JPH05132776A - Organometallic complex for chemical vapor deposition and solution of the complex - Google Patents

Organometallic complex for chemical vapor deposition and solution of the complex

Info

Publication number
JPH05132776A
JPH05132776A JP25559291A JP25559291A JPH05132776A JP H05132776 A JPH05132776 A JP H05132776A JP 25559291 A JP25559291 A JP 25559291A JP 25559291 A JP25559291 A JP 25559291A JP H05132776 A JPH05132776 A JP H05132776A
Authority
JP
Japan
Prior art keywords
complex
dpm
solution
solvent
organometallic complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25559291A
Other languages
Japanese (ja)
Other versions
JP3488252B2 (en
Inventor
Kazumi Kobayashi
一三 小林
Tomoaki Nakai
知章 中井
Yoshiaki Sugimori
由章 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP25559291A priority Critical patent/JP3488252B2/en
Publication of JPH05132776A publication Critical patent/JPH05132776A/en
Application granted granted Critical
Publication of JP3488252B2 publication Critical patent/JP3488252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To develop an excellent raw material for forming a ceramic thin film by CVD method by coordinating a nucleophilic compd. consisting of a protic org. compd. or an aprotic org. compd. with a beta-diketonate metallic complex to obtain an organometallic complex and using the complex or a soln. of the complex in a specified solvent as the raw material. CONSTITUTION:The beta-diketonate metallic complex to an alkaline-earth metal such as Ba(DPM)2, Sn(DPM)2 and Ca(DPM)2 (where DPM is a beta-diketone represented by dipivaloylmethane) is 6-coordinated with a nucleophilic compd. having proticity as the amphoteric org. compd. such as diethylamine or a nucleophilic compd. having proticity as an aprotic org. compd. such as pyridine to form an organometallic complex, or the complex is dissolved in an amphoteric solvent such as acetic acid and formic acid wherein a proton is exchanged or in an aprotic solvent such as pyridine. When the complex is excellent in preservation stability in a solid state, the concd. soln. is obtained, and the raw material suitable to CVD is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化学気相析出法(以下、
CVD法と略記する)の原料に関し、有機金属錯体の空
軌道に積極的に求核性化合物を配位させて化学的に不活
性な状態とすることによって、あるいはこれを溶媒に溶
解することによって、保存安定性を向上せしめ、製造工
程の安定化を図り、生産性の向上と製品品質の保証を得
ることができるようにした化学気相析出用の有機金属錯
体溶液および有機金属錯体溶液に関する。
The present invention relates to a chemical vapor deposition method (hereinafter,
(Hereinafter abbreviated as CVD method) by positively coordinating a nucleophilic compound to an empty orbit of an organometallic complex to make it chemically inactive, or by dissolving this in a solvent. The present invention relates to an organometallic complex solution and an organometallic complex solution for chemical vapor deposition, which are capable of improving storage stability, stabilizing the manufacturing process, improving productivity and ensuring product quality.

【0002】[0002]

【従来の技術】近年、酸化物系のセラミック薄膜あるい
は層状セラミック等の製造方法としてCVD法が有力な
手段として用いられるようになり、その研究開発も盛ん
に行われるようになった。例えば超電導体薄膜、誘電体
薄膜や各種集積回路の製造工程においてCVD法が用い
られている。そしてその原料としては揮発性と反応性に
優れたβ−ジケトネート金属錯体が多く用いられてい
る。
2. Description of the Related Art In recent years, the CVD method has come to be used as a promising means for producing oxide-based ceramic thin films or layered ceramics, and research and development thereof have been actively conducted. For example, the CVD method is used in the manufacturing process of superconductor thin films, dielectric thin films, and various integrated circuits. As the raw material, a β-diketonate metal complex excellent in volatility and reactivity is often used.

【0003】β−ジケトネート金属錯体については、以
前からガスクロマトグラフィーによる微量金属の分析
や、金属錯体における立体化学や異性体化学、配位子の
交換、弱求核試薬相互作用などの研究に用いられ、さら
にはガソリンのアンチノック剤、内燃機関の炭素除去用
触媒などへの応用も考えられている(R.E.Siev
ers;Science,201(1978)217−
223)。β−ジケトネート金属錯体は、比較的蒸気圧
が高く、反応性に富むのでCVD用の原料として有用性
が高い。例えばβ−ジケトネート金属錯体を用いてCV
D法によって酸化物を製造する方法が特開昭57−11
8002号公報に開示されている。また、この他にもβ
−ジケトネート金属錯体を用い、CVD法によって酸化
物超伝導体の単結晶薄膜を製造する方法が特開平1−2
57194号公報に開示されている。
The β-diketonate metal complex has been used for a long time for the analysis of trace metals by gas chromatography, stereochemistry and isomer chemistry in metal complexes, ligand exchange, weak nucleophilic reagent interaction and the like. Furthermore, application to anti-knock agents for gasoline, carbon removal catalysts for internal combustion engines, etc. is also considered (RE. Siev).
ers; Science, 201 (1978) 217-
223). The β-diketonate metal complex has a relatively high vapor pressure and is highly reactive, and thus is highly useful as a raw material for CVD. For example, using a β-diketonate metal complex, CV
A method for producing an oxide by the D method is disclosed in JP-A-57-11.
It is disclosed in Japanese Patent Publication No. 8002. In addition, β
-A method for producing a single crystal thin film of an oxide superconductor by a CVD method using a diketonate metal complex is disclosed in Japanese Patent Application Laid-Open No. 1-22.
No. 57194 is disclosed.

【0004】このようなβ−ジケトネート金属錯体のC
VD用原料としての有用性については、錯体を形成する
金属種によって錯体の性質に与える影響と、R1−CO
−CH2−CO−R2で示される錯体の配位子R1および
2の種類による影響について、熱重量分析曲線(以
下、TGと略記する)と蒸気圧のデータによって解析さ
れ、明らかにされている(T.Ozawa;Volat
ility of Metal β−Diketona
tes for Chemical VaporDep
ositionof Oxide Supercond
uctor(Thermochimica Acta,
174(1991)185−199))。
C of such a β-diketonate metal complex
Regarding the usefulness as a VD raw material, the influence of the metal species forming the complex on the properties of the complex and R 1 -CO
The influence of the types of the ligands R 1 and R 2 on the complex represented by —CH 2 —CO—R 2 was analyzed by thermogravimetric analysis curve (hereinafter abbreviated as TG) and vapor pressure data, and clearly (T. Ozawa; Volat
ility of Metal β-Diketona
tes for Chemical VaporDep
position of Oxide Supercond
uctor (Thermochimica Acta,
174 (1991) 185-199)).

【0005】β−ジケトネート金属錯体をCVD法に用
いる際には、このものが室温で固体であるので、気化装
置を設けて気化させ、キャリアーガスで搬送して反応に
供する方法が行われている。このキャリアーガスとして
は、多くの場合、アルゴン、窒素などの不活性ガスが用
いられ、最近では有機溶剤などを用いる方法も試みられ
ている。例えば、松野繁らは、テトラヒドロフランをキ
ャリアーガスに用いる方法を発表している(応用物理学
会 1990年春期年会29p−ZB−16、1991
年秋期年会28p−ZM−6)。
When the β-diketonate metal complex is used in the CVD method, since it is a solid at room temperature, a method is used in which a vaporizer is provided to vaporize it and carry it by a carrier gas for reaction. .. In many cases, an inert gas such as argon or nitrogen is used as the carrier gas, and a method using an organic solvent or the like has been tried recently. For example, Shigeru Matsuno et al. Have published a method of using tetrahydrofuran as a carrier gas (Spring Annual Meeting 29p-ZB-16, 1991, Japan Society of Applied Physics).
28p-ZM-6).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、β−ジ
ケトネート類は、一般に空気中の水分や炭酸ガスの影響
を受けて劣化し易い。また、保存中にオリゴマーを形成
して分子量が大きくなるなどして蒸発温度が高くなる
等、変質し易い。例えばジピバロイルメタン((C
33CCOCH2COC(CH33、以下DPMと略
記する)は代表的なβ−ジケトンであるが、その金属錯
体Ba(DPM)2、Sr(DPM)2は、これを保存す
る際にデシケータ中に保存する等の注意を払っても、T
Gに変化が認められる等、極めて不安定なものである。
したがって、β−ジケトネート金属錯体は、保存状態や
取り扱い時に劣化するのを防止するために細心の注意を
必要とするものであり、原料として操作性が劣るもので
あった。また、このような不安定な金属錯体をCVD法
用の原料として用いると良好な再現性が得られず、製品
品質が低下するという不都合もしばしば起こっていた。
However, β-diketonates are generally susceptible to deterioration under the influence of moisture and carbon dioxide in the air. Further, during storage, an oligomer is formed to increase the molecular weight and the evaporation temperature becomes high, so that the quality is easily changed. For example, dipivaloylmethane ((C
H 3) 3 CCOCH 2 COC ( CH 3) 3, hereinafter abbreviated as DPM) is a typical β- diketones, metal complexes Ba (DPM) 2, Sr ( DPM) 2 may store this Even if you pay attention when saving in a desiccator,
It is extremely unstable, such as a change in G.
Therefore, the β-diketonate metal complex requires careful attention in order to prevent deterioration during storage and handling, and has poor operability as a raw material. Further, when such an unstable metal complex is used as a raw material for the CVD method, good reproducibility cannot be obtained, and the product quality is often deteriorated.

