 6 is brought closer to the light transmitting window, whereby the mitigating effect can be further improved. Needless to say. Further, since the substrate is placed on top, particles (dust) are not dropped, and the film formation yield can be significantly improved.

【0013】[0013]

【発明の効果】本発明は以上の如くであるからSiO2
の他、SiN、a−Siなどの光吸収係数の大きい膜に
ついても連続成膜が可能となるため、厚膜の作製が容易
である。また、光透過窓のクリーニングが可能であるの
で、成膜の再現性及びスループットを向上させる効果が
ある。尚、本発明の光励起CVD装置はLSI(Lar
ge Scale Integrated Circu
its)、TFT(hin ilm ransi
stor)、受発光デバイス、III−V族化合物半導体
を用いたLSIなどの作製における低温成膜、良質膜及
び低損傷のニーズに応える成膜装置として適用できる。
Since the present invention is as described above, SiO 2
Besides, since it is possible to continuously form a film having a large light absorption coefficient such as SiN or a-Si, it is easy to produce a thick film. Further, since the light transmission window can be cleaned, there is an effect of improving reproducibility of film formation and throughput. The photoexcited CVD apparatus of the present invention is an LSI (Lar
ge Scale Integrated Circuit
its), TFT (T hin F ilm T ransi
can be applied as a film forming apparatus that meets the needs of low temperature film formation, high quality film and low damage in the production of an LSI using a group III-V compound semiconductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の光励起CVD装置の概略構成図
である。
FIG. 1 is a schematic configuration diagram of a photoexcited CVD apparatus according to an embodiment of the present invention.

【図2】本発明実施例の光励起CVD装置におけるガス
供給ノズルの上面図である。
FIG. 2 is a top view of a gas supply nozzle in the photoexcited CVD apparatus according to the embodiment of the present invention.

【図3】従来の光励起CVD装置の概略構成図である。FIG. 3 is a schematic configuration diagram of a conventional photoexcited CVD apparatus.

【図4】光透過窓の合成石英ガラスの光透過率に及ぼす
SiNの成膜膜厚の関係を従来装置と本発明とで比較し
たものである。
FIG. 4 is a comparison of the relationship between the film thickness of a SiN film and the present invention, which affects the light transmittance of synthetic quartz glass of a light transmission window.

【符号の説明】[Explanation of symbols]

1 基板 3 光透過窓 5 反応ガス供給用ノズル(A) 6 希釈ガス及びエッチングガス共用ノズル(B) 17a ノズル(A)の吹き出し口 17b ノズル(B)の吹き出し口 1 substrate 3 light transmitting window 5 Reactant gas supply nozzle (A) 6 Diluting gas and etching gas shared nozzle (B) 17a Nozzle (A) outlet 17b Nozzle (B) outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 手銭 雄太 神奈川県横浜市磯子区磯子1丁目2番10号 バブコツク日立株式会社横浜研究所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yuta             1-2-10 Isogo, Isogo-ku, Yokohama-shi, Kanagawa               Babkotsu Hitachi Co., Ltd. Yokohama Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 紫外線の光励起反応を用いた光励起CV
D装置において、紫外線を採り入れる光透過窓と、成膜
堆積用の基板との間の前記光透過窓近傍に、反応ガス用
ノズルと、希釈ガスとエッチングガスとの共用ノズルと
を配設し、反応ガスは希釈ガスによって前記光透過窓へ
の拡散を阻止させると共に、エッチングガス供給時に前
記共用ノズルに高周波を印加することにより、光透過窓
上の折出物に対するプラズマエッチングを可能としたこ
とを特徴とする光励起CVD装置。
1. A photoexcited CV using a photoexcitation reaction of ultraviolet rays.
In the D apparatus, a reaction gas nozzle and a common nozzle for a diluting gas and an etching gas are arranged in the vicinity of the light transmission window between the light transmission window for introducing ultraviolet rays and the substrate for film formation and deposition, The reaction gas prevents the diffusion to the light transmission window by the dilution gas, and by applying a high frequency to the common nozzle at the time of supplying the etching gas, plasma etching can be performed on the protrusion on the light transmission window. A characteristic photo-excited CVD apparatus.
【請求項2】 請求項1の光励起CVD装置において、
前記反応ガス用ノズルの吹き出し口を成膜堆積用の基板
側に、且つ前記共用ノズルの吹き出し口を光透過窓側に
向けて配置したことを特徴とする光励起CVD装置。
2. The photoexcited CVD apparatus according to claim 1,
The photoexcited CVD apparatus, wherein the outlet of the reaction gas nozzle is arranged on the substrate side for film formation and deposition, and the outlet of the common nozzle is arranged on the light transmission window side.
JP18588991A 1991-07-01 1991-07-01 Photo-excited cvd device Pending JPH0513349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18588991A JPH0513349A (en) 1991-07-01 1991-07-01 Photo-excited cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18588991A JPH0513349A (en) 1991-07-01 1991-07-01 Photo-excited cvd device

Publications (1)

Publication Number Publication Date
JPH0513349A true JPH0513349A (en) 1993-01-22

Family

ID=16178659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18588991A Pending JPH0513349A (en) 1991-07-01 1991-07-01 Photo-excited cvd device

Country Status (1)

Country Link
JP (1) JPH0513349A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305046B1 (en) 1998-06-02 2001-10-23 The Procter & Gamble Company Cleaning implements having structures for retaining a sheet
JP2013064187A (en) * 2011-09-20 2013-04-11 Ulvac Japan Ltd Apparatus and method for forming film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305046B1 (en) 1998-06-02 2001-10-23 The Procter & Gamble Company Cleaning implements having structures for retaining a sheet
US6484346B2 (en) 1998-06-02 2002-11-26 The Procter & Gamble Company Cleaning implements having structures for retaining a sheet
US6651290B2 (en) 1998-06-02 2003-11-25 The Procter & Gamble Company Cleaning implements having structures for retaining a sheet
JP2013064187A (en) * 2011-09-20 2013-04-11 Ulvac Japan Ltd Apparatus and method for forming film

Similar Documents

Publication Publication Date Title
US6164295A (en) CVD apparatus with high throughput and cleaning method therefor
US5650013A (en) Layer member forming method
US6786997B1 (en) Plasma processing apparatus
US4857139A (en) Method and apparatus for forming a layer
US5753320A (en) Process for forming deposited film
US6060397A (en) Gas chemistry for improved in-situ cleaning of residue for a CVD apparatus
US20060107973A1 (en) Endpoint detector and particle monitor
US20030029473A1 (en) Chamber cleaning via rapid thermal process during a cleaning period
US20040065344A1 (en) Processing apparatus and cleaning method
JPH028361A (en) Treatment apparatus and method
JP2961000B2 (en) Self-cleaning method for reactor
US4977855A (en) Apparatus for forming film with surface reaction
US6176936B1 (en) In-situ chamber cleaning method of CVD apparatus
KR100611612B1 (en) Method and apparatus for determining cleaning process end point using throttle valve position
GB2304457A (en) Dry etching method
JPH0513349A (en) Photo-excited cvd device
JPH0697075A (en) Plasma cleaning of thin film deposition chamber
JPH0289309A (en) Processor and method
JPH02320A (en) Apparatus and method of treatment
JPS60175411A (en) Manufacture of thin semiconductor film and apparatus thereof
TW522475B (en) Method for improving chemical vapor deposition processing
JPS63317675A (en) Plasma vapor growth device
JP3112521B2 (en) Optical excitation process equipment
JPH0689455B2 (en) Thin film formation method
JPH01152631A (en) Formation of sixoynz insulating film