【0007】またCVD法において、固体のβ−ジケト
ネート金属錯体を原料として、これを単独で気化させる
場合には、100〜250℃に加熱し、減圧してキャリ
アーガスによって反応炉に導入することが行われる。と
ころが、酸化物超電導体などでは複合酸化物なので、こ
れを製造するために数種類の原料を使用するが、これら
の原料は蒸気圧や蒸発温度がそれぞれ異なる。よって、
構成金属元素の有機金属化合物を独立した個々の気化装
置で気化させる必要があった。例えば、Y−B−C系や
B−S−C−C系の超電導体の構成金属元素において、
Ca、Y、CuなどのDPM錯体の蒸発温度は100〜
180℃であるが、Ba(DPM)2やSr(DPM)2
は200℃以下では低い蒸気圧しか得られず、これらを
気化させるために200℃以上の他の錯体よりも高い加
熱温度を必要とする。したがって、原料を別の系統から
のキャリアーガスによって搬送する方法では、蒸気圧が
それぞれ異なる原料を気化させるために、あるいは気化
した原料ガスをキャリアーガス中に安定に再現性よく均
一に同伴させるために、製造工程における温度、圧力、
濃度などの条件設定や制御機構が複雑になるという欠点
があった。また、例えば200℃以上の高温にすること
によって、原料の錯体自体が劣化あるいは変質して、蒸
発速度の経時変化や生産性の低下などを引き起こし易い
という問題もあった。
In the CVD method, when a solid β-diketonate metal complex is used as a raw material and is vaporized alone, it may be heated to 100 to 250 ° C., depressurized and introduced into a reaction furnace by a carrier gas. Done. However, since oxide superconductors and the like are complex oxides, several kinds of raw materials are used to manufacture them, but these raw materials have different vapor pressures and evaporation temperatures. Therefore,
It was necessary to vaporize the organometallic compounds of the constituent metal elements by independent individual vaporizers. For example, in the constituent metal elements of the Y-B-C-based or B-S-C-C-based superconductor,
The evaporation temperature of DPM complex such as Ca, Y, Cu is 100-
180 ° C, but Ba (DPM) 2 and Sr (DPM) 2
Has a low vapor pressure below 200 ° C and requires a higher heating temperature than other complexes above 200 ° C to vaporize them. Therefore, in the method of transporting the raw material by the carrier gas from another system, in order to vaporize the raw materials having different vapor pressures, or to cause the vaporized raw material gas to be stably and reproducibly and uniformly entrained in the carrier gas. , Temperature, pressure in the manufacturing process,
There is a drawback that the condition setting such as concentration and the control mechanism are complicated. In addition, there is also a problem that, for example, when the temperature is raised to a high temperature of 200 ° C. or higher, the raw material complex itself is deteriorated or deteriorated, so that the evaporation rate is easily changed with time and productivity is lowered.

【0008】本発明は前記事情に鑑みてなされたもの
で、β−ジケトネート金属錯体を用い、CVD法によっ
て超電導体薄膜や誘電体薄膜等を製造する際に、製造工
程の安定化を図り、生産性の向上と製品品質の保証を得
ることができるようにした化学気相析出用の有機金属錯
体および有機金属錯体溶液の提供を目的とする。
The present invention has been made in view of the above circumstances, and when a β-diketonate metal complex is used to produce a superconductor thin film, a dielectric thin film, or the like by the CVD method, the production process is stabilized and production is performed. It is an object of the present invention to provide an organometallic complex and an organometallic complex solution for chemical vapor deposition, which are capable of improving properties and ensuring product quality.

【0009】[0009]

【課題を解決するための手段】本発明の化学気相析出用
の有機金属錯体は、β−ジケトネート金属錯体に、求核
性化合物を配位させたことを前記課題の解決手段とし
た。また、本発明の化学気相析出用の有機金属錯体溶液
は、β−ジケトネート金属錯体に、求核性化合物を配位
させて得られる有機金属錯体の少なくとも1種を、溶媒
に溶解してなることを前記課題の解決手段とした。
In the organometallic complex for chemical vapor deposition of the present invention, the nucleophilic compound is coordinated to the β-diketonate metal complex as the means for solving the above-mentioned problems. Further, the organometallic complex solution for chemical vapor deposition of the present invention is obtained by dissolving at least one organometallic complex obtained by coordinating a nucleophilic compound with a β-diketonate metal complex in a solvent. This is the means for solving the above problems.

【0010】[0010]

【作用】例えばBa(DPM)2、Sr(DPM)2等の
アルカリ土類金属のβ−ジケトネート錯体は四配位の錯
体であるが、Ba、Sr等のアルカリ土類金属が本来六
配位をとる原子であり、二配位分が空軌道となってい
る。この空軌道が、空気中の水分や炭酸ガスによる影響
を受けて、劣化し変質する原因となると考えられる。こ
のようなβ−ジケトネート金属錯体を、≡N:基や、=
O:基などの孤立電子対を有する求核性化合物によっ
て、その空軌道を配位結合させて化学的に不活性とする
ことにより、水分や炭酸ガスの影響を防止するととも
に、オリゴマー化も防止できる。しかも、これらの求核
性化合物の配位子と金属との結合は配位結合なのでその
結合力は弱く、通常の条件下において、CVD法の化学
的反応性を減じることはない。
The β-diketonate complex of an alkaline earth metal such as Ba (DPM) 2 and Sr (DPM) 2 is a tetracoordinated complex, but the alkaline earth metal such as Ba and Sr is originally a hexacoordinated complex. Is an atom that takes a double orbital and has an empty orbit. It is considered that this empty orbit becomes a cause of deterioration and alteration due to the influence of moisture and carbon dioxide in the air. Such a β-diketonate metal complex can be prepared by
O: A nucleophilic compound having a lone pair of electrons, such as a nucleophilic compound, chemically bonds the vacant orbital to make it chemically inactive, thereby preventing the effects of water and carbon dioxide and also preventing oligomerization. it can. Moreover, since the bond between the ligand of these nucleophilic compounds and the metal is a coordinate bond, the bond strength is weak, and the chemical reactivity of the CVD method is not reduced under normal conditions.

【0011】また、このようにして得られる有機金属錯
体は極めて安定であり、このものを溶媒に溶解させて原
料溶液とすることができる。このとき、溶質である有機
金属錯体の相互作用はほとんどないので、高濃度の溶液
とすることが可能である。したがって、CVD法におい
て高濃度の原料溶液を供給することができ、生産効率の
向上、コストの低減を図ることができる。また、複合酸
化物を製造する際に複数種の有機金属錯体を同一の溶媒
に溶解させて原料溶液とすることができ、これを用いて
単一の気化装置で複合酸化物の製造が可能となり、CV
D装置や制御機構を簡略化することができる。
The organometallic complex thus obtained is extremely stable, and it can be dissolved in a solvent to prepare a raw material solution. At this time, since there is almost no interaction between the solute organometallic complex, a high-concentration solution can be obtained. Therefore, a high-concentration raw material solution can be supplied in the CVD method, and production efficiency can be improved and cost can be reduced. Further, when producing a complex oxide, it is possible to dissolve a plurality of types of organometallic complexes in the same solvent to obtain a raw material solution, and using this, it is possible to produce a complex oxide with a single vaporizer. , CV
The D device and the control mechanism can be simplified.

【0012】[0012]

【実施例】以下、本発明を詳しく説明する。本発明にお
いて用いられるβ−ジケトネート金属錯体としては、ア
ルカリ土類金属のβ−ジケトネート金属錯体が好適に用
いられ、さらに好ましくはアルカリ土類金属のDPM金
属錯体が用いられる。例えばBa(DPM)2、Ca
(DPM)2、Sr(DPM)2などを用いることができ
る。
The present invention will be described in detail below. The β-diketonate metal complex used in the present invention is preferably a β-diketonate metal complex of an alkaline earth metal, and more preferably a DPM metal complex of an alkaline earth metal. For example, Ba (DPM) 2 , Ca
(DPM) 2 , Sr (DPM) 2 and the like can be used.

【0013】本発明において、β−ジケトネート金属錯
体に配位する求核性化合物としては、β−ジケトネート
金属錯体に対して、積極的に配位結合して安定化する化
合物であって、例えば酸塩基両性を示す両性有機化合物
であって親プロトン性を有するジエチルアミン、トリエ
チルアミン、エチレンジアミン、あるいは、プロトンを
放出する性質がほとんどない非プロトン性有機化合物で
あって親プロトン性を有するピリジン、ビピリジル、ジ
エチルエーテル、テトラヒドロフランなどを好適に用い
ることができる。
In the present invention, the nucleophilic compound that coordinates with the β-diketonate metal complex is a compound that positively coordinates and stabilizes with respect to the β-diketonate metal complex, such as an acid. Diethylamine, triethylamine, ethylenediamine, which are amphoteric organic compounds exhibiting amphoteric basicity, or pyridine, bipyridyl, diethyl ether, which are aprotic organic compounds having almost no proton-releasing property and which are protic. , Tetrahydrofuran and the like can be preferably used.

【0014】ここで、本発明で用いられる求核性化合物
として、酸塩基両性を示す両性有機化合物であって親プ
ロトン性を有する化合物、あるいはプロトンを放出する
性質がほとんどない非プロトン性有機化合物であって親
プロトン性を有する化合物を好適に用いることができる
のは、以下の理由による。一般に、有機溶媒を分類する
と、プロトンの授受を行い、酸塩基両性を示す両性溶
媒と、プロトン放出する性質がほとんどない非プロト
ン溶媒とに分類される。上記に記載の両性溶媒をさら
に細分すると、−a;プロトン放出する傾向が強い、
プロトン供与性溶媒、−b;プロトンの授受の傾向が
ほぼ等しい、水酸基を有する溶媒、−c;プロトン受
け入れる傾向が強い、親プロトン性溶媒とに分けられ
る。−aのプロトン供与性溶媒としては、例えば酢
酸、ギ酸、プロピオン酸、トリフルオロ酸などの有機酸
がある。−bの水酸基を有する溶媒としてはアルコー
ル類やフェノール類などがある。−cの親プロトン性
溶媒としてはジエチルアミンやエチレンジアミンなどの
アミン類などがある。また、上記に記載の非プロトン
溶媒をさらに細分すると、−a;塩基性が強く陽イオ
ンに溶媒和し易い親プロトン性溶媒、−b;塩基性は
弱く陽イオンに溶媒和し難い疎プロトン溶媒、−c;
誘電率が小さい不活性溶媒とに分けられる。−aの親
プロトン性溶媒としては、ピリジン、ジエチルエーテ
ル、テトラヒドロフランなどがある。−bの疎プロト
ン性溶媒としては、アセトニトリルやアセトンなどがあ
る。−cの不活性溶媒としては、ベンゼンやトルエン
などがある。
Here, as the nucleophilic compound used in the present invention, an amphoteric organic compound having an acid-base amphoteric property and having a protic proticity, or an aprotic organic compound having almost no proton-releasing property is used. The reason why the compound having a protic property can be preferably used is as follows. Generally, organic solvents are classified into an amphoteric solvent that exchanges protons and exhibits an acid-base amphoteric property, and an aprotic solvent that has almost no proton-releasing property. If the amphoteric solvent described above is further subdivided, -a; it has a strong tendency to release protons,
A proton-donating solvent, -b; a hydroxyl group-containing solvent having almost the same proton-donating tendency, and -c: a protic solvent having a strong proton-receiving tendency. Examples of the proton-donating solvent for -a include organic acids such as acetic acid, formic acid, propionic acid, and trifluoro acid. Examples of the solvent having a hydroxyl group of -b include alcohols and phenols. Examples of the protic solvent of -c include amines such as diethylamine and ethylenediamine. Further, when the aprotic solvent described above is further subdivided, -a; a protic solvent having strong basicity and easily solvating with cations, -b; a protic solvent having weak basicity and hardly solvating with cations, and a protic solvent , -C;
It is divided into an inert solvent having a low dielectric constant. Examples of the aprotic solvent for -a include pyridine, diethyl ether and tetrahydrofuran. Examples of the aprotic solvent of -b include acetonitrile and acetone. Examples of the inert solvent of -c include benzene and toluene.

【0015】上記に記載の両性有機溶媒にBa(DP
M)2、Sr(DPM)2などのβ−ジケトネート金属錯
体を溶解して、その保存安定性を調べた結果、−aの
プロトン供与性溶媒については、保存安定性の向上は認
められなかったが、−bの水酸基を有する溶媒、およ
び−cの親プロトン性溶媒については、保存安定性の
向上が求められた。また、上記に記載の非プロトン性
有機溶媒について、同様にBa(DPM)2、Sr(D
PM)2などのβ−ジケトネート金属錯体を溶解して、
その保存安定性を調べた結果、−a、b、cともに保
存安定性に対する効果が得られた。特に−cの親プロ
トン性溶媒および−aの親プロトン性溶媒の保存安定
性に対する効果は顕著なものであった。
The amphoteric organic solvent described above may be added to Ba (DP
As a result of dissolving the β-diketonate metal complex such as M) 2 and Sr (DPM) 2 and examining its storage stability, no improvement in storage stability was observed for the proton donating solvent of −a. However, with respect to the solvent having a hydroxyl group of -b and the protic solvent of -c, improvement in storage stability was required. Further, regarding the aprotic organic solvent described above, Ba (DPM) 2 , Sr (D
PM) 2 and other β-diketonate metal complexes are dissolved,
As a result of examining the storage stability, an effect on the storage stability was obtained for all of -a, b, and c. In particular, the effects of -c protic solvent and -a protic solvent on storage stability were remarkable.

【0016】さらに上記−cに属するエチレンジアミ
ン(以下、Enと略記する)、および上記−aに属す
るテトラヒドロフラン(以下、THFと略記する)につ
いて、さらに詳しく検討した。その結果、Ba(DP
M)2、Sr(DPM)2などをEnやTHFに溶解させ
ることにより、保存安定性が飛躍的に向上し、CVD法
による製膜においても、反応の安定化、品質の向上が得
られた。ここで用いられたEn分子内には≡N:基が、
またTHFには=O:基があり、これらは高い求核性を
示す。したがって、これらの求核性原子が、溶液中で上
記金属錯体の空軌道に配位結合性をもってその空軌道を
保護することによって、これらの金属錯体の安定化が得
られることが考察された。
Further, ethylenediamine (hereinafter abbreviated as En) belonging to the above-c and tetrahydrofuran (hereinafter abbreviated as THF) belonging to the above-a were examined in more detail. As a result, Ba (DP
By dissolving M) 2 , Sr (DPM) 2 or the like in En or THF, the storage stability was dramatically improved, and even in the film formation by the CVD method, the reaction was stabilized and the quality was improved. .. The ≡N: group is present in the En molecule used here,
Further, THF has a ═O: group, and these show high nucleophilicity. Therefore, it was considered that stabilization of these metal complexes can be obtained by protecting the vacant orbital of these nucleophilic atoms with a coordinate bond to the vacant orbital of the metal complex in a solution.

【0017】これらの結果をふまえて、本発明の有機金
属錯体は、β−ジケトネート金属錯体の空軌道に求核性
化合物を配位させて、その空軌道を化学的に不活性な状
態とすることによって、固体状態での保存安定性を向上
させ、原料操作性の向上、プロセスの安定化を図ること
ができるようにしたものである。
Based on these results, in the organometallic complex of the present invention, the nucleophilic compound is coordinated to the empty orbital of the β-diketonate metal complex to render the empty orbital chemically inactive. As a result, the storage stability in the solid state can be improved, the operability of raw materials can be improved, and the process can be stabilized.

【0018】本発明の有機金属錯体は、例えば、Ba
(DPM)2、Sr(DPM)2などのβ−ジケトネート
金属錯体を、これらが容易に溶解する有機溶媒に溶かし
て、その溶液中で求核性化合物と反応させた後、有機溶
媒を蒸発させることによって好適に得ることができる。
The organometallic complex of the present invention is, for example, Ba
The β- diketonate metal complexes such as (DPM) 2, Sr (DPM ) 2, dissolved in an organic solvent in which they are readily soluble, is reacted with a nucleophilic compound in the solution, evaporating the organic solvent Therefore, it can be suitably obtained.

【0019】また、本発明の有機金属錯体を用いて、C
VD法によって製膜する際には、固体状態の有機金属錯
体を気化装置で気化させ、キャリアーガスなどに同伴し
て反応に供することができる。さらに好ましくは、本発
明の有機金属錯体はこれを通常の溶媒に溶解させた有機
金属錯体溶液として、キャリアーガスを用いずに気化装
置を経由してCVD装置に供給することもできる。
Further, by using the organometallic complex of the present invention, C
When a film is formed by the VD method, a solid-state organometallic complex can be vaporized by a vaporizer and can be used in a reaction by being entrained in a carrier gas or the like. More preferably, the organometallic complex of the present invention can also be supplied as an organometallic complex solution obtained by dissolving the organometallic complex in a usual solvent to a CVD apparatus via a vaporizer without using a carrier gas.

【0020】本発明の有機金属錯体溶液に用いられる溶
媒としては、例えばエチルアルコール、ジエチルアミ
ン、アセトニトリル等の通常用いられる溶媒を適宜使用
することができる。そしてこの溶媒として求核性化合物
を用いることもでき、さらにはβ−ジケトネート金属錯
体に配位させた求核性化合物と同一のものを好適に用い
ることもできる。本発明の溶液をCVD法の原料として
用いる際には、その濃度を適宜設定することができ、例
えば1mol/l程度あるいはそれ以上の高濃度にする
ことも可能である。そうすることによって、CVD法に
おいてその堆積速度を安定に向上させることができる。
As the solvent used in the organometallic complex solution of the present invention, a commonly used solvent such as ethyl alcohol, diethylamine, acetonitrile and the like can be appropriately used. A nucleophilic compound can be used as this solvent, and the same nucleophilic compound coordinated to the β-diketonate metal complex can be preferably used. When the solution of the present invention is used as a raw material for the CVD method, its concentration can be appropriately set, and for example, it can be set to a high concentration of about 1 mol / l or more. By doing so, the deposition rate can be stably improved in the CVD method.

【0021】本発明の有機金属錯体溶液は、例えば、B
a(DPM)2、Sr(DPM)2などのβ−ジケトネー
ト金属錯体を、まず、これらが容易に溶解する有機溶媒
に溶かして、その溶液中で求核性化合物と反応させた
後、有機溶媒を蒸発させることによって、固体の有機金
属錯体を得、これを適宜の溶媒に溶解させて得ることが
できる。また、上記過程中で得られる固体の有機金属錯
体はきわめて安定なものであるので、原料の保存に際し
ては、この固体状態で保存し、CVD法に供する際に溶
液状態とするのが好ましい。
The organometallic complex solution of the present invention is, for example, B
The β-diketonate metal complex such as a (DPM) 2 and Sr (DPM) 2 is first dissolved in an organic solvent in which they are easily dissolved, and then reacted with a nucleophilic compound in the solution, and then the organic solvent is added. It is possible to obtain a solid organometallic complex by evaporating the compound and dissolving this in an appropriate solvent. Further, since the solid organometallic complex obtained in the above process is extremely stable, it is preferable to store the raw material in this solid state and to put it in a solution state when it is subjected to the CVD method.

【0022】また、本発明の有機金属錯体および有機金
属錯体溶液は、CVD法による超電導体や誘電体の製造
だけでなく、β−ジケトネート金属錯体を用いる工業分
野においても広く用いることができる。以下、具体的に
実施例を挙げる。
The organometallic complex and the organometallic complex solution of the present invention can be widely used not only in the production of superconductors and dielectrics by the CVD method, but also in the industrial field of using β-diketonate metal complex. Examples will be specifically described below.

【0023】(実施例1)Ba(DPM)2 5.0g
を、その保存状態から取り出し、直ちにエタノール 1
00mlに溶解させて、温度を50℃に保持した。この
溶液をマグネチックスターラーにて攪拌し、En 0.
6gを加えて60分間反応させた。反応終了後、エタノ
ールを蒸発させて固体を得た。この固体を元素分析した
ところ、6配位化されたBa(DPM)2(En)であ
ることが認められた。合成直後のBa(DPM)2(E
n)の揮発性を熱重量分析により調べた。サンプル量;
14mg、昇温速度;10℃/min、Arガス流量;1
00cc/minとして、500℃まで加熱したとこ
ろ、97%が揮発し、3%が残渣として残った。さらに
Ba(DPM)2(En)を合成後、大気中(室温;2
2℃、湿度;66%)に1時間放置し、上記と同様にし
て熱重量分析を行ったところ、97%が揮発し、3%が
残渣として残った。これらの結果から、Ba(DPM)
2(En)は良好な保存安定性を有することが認められ
た。
Example 1 5.0 g of Ba (DPM) 2
Is taken out of the storage state and immediately ethanol 1
It was dissolved in 00 ml and the temperature was kept at 50 ° C. The solution was stirred with a magnetic stirrer to give En 0.
6 g was added and reacted for 60 minutes. After completion of the reaction, ethanol was evaporated to obtain a solid. Elemental analysis of this solid confirmed that it was hexacoordinated Ba (DPM) 2 (En). Ba (DPM) 2 (E immediately after synthesis
The volatility of n) was investigated by thermogravimetric analysis. Sample volume;
14 mg, temperature rising rate; 10 ° C./min, Ar gas flow rate; 1
When heated to 500 ° C. at 00 cc / min, 97% volatilized and 3% remained as a residue. Further, after synthesizing Ba (DPM) 2 (En), it is put in the air (room temperature; 2
When the thermogravimetric analysis was performed in the same manner as above, the sample was left at 2 ° C. and humidity of 66% for 1 hour. As a result, 97% was volatilized and 3% remained as a residue. From these results, Ba (DPM)
2 (En) was found to have good storage stability.

【0024】(実施例2)Ba(DPM)2 5.0g
を、その保存状態から取り出し、直ちにエタノール 1
00mlに溶解させて、温度を50℃に保持した。この
溶液をマグネチックスターラーにて攪拌し、2.2’−
ビピリジル(C1082、以下bpyと記載する)1.
9gを加えて60分間反応させた。反応終了後、エタノ
ールを蒸発させて固体を得た。この固体を元素分析した
ところ、6配位化されたBa(DPM)2(bpy)で
あることが認められた。合成直後のBa(DPM)
2(bpy)の揮発性を熱重量分析により調べた。サン
プル量;13mg、昇温速度;10℃/min、Arガス
流量;100cc/minとして、500℃まで加熱し
たところ、97%が揮発し、3%が残渣として残った。
さらにBa(DPM)2(bpy)を合成後、大気中
(室温;22℃、湿度;66%)に1時間放置し、上記
と同様にして熱重量分析を行ったところ、97%が揮発
し、3%が残渣として残った。これらの結果から、Ba
(DPM)2(bpy)は良好な保存安定性を有するこ
とが認められた。
Example 2 5.0 g of Ba (DPM) 2
Is taken out of the storage state and immediately ethanol 1
It was dissolved in 00 ml and the temperature was kept at 50 ° C. This solution was stirred with a magnetic stirrer to obtain 2.2'-
Bipyridyl (C 10 H 8 N 2 , hereinafter referred to as bpy) 1.
9 g was added and reacted for 60 minutes. After completion of the reaction, ethanol was evaporated to obtain a solid. Elemental analysis of this solid confirmed that it was hexacoordinated Ba (DPM) 2 (bpy). Ba (DPM) immediately after synthesis
The volatility of 2 (bpy) was examined by thermogravimetric analysis. When the sample amount was 13 mg, the temperature rising rate was 10 ° C./min, the Ar gas flow rate was 100 cc / min, and heating was performed up to 500 ° C., 97% volatilized and 3% remained as a residue.
Furthermore, after synthesizing Ba (DPM) 2 (bpy), it was left in the atmosphere (room temperature; 22 ° C., humidity; 66%) for 1 hour, and thermogravimetric analysis was carried out in the same manner as above. As a result, 97% was volatilized. 3% remained as a residue. From these results, Ba
(DPM) 2 (bpy) was found to have good storage stability.

【0025】(実施例3)Ba(DPM)2 5.0g
を、その保存状態から取り出し、直ちにTHF100m
lに溶解させて、温度を50℃に保持した。この溶液を
マグネチックスターラーにて攪拌して、60分間反応さ
せた。反応終了後、過剰のTHFを蒸発させて固体を得
た。この固体を元素分析したところ、6配位化されたB
a(DPM)2(THF)2であることが認められた。合
成直後のBa(DPM)2(THF)2の揮発性を熱重量
分析により調べた。サンプル量;13mg、昇温速度;1
0℃/min、Arガス流量;100cc/minとし
て、500℃まで加熱したところ、95%が揮発し、5
%が残渣として残った。さらにBa(DPM)2(TH
F)2を合成後、大気中(室温;22℃、湿度;66
%)に1時間放置し、上記と同様にして熱重量分析を行
ったところ、95%が揮発し、5%が残渣として残っ
た。これらの結果から、Ba(DPM)2(THF)2
良好な保存安定性を有することが認められた。
(Example 3) 5.0 g of Ba (DPM) 2
Was taken out from the storage state and immediately 100m of THF
It was dissolved in 1 and the temperature was kept at 50 ° C. This solution was stirred with a magnetic stirrer and reacted for 60 minutes. After completion of the reaction, excess THF was evaporated to obtain a solid. Elemental analysis of this solid showed that hexacoordinated B
It was found to be a (DPM) 2 (THF) 2 . The volatility of Ba (DPM) 2 (THF) 2 immediately after synthesis was examined by thermogravimetric analysis. Sample amount: 13 mg, heating rate: 1
When heated to 500 ° C. at 0 ° C./min and Ar gas flow rate of 100 cc / min, 95% volatilizes and 5
% Remained as a residue. Furthermore, Ba (DPM) 2 (TH
F) 2 after synthesis, in air (room temperature; 22 ° C, humidity; 66
%) For 1 hour and subjected to thermogravimetric analysis in the same manner as above. 95% volatilized and 5% remained as a residue. From these results, it was confirmed that Ba (DPM) 2 (THF) 2 has good storage stability.

【0026】(実施例4)Ca(DPM)2 5.0g
を、その保存状態から取り出し、直ちにエタノール 1
00mlに溶解させて、温度を50℃に保持した。この
溶液をマグネチックスターラーにて攪拌し、bpy
1.9gを加えて60分間反応させた。反応終了後、エ
タノールを蒸発させて固体を得た。この固体を元素分析
したところ、6配位化されたCa(DPM)2(bp
y)であることが認められた。合成直後のCa(DP
M)2(bpy)の揮発性を熱重量分析により調べた。
サンプル量;13mg、昇温速度;10℃/min、Ar
ガス流量;100cc/minとして、500℃まで加
熱したところ、100%が揮発し、残渣は残らなかっ
た。さらにCa(DPM)2(bpy)を合成後、大気
中(室温;22℃、湿度;66%)に1時間放置し、上
記と同様にして熱重量分析を行ったところ、100%が
揮発し、残渣は残らなかった。これらの結果から、Ca
(DPM)2(bpy)は良好な保存安定性を有するこ
とが認められた。
Example 4 5.0 g of Ca (DPM) 2
Is taken out of the storage state and immediately ethanol 1
It was dissolved in 00 ml and the temperature was kept at 50 ° C. Stir this solution with a magnetic stirrer and bpy
1.9 g was added and reacted for 60 minutes. After completion of the reaction, ethanol was evaporated to obtain a solid. Elemental analysis of this solid showed that hexacoordinated Ca (DPM) 2 (bp
y). Immediately after synthesis Ca (DP
The volatility of M) 2 (bpy) was investigated by thermogravimetric analysis.
Sample amount: 13 mg, heating rate: 10 ° C / min, Ar
When heated to 500 ° C. at a gas flow rate of 100 cc / min, 100% was volatilized and no residue remained. Furthermore, after Ca (DPM) 2 (bpy) was synthesized, it was left in the atmosphere (room temperature; 22 ° C., humidity; 66%) for 1 hour, and thermogravimetric analysis was carried out in the same manner as above. , No residue remained. From these results, Ca
(DPM) 2 (bpy) was found to have good storage stability.

【0027】(実施例5)上記実施例1と同様にして、
固体のBa(DPM)2(En)を得た。これを原料と
し、通常のCVD法の条件の例として、圧力;50To
rr,キャリアAr流量;200cc/min、O2
量;675cc/min、基板温度;<700℃と設定
し、原料蒸発器の温度を変化させて、酸化物の積層速度
を調べた。その結果、酸化物の積層速度0.35〜0.
39μmol/Hr・cm2で、安定して製膜できた。
(Embodiment 5) In the same manner as in Embodiment 1,
Solid Ba (DPM) 2 (En) was obtained. Using this as a raw material, as an example of the conditions of a normal CVD method, pressure: 50 To
rr, carrier Ar flow rate: 200 cc / min, O 2 flow rate: 675 cc / min, substrate temperature: <700 ° C., the temperature of the raw material evaporator was changed, and the stacking rate of oxides was investigated. As a result, the oxide stacking rate is 0.35 to 0.
A film was stably formed at 39 μmol / Hr · cm 2 .

【0028】(実施例6)上記実施例2と同様にして、
固体のBa(DPM)2(bpy)を得た。これを原料
とし、実施例5と同様にして酸化物の積層速度を調べた
ところ、積層速度0.35〜0.38μmol/Hr・
cm2で、安定して製膜できた。
(Sixth Embodiment) Similar to the second embodiment,
Solid Ba (DPM) 2 (bpy) was obtained. Using this as a raw material, the stacking rate of the oxide was examined in the same manner as in Example 5. The stacking rate was 0.35 to 0.38 μmol / Hr ·
With cm 2 , the film could be stably formed.

【0029】(実施例7)上記実施例3と同様にして、
固体のBa(DPM)2(THF)2を得た。これを原料
とし、実施例5と同様にして酸化物の積層速度を調べた
ところ、積層速度0.39〜0.41μmol/Hr・
cm2で、安定して製膜できた。
(Embodiment 7) In the same manner as in Embodiment 3,
Solid Ba (DPM) 2 (THF) 2 was obtained. Using this as a raw material, the stacking rate of the oxide was examined in the same manner as in Example 5. The stacking rate was 0.39 to 0.41 μmol / Hr ·
With cm 2 , the film could be stably formed.

【0030】(実施例8)上記実施例4と同様にして、
固体のCa(DPM)2(bpy)を得た。これを原料
とし、実施例5と同様にして酸化物の積層速度を調べた
ところ、積層速度0.55〜0.57μmol/Hr・
cm2で、安定して製膜できた。
(Embodiment 8) In the same manner as in Embodiment 4,
Solid Ca (DPM) 2 (bpy) was obtained. Using this as a raw material, the stacking rate of the oxide was examined in the same manner as in Example 5. The stacking rate was 0.55 to 0.57 μmol / Hr ·
With cm 2 , the film could be stably formed.

【0031】(実施例9)実施例1と同様にして固体の
Ba(DPM)2(En)を得、これの種々の有機溶媒
への溶解性およびその溶液の揮発性について調べた。溶
媒として、両性溶媒で水酸基を有する溶媒(上述の−
b)の例として無水エタノール、両性溶媒で親プロトン
溶媒(−c)の例としてn−プロピルアミン、非プロ
トン溶媒で親プロトン溶媒(−a)の例としてTH
F、非プロトン溶媒で疎プロトン溶媒(−b)の例と
してアセトニトリル、非プロトン溶媒で不活性溶媒(
−c)の例としてベンゼンをそれぞれ用いた。室温での
溶解性を調べた結果、上記の各溶媒1mlに対して、B
a(DPM)2(En) 1.0gをそれぞれ溶解で
き、mol濃度に換算して1.2mol/lの高濃度の
溶液を容易に得ることができた。また、これらの溶液に
ついて揮発性を熱重量分析により調べた。サンプル重
量;24mg、昇温速度;500℃/Hrとして400
℃で保持した。この結果、いずれの溶液も全量が蒸発
し、蒸発に要した時間は、それぞれ無水エタノール溶液
では150秒、n−プロピルアミン溶液では90秒、T
HF溶液では90秒、アセトニトリル溶液では110
秒、ベンゼン溶液では170秒であった。
Example 9 Solid Ba (DPM) 2 (En) was obtained in the same manner as in Example 1, and the solubility of this in various organic solvents and the volatility of the solution were investigated. As the solvent, an amphoteric solvent having a hydroxyl group (the above-mentioned
b) as an example, absolute ethanol, an amphoteric solvent as an example of a protic solvent (-c), n-propylamine, an aprotic solvent as an example of a protic solvent (-a), TH.
F, acetonitrile as an aprotic solvent and an aprotic solvent (-b), an aprotic solvent as an inert solvent (
Benzene was used as an example of -c). As a result of investigating the solubility at room temperature, it was found that B
1.0 g of a (DPM) 2 (En) could be dissolved in each, and a high-concentration solution of 1.2 mol / l in terms of mol concentration could be easily obtained. The volatility of these solutions was examined by thermogravimetric analysis. Sample weight: 24 mg, heating rate: 500 ° C./400 as Hr
Hold at ° C. As a result, the total amount of each solution was evaporated, and the time required for evaporation was 150 seconds for the anhydrous ethanol solution, 90 seconds for the n-propylamine solution, and T, respectively.
90 seconds for HF solution, 110 for acetonitrile solution
Seconds, 170 seconds for the benzene solution.

【0032】(実施例10)Sr(DPM)2(bp
y)のTHFへの溶解性とその溶液の揮発性について調
べた。まず、Sr(DPM)2 5.0gをエタノール
100mlに溶解し、bpy1.7gを加えて反応させ
た後、エタノールを蒸発させて固体のSr(DPM)2
(bpy)を得た。室温での溶解性を調べた結果、TH
F 1mlに対して、0.7gのSr(DPM)2(b
py)が溶解した。このときのmol濃度は1.1mo
l/lであった。また、このSr(DPM)2(bp
y)の1.1mol/l THF溶液の揮発性を調べ
た。サンプル重量を23mgとした以外は実施例9と同
様の条件で調べた結果、全量が蒸発し、蒸発に要した時
間は85秒であった。
(Embodiment 10) Sr (DPM) 2 (bp
The solubility of y) in THF and the volatility of the solution were investigated. First, 5.0 g of Sr (DPM) 2 was dissolved in 100 ml of ethanol, 1.7 g of bpy was added and reacted, and then ethanol was evaporated to obtain solid Sr (DPM) 2
(Bpy) was obtained. As a result of examining the solubility at room temperature, TH
0.7 g of Sr (DPM) 2 (b
py) dissolved. At this time, the mol concentration is 1.1 mo
It was 1 / l. In addition, this Sr (DPM) 2 (bp
The volatility of the 1.1 mol / l THF solution of y) was investigated. As a result of investigating under the same conditions as in Example 9 except that the sample weight was 23 mg, the entire amount was evaporated, and the time required for evaporation was 85 seconds.

【0033】(実施例11)実施例4と同様にして固体
のCa(DPM)2(bpy)を得、これのTHFへの
溶解性とその溶液の揮発性を調べた。室温での溶解性を
調べた結果、THF 1mlに対して、1.3gのCa
(DPM)2(bpy)が溶解した。このときのmol
濃度は1.5mol/lであった。また、このCa(D
PM)2(bpy)の1.5mol/lTHF溶液の揮
発性を調べた。サンプル重量を22mgとした以外は実
施例9と同様の条件で調べた結果、全量が蒸発し、蒸発
に要した時間は75秒であった。
Example 11 Solid Ca (DPM) 2 (bpy) was obtained in the same manner as in Example 4, and the solubility of this in THF and the volatility of the solution were examined. As a result of investigating the solubility at room temperature, 1.3 g of Ca was added to 1 ml of THF.
(DPM) 2 (bpy) dissolved. Mol at this time
The concentration was 1.5 mol / l. In addition, this Ca (D
The volatility of a 1.5 mol / l THF solution of PM) 2 (bpy) was investigated. As a result of examination under the same conditions as in Example 9 except that the sample weight was 22 mg, the entire amount was evaporated, and the time required for evaporation was 75 seconds.

【0034】(実施例12)実施例1と同様にして固体
のBa(DPM)2(En)を得、これをTHFに溶解
させて1.2mol/lのTHF溶液を調製した。この
溶液をキャリアーガスを用いずに、蒸発器を経由してC
VD装置に供給した。蒸発器の温度を210℃として、
別の系統から酸素ガスを流量1000cc/minで供
給し、基板温度700℃の条件下で製膜実験を行った。
その結果、30分間にわたって、酸化物の積層速度1.
08〜1.13μmol/Hr・cm2で、安定して製
膜できた。
Example 12 Solid Ba (DPM) 2 (En) was obtained in the same manner as in Example 1, and this was dissolved in THF to prepare a 1.2 mol / l THF solution. This solution was passed through an evaporator to C without using a carrier gas.
It was supplied to a VD device. The temperature of the evaporator is 210 ℃,
Oxygen gas was supplied from another system at a flow rate of 1000 cc / min, and a film forming experiment was performed under the condition of a substrate temperature of 700 ° C.
As a result, the oxide deposition rate of 1.
The film could be stably formed at 08 to 1.13 μmol / Hr · cm 2 .

【0035】(実施例13)実施例10と同様にして、
固体のSr(DPM)2(bpy)を得、これをTHF
に溶解させて1.1mol/lのTHF溶液を調製し
た。この溶液を用いて実施例12と同様の条件下で製膜
実験を行った結果、30分間にわたって、酸化物の積層
速度1.21〜1.24μmol/Hr・cm2で、安
定して製膜できた。
(Embodiment 13) In the same manner as in Embodiment 10,
Solid Sr (DPM) 2 (bpy) is obtained, which is THF
To prepare a 1.1 mol / l THF solution. As a result of performing a film formation experiment using this solution under the same conditions as in Example 12, a stable film formation was performed for 30 minutes at an oxide stacking rate of 1.21 to 1.24 μmol / Hr · cm 2. did it.

【0036】(実施例14)実施例4と同様にして、固
体のCa(DPM)2(bpy)を得、これをTHFに
溶解させて1.1mol/lのTHF溶液を調製した。
この溶液を用いて実施例12と同様の条件下で製膜実験
を行った結果、30分間にわたって、酸化物の積層速度
1.41〜1.45μmol/Hr・cm2で、安定し
て製膜できた。
Example 14 In the same manner as in Example 4, solid Ca (DPM) 2 (bpy) was obtained and dissolved in THF to prepare a 1.1 mol / l THF solution.
As a result of performing a film formation experiment using this solution under the same conditions as in Example 12, a stable film formation was carried out for 30 minutes at an oxide stacking rate of 1.41 to 1.45 μmol / Hr · cm 2. did it.

【0037】(実施例15)上記実施例3と同様にして
固体のBa(DPM)2(THF)2を得た。得られたB
a(DPM)2(THF)2 20.3gと、Y(DP
M)3 10.0gおよびCu(DPM)2 20.2g
をTHFに溶解させて全量を100mlとした。この混
合溶液を、単一の蒸発器を経由してCVD装置に供給
し、Y−B−C系の超電導体薄膜を形成することができ
た。
Example 15 Solid Ba (DPM) 2 (THF) 2 was obtained in the same manner as in Example 3 above. Obtained B
a (DPM) 2 (THF) 2 20.3 g and Y (DP
M) 3 10.0g and Cu (DPM) 2 20.2g
Was dissolved in THF to a total volume of 100 ml. This mixed solution was supplied to a CVD device via a single evaporator, and a Y-B-C based superconductor thin film could be formed.

【0038】(比較例1)Ba(DPM)2 5.0g
を、その保存状態から取り出し、直ちに熱重量分析によ
り揮発性を調べた。サンプル量;13mg、昇温速度;1
0℃/min、Arガス流量;100cc/minとし
て、500℃まで加熱したところ、94%が揮発し、6
%が残渣として残った。さらにBa(DPM)2を、大
気中(室温;22℃、湿度;66%)に1時間放置し、
上記と同様にして熱重量分析を行ったところ、75%が
揮発し、25%が残渣として残った。
Comparative Example 1 5.0 g of Ba (DPM) 2
Was taken out of the storage state and immediately examined for volatility by thermogravimetric analysis. Sample amount: 13 mg, heating rate: 1
When heated to 500 ° C. at 0 ° C./min and Ar gas flow rate of 100 cc / min, 94% was volatilized, and 6
% Remained as a residue. Further, leave Ba (DPM) 2 in the atmosphere (room temperature; 22 ° C., humidity; 66%) for 1 hour,
When thermogravimetric analysis was performed in the same manner as above, 75% was volatilized and 25% remained as a residue.

【0039】(比較例2)Ca(DPM)2 5.0g
を、その保存状態から取り出し、直ちに熱重量分析によ
り揮発性を調べた。サンプル量;13mg、昇温速度;1
0℃/min、Arガス流量;100cc/minとし
て、500℃まで加熱したところ、100%が揮発し、
残渣は残らなかった。さらにCa(DPM)2を、大気
中(室温;22℃、湿度;66%)に1時間放置し、上
記と同様にして熱重量分析を行ったところ、89%が揮
発し、11%が残渣として残った。
Comparative Example 2 5.0 g of Ca (DPM) 2
Was taken out of the storage state and immediately examined for volatility by thermogravimetric analysis. Sample amount: 13 mg, heating rate: 1
When heated to 500 ° C. at 0 ° C./min, Ar gas flow rate; 100 cc / min, 100% volatilizes,
No residue remained. Further, Ca (DPM) 2 was allowed to stand in the atmosphere (room temperature; 22 ° C., humidity; 66%) for 1 hour, and thermogravimetric analysis was performed in the same manner as above. 89% volatilized and 11% remained as a residue. Remained as.

【0040】(比較例3)原料として固体のBa(DP
M)2を用い、通常のCVD法によって、製膜を試みた
が、製膜状態が不安定で、実質的に積層速度は測定不能
であった。
(Comparative Example 3) As a raw material, solid Ba (DP
An attempt was made to form a film by the ordinary CVD method using M) 2 , but the state of the formed film was unstable, and the stacking speed was substantially unmeasurable.

【0041】(比較例4)原料として固体のCa(DP
M)2を用い、通常のCVD法によって製膜を試みたと
ころ、積層速度は0.29〜0.35μmol/Hr・
cm2であった。
(Comparative Example 4) Solid Ca (DP
An attempt was made to form a film by the ordinary CVD method using M) 2 , and the stacking rate was 0.29 to 0.35 μmol / Hr ·
It was cm 2 .

【0042】(比較例5)Ba(DPM)2の種々の有
機溶媒への溶解性およびその溶液の揮発性について調べ
た。実施例9と同様の溶媒を用い、これらの各溶媒に対
するBa(DPM)2の溶解性を調べた結果、いずれも
実施例9で得られたBa(DPM)2(En)の溶解性
に比べて極端に低いものであった。特に、THF 1m
lに溶けるBa(DPM)2の量は0.5gが限界であ
り、溶質の量が0.5gに近づくと溶液の粘度が上が
り、、0.5gを越えると未溶解の粉末が残るのが認め
られた。この限界濃度をmol濃度で表すと0.67m
ol/lであった。また、Ba(DPM)2の0.67
mol/l THF溶液の揮発性を調べた。サンプル重
量を22mgとした以外は実施例9と同様の条件で調べ
た結果、全量が蒸発するのに105秒を要した。
Comparative Example 5 The solubility of Ba (DPM) 2 in various organic solvents and the volatility of the solution were examined. As a result of investigating the solubility of Ba (DPM) 2 in each of these solvents using the same solvents as in Example 9, as compared with the solubility of Ba (DPM) 2 (En) obtained in Example 9 It was extremely low. Especially, THF 1m
The amount of Ba (DPM) 2 that can be dissolved in 1 is limited to 0.5 g. When the amount of solute approaches 0.5 g, the viscosity of the solution increases, and when it exceeds 0.5 g, undissolved powder remains. Admitted. When this limit concentration is expressed by mol concentration, it is 0.67 m.
It was ol / l. Also, Ba (DPM) 2 of 0.67
The volatility of the mol / l THF solution was investigated. As a result of examination under the same conditions as in Example 9 except that the sample weight was 22 mg, it took 105 seconds for the entire amount to evaporate.

【0043】(比較例6)Sr(DPM)2のTHFに
対する溶解性とその溶液の揮発性を調べた。溶解性につ
いては0.72mol/lが限界濃度であった。またS
r(DPM)2の0.72mol/l THF溶液の揮
発性を調べた。サンプル重量を18mgとした以外は実
施例9と同様にして調べたところ、全量が蒸発するのに
100秒を要した。
Comparative Example 6 The solubility of Sr (DPM) 2 in THF and the volatility of the solution were examined. Regarding solubility, the limit concentration was 0.72 mol / l. Also S
The volatility of a 0.72 mol / l THF solution of r (DPM) 2 was investigated. When examined in the same manner as in Example 9 except that the sample weight was 18 mg, it took 100 seconds for the entire amount to evaporate.

【0044】(比較例7)Ca(DPM)2のTHFに
対する溶解性とその溶液の揮発性を調べた。溶解性につ
いては0.9mol/lが限界濃度であった。またCa
(DPM)2の0.9mol/l THF溶液の揮発性
を調べた。サンプル重量を20mgとした以外は実施例
9と同様にして調べたところ、全量が蒸発するのに85
秒を要した。
Comparative Example 7 The solubility of Ca (DPM) 2 in THF and the volatility of the solution were examined. Regarding solubility, the limit concentration was 0.9 mol / l. Also Ca
The volatility of a 0.9 mol / l THF solution of (DPM) 2 was investigated. When examined in the same manner as in Example 9 except that the sample weight was 20 mg, it was found that 85
It took seconds.

【0045】以上、実施例1〜4および比較例1〜2の
結果より、固体のBa(DPM)2やCa(DPM)
2は、空気中に1時間程度放置すると、その揮発性が低
下し、変質、劣化が認められた。これに対して、Ba
(DPM)2やCa(DPM)2を、En、THF、bp
yなどで6配位化して得られる固体は、大気中に放置し
てもその揮発性は変化せず、保存安定性に優れることが
認められた。また、上記実施例5〜7および比較例3の
結果より、Ba(DPM)2をEn、THF、bpyな
どで6配位化することによって、これを用いてCVD法
により酸化物膜を安定して製膜できることが認められ
た。一方、実施例8および比較例4の結果より、Ca
(DPM)2をbpyで6配位化することによって、こ
れを用いてCVD法により酸化物膜を安定して製膜でき
るとともに、その製膜速度を増大できることが認められ
た。
From the results of Examples 1 to 4 and Comparative Examples 1 and 2, solid Ba (DPM) 2 and Ca (DPM) were obtained.
When No. 2 was left in the air for about 1 hour, its volatility decreased, and alteration and deterioration were observed. On the other hand, Ba
(DPM) 2 and Ca (DPM) 2 are added to En, THF, bp
It was confirmed that the solid obtained by hexacoordinating with y or the like did not change its volatility even when left in the air and was excellent in storage stability. Further, from the results of Examples 5 to 7 and Comparative Example 3 described above, Ba (DPM) 2 was hexacoordinated with En, THF, bpy, etc. to stabilize the oxide film by the CVD method using this. It was confirmed that the film could be formed by On the other hand, from the results of Example 8 and Comparative Example 4, Ca
It was found that by coordinating (DPM) 2 with 6 by bpy, an oxide film can be stably formed by the CVD method using this and the film forming rate can be increased.

【0046】また、実施例9ないし11、および比較例
5ないし7の結果より、Ba(DPM)2、Sr(DP
M)2、Ca(DPM)2を、Enやbpyによって6配
位化することによって、有機溶媒への溶解性およびその
溶液の揮発性が著しく向上することが認められた。さら
に、実施例12ないし14の結果より、これらの有機金
属錯体を溶媒に溶解させた溶液を用いて、CVD法によ
り酸化物膜を安定して製膜できることが認められた。ま
た、実施例15の結果より、複数種の有機金属化合物を
同一の溶媒に溶解せしめて混合溶液とすることによっ
て、CVD法によって複合酸化物である超電導体薄膜を
作成する際に、単一の気化装置によって製膜できること
が認められた。
From the results of Examples 9 to 11 and Comparative Examples 5 to 7, Ba (DPM) 2 , Sr (DP
It was found that the hexacoordination of M) 2 and Ca (DPM) 2 with En or bpy markedly improves the solubility in an organic solvent and the volatility of the solution. Furthermore, from the results of Examples 12 to 14, it was confirmed that the oxide film can be stably formed by the CVD method using the solution prepared by dissolving these organometallic complexes in the solvent. Further, from the results of Example 15, by dissolving a plurality of kinds of organometallic compounds in the same solvent to form a mixed solution, a single superconducting thin film, which is a composite oxide, is formed by the CVD method. It was confirmed that the film could be formed by the vaporizer.

【0047】[0047]

【発明の効果】以上説明したように本発明の化学気相用
析出用の有機金属錯体はβ−ジケトネート金属錯体に、
求核性化合物を配位させてなるものである。また本発明
の化学気相用析出用の有機金属錯体溶液は、β−ジケト
ネート金属錯体に、求核性化合物を配位させて得られる
有機金属錯体の少なくとも1種を、溶媒に溶解してなる
ものである。
As described above, the organometallic complex for chemical vapor deposition of the present invention is a β-diketonate metal complex,
It is formed by coordinating a nucleophilic compound. Moreover, the organometallic complex solution for chemical vapor deposition of the present invention is prepared by dissolving at least one organometallic complex obtained by coordinating a nucleophilic compound with a β-diketonate metal complex in a solvent. It is a thing.

【0048】したがって、β−ジケトネート金属錯体を
用いて、固体状態で保存安定性に優れ、信頼性に富む有
機金属錯体が得られる。この有機金属錯体をCVD法で
超電導体や誘電体等を製造する際に、原料として好適に
用いることができ、CVD法における原料操作性を容易
にするとともに、プロセスの安定化を図ることができ、
生産性、製品品質を向上せしめることができる。また、
高濃度の溶液とすることができるので、CVD法におけ
る製造効率を向上させることができ、コストの低減にも
つながる。さらに、原料となる複数種の有機金属化合物
を同一の溶液に溶解させ、この溶液を原料として用いる
ことができ、CVD法における気化装置の単一化等、工
程の簡略化を図ることができるとともに、生産性および
製品品質を向上せしめることができる。
Therefore, by using the β-diketonate metal complex, an organometallic complex having excellent storage stability in the solid state and high reliability can be obtained. This organometallic complex can be preferably used as a raw material when manufacturing a superconductor, a dielectric or the like by the CVD method, and the operability of the raw material in the CVD method can be facilitated and the process can be stabilized. ,
Productivity and product quality can be improved. Also,
Since a high-concentration solution can be used, the manufacturing efficiency in the CVD method can be improved, and the cost can be reduced. Furthermore, a plurality of kinds of organometallic compounds as raw materials can be dissolved in the same solution and this solution can be used as a raw material, and the process can be simplified, such as unifying the vaporizer in the CVD method. Can improve productivity and product quality.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 β−ジケトネート金属錯体に、求核性化
合物を配位させたことを特徴とする化学気相析出用の有
機金属錯体。
1. An organometallic complex for chemical vapor deposition, comprising a nucleophilic compound coordinated to a β-diketonate metal complex.
【請求項2】 アルカリ土類金属のβ−ジケトネート金
属錯体を、求核性化合物によって6配位化したことを特
徴とする請求項1記載の化学気相析出用の有機金属錯
体。
2. The organometallic complex for chemical vapor deposition according to claim 1, wherein the β-diketonate metal complex of an alkaline earth metal is hexacoordinated with a nucleophilic compound.
【請求項3】 求核性化合物として、酸塩基両性を示す
両性有機化合物であって親プロトン性を有する有機化合
物を用いたことを特徴とする請求項1または2のいずれ
かに記載の化学気相析出用の有機金属錯体。
3. The chemical compound according to claim 1, wherein the nucleophilic compound is an amphoteric organic compound exhibiting acid-base amphoteric property and having an aprotic property. Organometallic complex for phase precipitation.
【請求項4】 求核性化合物として、プロトンを放出す
る性質がほとんどない非プロトン性有機化合物であって
親プロトン性を有する有機化合物を用いたことを特徴と
する請求項1または2のいずれかに記載の化学気相析出
用の有機金属錯体。
4. The aprotic organic compound having almost no proton-releasing property, which is an organic compound having protic proticity, is used as the nucleophilic compound. An organometallic complex for chemical vapor deposition as described in 1.
【請求項5】 β−ジケトネート金属錯体に、求核性化
合物を配位させて得られる有機金属錯体の少なくとも1
種を、溶媒に溶解してなることを特徴とする化学気相析
出用の有機金属錯体溶液。
5. At least one of organometallic complexes obtained by coordinating a nucleophilic compound with a β-diketonate metal complex.
An organometallic complex solution for chemical vapor deposition, which comprises dissolving a seed in a solvent.
【請求項6】 アルカリ土類金属のβ−ジケトネート金
属錯体を、求核性化合物によって6配位化して得られる
有機金属錯体の少なくとも1種を、溶媒に溶解してなる
ことを特徴とする請求項5記載の化学気相析出用の有機
金属錯体溶液。
6. A method of dissolving at least one organometallic complex obtained by hexacoordinating a β-diketonate metal complex of an alkaline earth metal with a nucleophilic compound in a solvent. Item 5. An organometallic complex solution for chemical vapor deposition according to Item 5.
【請求項7】 求核性化合物として、酸塩基両性を示す
両性有機化合物であって親プロトン性を有する有機化合
物を用いたことを特徴とする請求項5または6のいずれ
かに記載の化学気相析出用の有機金属錯体溶液。
7. The chemical vapor according to claim 5, wherein the nucleophilic compound is an amphoteric organic compound having an acid-base amphoteric property and having an electrophilic property. Organometallic complex solution for phase precipitation.
【請求項8】 求核性化合物として、プロトンを放出す
る性質がほとんどない非プロトン性有機化合物であって
親プロトン性を有する有機化合物を用いたことを特徴と
する請求項5または6のいずれかに記載の化学気相析出
用の有機金属錯体溶液。
8. The aprotic organic compound having almost no proton-releasing property and having an aprotic property is used as the nucleophilic compound. An organic metal complex solution for chemical vapor deposition as described in 1.
【請求項9】 溶媒として求核性化合物を用いたことを
特徴とする請求項5または6のいずれかに記載の化学気
相析出用の有機金属錯体溶液。
9. The organometallic complex solution for chemical vapor deposition according to claim 5, wherein a nucleophilic compound is used as a solvent.
JP25559291A 1991-10-02 1991-10-02 Organometallic complex solution for chemical vapor deposition Expired - Fee Related JP3488252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25559291A JP3488252B2 (en) 1991-10-02 1991-10-02 Organometallic complex solution for chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25559291A JP3488252B2 (en) 1991-10-02 1991-10-02 Organometallic complex solution for chemical vapor deposition

Publications (2)

Publication Number Publication Date
JPH05132776A true JPH05132776A (en) 1993-05-28
JP3488252B2 JP3488252B2 (en) 2004-01-19

Family

ID=17280872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25559291A Expired - Fee Related JP3488252B2 (en) 1991-10-02 1991-10-02 Organometallic complex solution for chemical vapor deposition

Country Status (1)

Country Link
JP (1) JP3488252B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188271A (en) * 1993-12-28 1995-07-25 Tori Chem Kenkyusho:Kk Metal compound
US6063443A (en) * 1992-09-22 2000-05-16 Mitsubishi Denki Kabushiki Kaisha CVD method for forming oxide-system dielectric thin film
US6103002A (en) * 1993-09-14 2000-08-15 Mitsubishi Denki Kabushiki Kaisha CVD method for forming oxide-system dielectric thin film
US6117487A (en) * 1998-04-02 2000-09-12 Asahi Denka Kogyo Kabushiki Kaisha Process for forming metal oxide film by means of CVD system
WO2000073314A1 (en) * 1999-05-28 2000-12-07 Advanced Technology Materials, Inc. TETRAHYROFURAN-ADDUCTED GROUP II β-DIKETONATE COMPLEXES AS SOURCE REAGENTS FOR CHEMICAL VAPOR DEPOSITION
US6316064B1 (en) 1999-01-25 2001-11-13 Asahi Denka Kogyo Kabushiki Kaisha Process of producing a ruthenium or ruthenium oxide thin film
US6429325B1 (en) 1999-12-27 2002-08-06 Asahi Denka Kogyo Kabushiki Kaisha Copper material for chemical vapor deposition and process for forming thin film using the same
US6605735B2 (en) 2001-09-12 2003-08-12 Tosoh Corporation Ruthenium complex, process for producing the same and process for producing thin film
WO2011080978A1 (en) 2009-12-28 2011-07-07 東ソー株式会社 Ruthenium complex mixture, method for producing same, composition for forming film, ruthenium-containing film and method for producing same
US8507704B2 (en) 2009-09-08 2013-08-13 Air Products And Chemicals, Inc. Liquid composition containing aminoether for deposition of metal-containing films

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504015B2 (en) * 1990-07-06 2003-01-07 Advanced Technology Materials, Inc. Tetrahydrofuran-adducted group II β-diketonate complexes as source reagents for chemical vapor deposition
US6218518B1 (en) 1990-07-06 2001-04-17 Advanced Technology Materials, Inc. Tetrahydrofuran-adducted group II β-diketonate complexes as source reagents for chemical vapor deposition
US6063443A (en) * 1992-09-22 2000-05-16 Mitsubishi Denki Kabushiki Kaisha CVD method for forming oxide-system dielectric thin film
US6212059B1 (en) 1992-09-22 2001-04-03 Mitsubishi Denki Kabushiki Kaisha Capacitor including barium strontium titanate film
US6231658B1 (en) 1992-09-22 2001-05-15 Mitsubishi Denki Kabushiki Kaisha Chemical vapor deposition source for depositing lead zirconate titanate film
US6236559B1 (en) 1992-09-22 2001-05-22 Mitsubishi Denki Kabushiki Kaisha Capacitor
US6103002A (en) * 1993-09-14 2000-08-15 Mitsubishi Denki Kabushiki Kaisha CVD method for forming oxide-system dielectric thin film
JPH07188271A (en) * 1993-12-28 1995-07-25 Tori Chem Kenkyusho:Kk Metal compound
US6117487A (en) * 1998-04-02 2000-09-12 Asahi Denka Kogyo Kabushiki Kaisha Process for forming metal oxide film by means of CVD system
US6316064B1 (en) 1999-01-25 2001-11-13 Asahi Denka Kogyo Kabushiki Kaisha Process of producing a ruthenium or ruthenium oxide thin film
WO2000073314A1 (en) * 1999-05-28 2000-12-07 Advanced Technology Materials, Inc. TETRAHYROFURAN-ADDUCTED GROUP II β-DIKETONATE COMPLEXES AS SOURCE REAGENTS FOR CHEMICAL VAPOR DEPOSITION
JP2003501360A (en) * 1999-05-28 2003-01-14 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Tetrahydrofuran-added Group II .BETA.-diketonate complexes as starting reagents for chemical vapor deposition
US6429325B1 (en) 1999-12-27 2002-08-06 Asahi Denka Kogyo Kabushiki Kaisha Copper material for chemical vapor deposition and process for forming thin film using the same
US6605735B2 (en) 2001-09-12 2003-08-12 Tosoh Corporation Ruthenium complex, process for producing the same and process for producing thin film
US8507704B2 (en) 2009-09-08 2013-08-13 Air Products And Chemicals, Inc. Liquid composition containing aminoether for deposition of metal-containing films
WO2011080978A1 (en) 2009-12-28 2011-07-07 東ソー株式会社 Ruthenium complex mixture, method for producing same, composition for forming film, ruthenium-containing film and method for producing same
US8742153B2 (en) 2009-12-28 2014-06-03 Tosoh Corporation Ruthenium complex mixture, method of producing the same, composition for film formation, ruthenium-containing film, and method of producing the same

Also Published As

Publication number Publication date
JP3488252B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
US5840897A (en) Metal complex source reagents for chemical vapor deposition
US6110529A (en) Method of forming metal films on a substrate by chemical vapor deposition
Pinkas et al. Mechanistic Role of H2O and the Ligand in the Chemical Vapor Deposition of Cu, Cu2O, CuO, and Cu3N from Bis (1, 1, 1, 5, 5, 5-hexafluoropentane-2, 4-dionato) copper (II)
US5820664A (en) Precursor compositions for chemical vapor deposition, and ligand exchange resistant metal-organic precursor solutions comprising same
US8299286B2 (en) Source reagent compositions and method for forming metal films on a substrate by chemical vapor deposition
US6218518B1 (en) Tetrahydrofuran-adducted group II β-diketonate complexes as source reagents for chemical vapor deposition
KR20100084182A (en) Solution based lanthanum precursors for atomic layer deposition
JP2001521940A (en) Anhydrous mononuclear tris (β-diketonate) bismuth composition for depositing bismuth-containing films and method of making the composition
JPH05132776A (en) Organometallic complex for chemical vapor deposition and solution of the complex
US6669990B2 (en) Atomic layer deposition method using a novel group IV metal precursor
JP2004507551A5 (en)
WO1989007666A1 (en) Method of forming superconducting materials
JP5214191B2 (en) Thin film forming raw material and thin film manufacturing method
TWI458713B (en) Volatile imidazoles and group 2 imidazole based metal precursors
JP3191975B2 (en) Raw materials for forming dielectric films of titanium-containing composite oxides by chemical vapor deposition
JP3193411B2 (en) Method of storing organometallic compound for chemical vapor deposition, and organometallic compound solution for chemical vapor deposition
Senzaki et al. Chemical vapor deposition of thin films of ruthenium and formation of an unexpected byproduct using hexafluoro-2-butynetetracarbonylruthenium (0)
JP3505192B2 (en) Composition for thin film formation by chemical vapor deposition
JP3457349B2 (en) Composition for film formation by chemical vapor deposition
KR100497314B1 (en) Metal alkoxide compounds and preparing method thereof
JP3787125B2 (en) Preparation of high purity β-diketonate complexes of alkaline earth metals
KR100298129B1 (en) PROCESS FOR THE PREPARATION OF (Ba, Sr)TiO3 THIN LAYER
JPH10324970A (en) Raw material for cvd and film-forming method using the same
JP3229352B2 (en) Method for producing β-diketonate metal complex
JPH11297680A (en) Solution for thin film formation and formation of thin film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010821

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees