JPH05132309A - Compound oxide sol and its production - Google Patents

Compound oxide sol and its production

Info

Publication number
JPH05132309A
JPH05132309A JP4091650A JP9165092A JPH05132309A JP H05132309 A JPH05132309 A JP H05132309A JP 4091650 A JP4091650 A JP 4091650A JP 9165092 A JP9165092 A JP 9165092A JP H05132309 A JPH05132309 A JP H05132309A
Authority
JP
Japan
Prior art keywords
sol
particles
aqueous solution
silica
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4091650A
Other languages
Japanese (ja)
Other versions
JP3729205B2 (en
Inventor
Hiroyasu Nishida
広泰 西田
Michio Komatsu
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP09165092A priority Critical patent/JP3729205B2/en
Publication of JPH05132309A publication Critical patent/JPH05132309A/en
Application granted granted Critical
Publication of JP3729205B2 publication Critical patent/JP3729205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols

Abstract

PURPOSE:To obtain a compound oxide sol having high specific surface area of dispersed fine particles and a great number of pores in the interior. CONSTITUTION:A sol comprising dispersed fine particles of a compound oxide composed of silica and an inorganic oxide except silica. An average particle diameter (Dp) and a specific surface area (S) of the fine particles satisfy the inequality S(m<2>/g)>=3,000/Dp (nm). The sol is produced by forming colloidal particles in an aqueous solution of an alkali having pH >=10 or seed particle dispersion having PH >=10 without controlling pH.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリカと他の無機酸化
物とからなる複合酸化物ゾルおよびその製造法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite oxide sol composed of silica and other inorganic oxides and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、シリカとアルミナ、ジルコニ
ア等との複合酸化物ゾルは公知であり、種々の触媒原料
等として用いられている。これらのゾルに分散している
複合酸化物粒子は、いずれも粒子内部に殆ど細孔を持た
ない無孔質の粒子であり、その比表面積は小さく、微粒
子の平均粒径をDp(nm)で表した場合、比表面積S(m2
/g)の値は、3000/Dp(nm)未満である。
2. Description of the Related Art Conventionally, composite oxide sols of silica and alumina, zirconia, etc. have been known and used as various catalyst raw materials. The composite oxide particles dispersed in these sols are all non-porous particles having almost no pores inside the particles, their specific surface areas are small, and the average particle diameter of the particles is Dp (nm). When expressed, the specific surface area S (m 2
The value of / g) is less than 3000 / Dp (nm).

【0003】また、例えば、特公昭59−17047号
公報には、触媒組成物の前駆体としての無定形アルミノ
シリケートゾルの製造法が開示されており、同公報記載
の製造法によれば、ヒールゾル溶液のpHを厳密に制御
して粒子成長を行い、3〜90nmの無孔質のコロイド粒
子が分散したゾルを得、次いで、この無孔質粒子のゾル
を乾燥させ、多孔質の集塊粒子を構成することによっ
て、大きな比表面積の粉末を得ることに成功している。
Further, for example, Japanese Examined Patent Publication No. 59-17047 discloses a method for producing an amorphous aluminosilicate sol as a precursor of a catalyst composition. According to the method described in the publication, heel sol is disclosed. Particle growth is performed by strictly controlling the pH of the solution to obtain a sol in which non-porous colloidal particles of 3 to 90 nm are dispersed, and then the sol of non-porous particles is dried to form porous agglomerated particles. By configuring the above, it has succeeded in obtaining a powder having a large specific surface area.

【0004】[0004]

【発明の目的】しかしながら、上記製造方法で得られる
ゾルのコロイド粒子自体は無孔質であるから、その複合
酸化物ゾルの用途も制限されたものとならざるを得な
い。即ち、本発明は比表面積が大きく、多孔質の微粒子
が分散した新規な複合酸化物ゾル、およびその製造法を
提供することを目的とする。
However, since the colloidal particles themselves of the sol obtained by the above-mentioned production method are non-porous, the use of the composite oxide sol must be limited. That is, an object of the present invention is to provide a novel complex oxide sol having a large specific surface area and porous fine particles dispersed therein, and a method for producing the same.

【0005】[0005]

【発明の概要】本発明の複合酸化物ゾルは、シリカとシ
リカ以外の無機酸化物の1種または2種以上とからなる
複合酸化物の微粒子が分散したゾルであって、該微粒子
の平均粒径(Dp)と比表面積(S)が、不等式 S(m2/g)≧3000/ Dp(nm) を満足するものである。また、本発明の複合酸化物ゾル
の製造法は、アルカリ金属、アンモニウムまたは有機塩
基の珪酸塩と、アルカリ可溶の無機化合物とを、pH1
0以上のアルカリ水溶液中に同時に添加し、この反応液
のpHを制御せずにコロイド粒子を生成させるものであ
る。
SUMMARY OF THE INVENTION The complex oxide sol of the present invention is a sol in which fine particles of a complex oxide consisting of silica and one or more kinds of inorganic oxides other than silica are dispersed. The diameter (Dp) and the specific surface area (S) satisfy the inequality S (m 2 / g) ≧ 3000 / Dp (nm). In addition, in the method for producing the composite oxide sol of the present invention, a silicate of an alkali metal, ammonium or an organic base and an alkali-soluble inorganic compound are added at pH 1
It is added at the same time to an alkaline aqueous solution of 0 or more to generate colloidal particles without controlling the pH of the reaction solution.

【0006】[0006]

【発明の具体的説明】本発明の複合酸化物は、シリカと
シリカ以外の無機酸化物とからなる複合酸化物であっ
て、それぞれの酸化物の混合物ではない。無機酸化物と
しては、周期表の3A族、3B族、4A族、4B族、5
A族、5B族、6A族の金属または非金属の元素の酸化
物を挙げることができ、具体的にはAl2 3 、B2
3 、TiO2 、ZrO2 、SnO2 、Ce2 3 、P2
5 、Sb2 3 、MoO3 、WO3 等がある。
DETAILED DESCRIPTION OF THE INVENTION The composite oxide of the present invention is a composite oxide composed of silica and an inorganic oxide other than silica, and is not a mixture of the respective oxides. As the inorganic oxide, there are 3A group, 3B group, 4A group, 4B group and 5 of the periodic table.
Examples thereof include oxides of metal or non-metal elements of Group A, Group 5B and Group 6A, and specifically, Al 2 O 3 and B 2 O.
3 , TiO 2 , ZrO 2 , SnO 2 , Ce 2 O 3 , P 2
There are O 5 , Sb 2 O 3 , MoO 3 , WO 3 and the like.

【0007】上記無機酸化物に対するシリカの複合割合
(モル比)は、0.5乃至20の範囲が適当である。こ
の比が20を越えると、後記する微粒子の比表面積が小
さくなり、一方、0.5未満では、微粒子の比表面積は
殆ど増加しなくなる。また、ゾルの安定性も劣ってく
る。
The composite ratio (molar ratio) of silica to the above-mentioned inorganic oxide is suitably in the range of 0.5 to 20. If this ratio exceeds 20, the specific surface area of the fine particles to be described later becomes small, while if it is less than 0.5, the specific surface area of the fine particles hardly increases. Also, the stability of the sol becomes poor.

【0008】本発明では、ゾル中に分散した複合酸化物
の微粒子の比表面積S(m2/g)が、大きいことが特徴で
あり、具体的には微粒子の平均粒径をDp(nm)で表した
場合、不等式 S(m2/g)≧3000/ Dp(nm) を満足する微粒子が分散したゾルである。
The present invention is characterized in that the specific surface area S (m 2 / g) of the fine particles of the composite oxide dispersed in the sol is large. Specifically, the average particle diameter of the fine particles is Dp (nm). In the case of, the sol is a dispersion of fine particles satisfying the inequality S (m 2 / g) ≧ 3000 / Dp (nm).

【0009】次に、複合酸化物ゾルの製造法について説
明する。シリカの原料としては、アルカリ金属、アンモ
ニウムまたは有機塩基の珪酸塩を用いる。アルカリ金属
の珪酸塩としては、珪酸ナトリウム(水ガラス)や珪酸
カリウムが用いられる。有機塩基としては、テトラエチ
ルアンモニウム塩などの第4級アンモニウム塩、モノエ
タノールアミン、ジエタノールアミン、トリエタノール
アミンなどのアミン類を挙げることができ、アンモニウ
ムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアン
モニア、第4級アンモニウム水酸化物、アミン化合物な
どを添加したアルカリ性溶液も含まれる。
Next, a method for producing the composite oxide sol will be described. As a raw material of silica, a silicate of alkali metal, ammonium or organic base is used. As the alkali metal silicate, sodium silicate (water glass) or potassium silicate is used. Examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, amines such as monoethanolamine, diethanolamine and triethanolamine. For the ammonium silicate or the organic base silicate, a silicic acid solution is used. In addition, an alkaline solution obtained by adding ammonia, a quaternary ammonium hydroxide, an amine compound or the like is also included.

【0010】また、無機酸化物の原料としては、アルカ
リ可溶の無機化合物を用い、前記した金属または非金属
のオキソ酸のアルカリ金属塩またはアルカリ土類金属
塩、アンモニウム塩、第4級アンモニウム塩を挙げるこ
とができ、より具体的には、アルミン酸ナトリウム、四
硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチ
モン酸カリウム、錫酸カリウム、アルミノ珪酸ナトリウ
ム、モリブデン酸ナトリウム、硝酸セリウムアンモニウ
ム、燐酸ナトリウムが適当である。
As a raw material of the inorganic oxide, an alkali-soluble inorganic compound is used, and the alkali metal salt or alkaline earth metal salt, ammonium salt, or quaternary ammonium salt of the above-mentioned metal or nonmetal oxo acid is used. More specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, ammonium cerium nitrate, and sodium phosphate are more suitable. .

【0011】複合酸化物ゾルを生成するには、予め、前
記化合物のアルカリ水溶液を個別に調製するか、また
は、混合水溶液を調製しておき、この水溶液を目的とす
る複合酸化物の複合割合に応じて、pH10以上のアル
カリ水溶液中に撹拌しながら徐々に添加する。これらの
水溶液の添加と同時に同溶液のpH値は変化するが、本
発明ではこのpH値を所定の範囲に制御するような操作
は特に必要ない。水溶液は、最終的に、無機酸化物の種
類とその複合割合とによって定まるpH値に落ち着く。
pHを所定の範囲に制御するとき、例えば酸を添加する
ことがあるが、この場合、添加された酸により複合酸化
物の原料の金属の塩が生成し、このためゾルの安定性が
低下することがある。なお、このときの水溶液の添加速
度には格別の制限はない。
In order to produce a complex oxide sol, an alkaline aqueous solution of the above compound is prepared individually or a mixed aqueous solution is prepared in advance, and this aqueous solution is adjusted to a complex ratio of the desired complex oxide. Correspondingly, it is gradually added to the alkaline aqueous solution having a pH of 10 or more while stirring. Although the pH value of the aqueous solution changes at the same time as the addition of these aqueous solutions, the present invention does not particularly require an operation for controlling the pH value within a predetermined range. The aqueous solution finally settles to a pH value determined by the type of inorganic oxide and its composite ratio.
When the pH is controlled within a predetermined range, for example, an acid may be added. In this case, the added acid forms a metal salt as a raw material of the composite oxide, which reduces the stability of the sol. Sometimes. There is no particular limitation on the addition rate of the aqueous solution at this time.

【0012】シード粒子の分散液を出発原料として、本
発明の複合酸化物ゾルを製造することも可能である。こ
の場合には、シード粒子として、SiO2 、Al
2 3 、TiO2 またはZrO2 等の無機酸化物または
これらの複合酸化物の微粒子が用いられ、通常、これら
のゾルを用いることができる。勿論、前記本発明の製造
法によって得られたゾルをシード粒子分散液としてもよ
い。
It is also possible to produce the composite oxide sol of the present invention by using a dispersion liquid of seed particles as a starting material. In this case, as seed particles, SiO 2 , Al
Fine particles of an inorganic oxide such as 2 O 3 , TiO 2 or ZrO 2 or a composite oxide thereof are used, and normally, a sol of these can be used. Of course, the sol obtained by the production method of the present invention may be used as the seed particle dispersion liquid.

【0013】このpH10以上に調整したシード粒子分
散液中に前記化合物の水溶液を、上記したアルカリ水溶
液中に添加する方法と同様にして、撹拌しながら添加す
る。この場合も、分散液のpH制御は行わず成り行きに
任せる。このように、シード粒子を核として複合酸化物
粒子を成長させると、成長粒子の粒径コントロールが容
易であり、粒度の揃ったものを得ることができる。
An aqueous solution of the above compound is added to the seed particle dispersion liquid adjusted to pH 10 or above with stirring in the same manner as the above-mentioned method of adding to the alkaline aqueous solution. In this case as well, the pH of the dispersion liquid is not controlled and left as it is. In this way, when the composite oxide particles are grown with the seed particles as the nuclei, it is easy to control the particle size of the grown particles and it is possible to obtain particles having a uniform particle size.

【0014】上記したシリカ原料および無機酸化物原料
はアルカリ側で高い溶解度をもっている。しかしなが
ら、この溶解度の大きいpH領域で両者を混合すると、
珪酸イオンおよびアルミン酸イオンなどのオキソ酸イオ
ンの溶解度が低下し、これらの複合物が析出してコロイ
ド粒子に成長したり、あるいは、シード粒子上に析出し
て粒子成長が起こる。従って、コロイド粒子の析出、成
長に際して、従来法のようなpH制御は不要となる。ま
た、このようにして得られたゾルのコロイド粒子は従来
法によるコロイド粒子と異なり、大きな比表面積をもっ
ており、従って、多孔質となる。
The above-mentioned silica raw material and inorganic oxide raw material have high solubility on the alkaline side. However, if both are mixed in the pH range where the solubility is high,
The solubilities of oxo acid ions such as silicate ions and aluminate ions decrease, and these composites precipitate and grow into colloidal particles, or precipitate on seed particles to cause particle growth. Therefore, when the colloidal particles are deposited and grown, it is not necessary to control pH as in the conventional method. In addition, the colloidal particles of the sol thus obtained have a large specific surface area, unlike the colloidal particles obtained by the conventional method, and are therefore porous.

【0015】上記の微粒子が分散したゾルを濃縮する場
合には、予め分散液中のアルカリ金属イオン、アルカリ
土類金属イオンおよびアンモニウムイオン等の一部を除
去した後に濃縮したほうが、複合酸化物微粒子が分散し
た安定な濃縮ゾルが得られる。除去方法としては、限外
濾過等の公知の方法を採用する。
In the case of concentrating the sol in which the above-mentioned fine particles are dispersed, it is better to remove some of the alkali metal ions, alkaline earth metal ions, ammonium ions and the like in the dispersion liquid in advance and then concentrate the mixture. A stable concentrated sol in which is dispersed is obtained. As a removal method, a known method such as ultrafiltration is adopted.

【0016】[0016]

【実施例】【Example】

〔実施例1〕平均粒径5nm、SiO2 濃度20重量%の
シリカゾル20gと純水380gの混合物を80℃に加
温した。この反応母液のpHは10.5であり、同母液
にSiO2 として1.5重量%の珪酸ナトリウム水溶液
1800gとAl2 3 として0.5重量%のアルミン
酸ナトリウム水溶液1800gとを同時に添加した。添
加速度は5ml/分であり、その間、反応液の温度を80
℃に保持した。反応液のpHは添加直後、12.5に上
昇し、その後、殆ど変化しなかった。添加終了後、反応
液を室温まで冷却し、SiO2 ・Al2 3 複合酸化物
ゾルを得た。
Example 1 A mixture of 20 g of silica sol having an average particle size of 5 nm and a SiO 2 concentration of 20% by weight and 380 g of pure water was heated to 80 ° C. The pH of this reaction mother liquor was 10.5, and 1800 g of 1.5 wt% sodium silicate aqueous solution as SiO 2 and 1800 g of 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were simultaneously added to the mother liquor. . The addition rate was 5 ml / min, during which the temperature of the reaction solution was 80
Hold at 0 ° C. Immediately after the addition, the pH of the reaction solution rose to 12.5, and thereafter hardly changed. After the addition was completed, the reaction solution was cooled to room temperature to obtain a SiO 2 · Al 2 O 3 composite oxide sol.

【0017】この複合酸化物ゾル中に分散したコロイド
粒子の比表面積と平均粒径を表1に示す。なお、比表面
積はタイトレーション法〔Analytical Chemistry Vol.2
8,No.12(1956) 〕に基づいて測定し、平均粒径は動的光
散乱法により測定した。
Table 1 shows the specific surface area and average particle diameter of the colloidal particles dispersed in this composite oxide sol. The specific surface area is determined by the titration method [Analytical Chemistry Vol.
8, No. 12 (1956)], and the average particle size was measured by the dynamic light scattering method.

【0018】〔実施例2〕実施例1のアルミン酸ナトリ
ウム水溶液の代わりに、B2 3 として0.5重量%の
四硼酸ナトリウム水溶液1800gを用いた以外は実施
例1と同様にして、SiO2 ・B23 複合酸化物ゾル
を得た。
Example 2 The procedure of Example 1 was repeated except that 1800 g of a 0.5 wt% sodium tetraborate aqueous solution as B 2 O 3 was used instead of the sodium aluminate aqueous solution of Example 1. A 2 · B 2 O 3 composite oxide sol was obtained.

【0019】〔実施例3〕実施例1のアルミン酸ナトリ
ウム水溶液の代わりに、ZrO2 として0.5重量%の
炭酸ジルコニルアンモニウム水溶液1800gを用いた
以外は実施例1と同様にして、SiO2 ・ZrO2 複合
酸化物ゾルを得た。
[0019] Instead of an aqueous sodium aluminate solution in Example 3 Example 1, except for using as the ZrO 2 of 0.5 wt% ammonium zirconyl carbonate solution 1800g in the same manner as in Example 1, SiO 2 · A ZrO 2 composite oxide sol was obtained.

【0020】〔実施例4〕実施例1のアルミン酸ナトリ
ウム水溶液の代わりに、SnO2 として0.5重量%の
錫酸カリウム水溶液1800gを用いた以外は実施例1
と同様にして、SiO2 ・SnO2 複合酸化物ゾルを得
た。
Example 4 Example 1 was repeated except that 1800 g of a 0.5 wt% potassium stannate aqueous solution as SnO 2 was used in place of the sodium aluminate aqueous solution of Example 1.
A SiO 2 · SnO 2 composite oxide sol was obtained in the same manner as in.

【0021】〔実施例5〕実施例1で用いたものと同じ
反応母液を80℃に加温した後、これにSiO2 として
2.3重量%の珪酸ナトリウム水溶液1200g、Al
2 3 として0.4重量%のアルミン酸ナトリウム水溶
液1200gおよびB2 3 として1.0重量%の四硼
酸ナトリウム水溶液1200gを、添加速度5ml/分で
同時に注加して、SiO2 ・Al2 3 ・B23 複合
酸化物ゾルを得た。
Example 5 The same reaction mother liquor as that used in Example 1 was heated to 80 ° C., and then 1200 g of a 2.3 wt% sodium silicate aqueous solution as SiO 2 and Al were added.
The 2 O 3 as a 0.4 wt% aqueous solution of sodium aluminate 1200g and B 2 O 3 as a 1.0 wt.% Of sodium tetraborate aqueous 1200g, and poured simultaneously at an addition rate 5 ml / min, SiO 2 · Al A 2 O 3 .B 2 O 3 composite oxide sol was obtained.

【0022】〔実施例6〕80℃に加温した0.1重量
%の水酸化ナトリウム水溶液(pH12.5)400g
中に、SiO2 として0.5重量%の珪酸ナトリウム水
溶液1800gとAl2 3 として1.4重量%のアル
ミン酸ナトリウム水溶液1800gとを同時に添加し
た。添加速度は5ml/分であり、その間、反応液の温度
を80℃に保持した。反応液のpHは僅かに変化し、添
加終了時には12.4となった。添加終了後、反応液を
室温まで冷却し、SiO2 ・Al2 3 複合酸化物ゾル
を得た。
Example 6 400 g of 0.1 wt% sodium hydroxide aqueous solution (pH 12.5) heated to 80 ° C.
Then, 1800 g of a 0.5 wt% sodium silicate aqueous solution as SiO 2 and 1800 g of a 1.4 wt% sodium aluminate aqueous solution as Al 2 O 3 were simultaneously added. The addition rate was 5 ml / min, during which the temperature of the reaction solution was maintained at 80 ° C. The pH of the reaction solution changed slightly and reached 12.4 at the end of the addition. After the addition was completed, the reaction solution was cooled to room temperature to obtain a SiO 2 · Al 2 O 3 composite oxide sol.

【0023】〔実施例7〕実施例6の珪酸ナトリウム水
溶液の濃度を3.0重量%に変え、アルミン酸ナトリウ
ム水溶液の濃度を0.3重量%に変えた以外は実施例6
と同様にして、SiO2 ・Al2 3 複合酸化物ゾルを
得た。
[Example 7] Example 6 was repeated except that the concentration of the sodium silicate aqueous solution was changed to 3.0% by weight and the concentration of the sodium aluminate aqueous solution was changed to 0.3% by weight.
In the same manner as described above, a SiO 2 · Al 2 O 3 composite oxide sol was obtained.

【0024】〔実施例8〕珪酸ナトリウム水溶液を陽イ
オン交換樹脂で処理して得られた珪酸液(SiO2 濃度
1.5重量%)にテトラエチルアンモニウムハイドロオ
キサイドを、SiO2 /(C2 5)4 NOHモル比10
の割合で添加したアルカリ水溶液を調製した。実施例1
で用いたものと同じ反応母液に上記アルカリ水溶液18
00gと、Al2 3 として0.5重量%のアルミン酸
ナトリウム水溶液1800gを同時に添加して、SiO
2 ・Al2 3複合酸化物ゾルを得た。添加時の条件は
実施例1と同様である。
Example 8 Tetraethylammonium hydroxide was added to a silicic acid solution (SiO 2 concentration: 1.5% by weight) obtained by treating an aqueous solution of sodium silicate with a cation exchange resin, and SiO 2 / (C 2 H 5 ) 4 NOH molar ratio 10
The alkaline aqueous solution added in the ratio of was prepared. Example 1
In the same reaction mother liquor as that used in
00 g and 1800 g of 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added at the same time to obtain SiO 2
A 2 · Al 2 O 3 composite oxide sol was obtained. The conditions at the time of addition are the same as in Example 1.

【0025】〔実施例9〕テトラエチルアンモニウムハ
イドロオキサイドの代りにアンモニアを用い、SiO2
/NH3 モル比2とした以外は実施例8と同様にしてS
iO2 ・Al2 3 複合酸化物ゾルを得た。
Example 9 Ammonia was used instead of tetraethylammonium hydroxide, and SiO 2
S / S in the same manner as in Example 8 except that the NH 3 molar ratio was changed to 2.
An iO 2 · Al 2 O 3 composite oxide sol was obtained.

【0026】[0026]

【表1】 反応液pH 複合割合 コロイド粒子 初期 終期 (モル比) 比表面積(S) 平均粒径(Dp) S×Dp 実施例1 10.5 12.5 5.1 1100(m2/g) 20(nm) 22000 実施例2 10.5 12.1 3.5 1500 15 22500 実施例3 10.5 12.0 6.2 1000 21 21000 実施例4 10.5 12.4 7.5 1050 40 42000 実施例5 10.5 12.3 2.0 1200 18 21600 実施例6 12.5 12.4 0.6 1150 52 59800 実施例7 12.5 12.0 18.0 500 10 5000 実施例8 10.5 12.3 5.1 1200 12 14400 実施例9 10.5 12.1 5.1 950 10 9500[Table 1] Reaction solution pH composite ratio Colloidal particles Initial stage (molar ratio) Specific surface area (S ) Average particle size (Dp) S × Dp Example 1 10.5 12.5 5.1 1100 (m 2 / g) 20 (nm) 22000 Example 2 10.5 12.1 3.5 1500 15 22500 Example 3 10.5 12.0 6.2 1000 21 21000 Example 4 10.5 12.4 7.5 1050 40 42000 Example 5 10.5 12.3 2.0 1200 18 21600 Example 6 12.5 12.4 0.6 1150 52 59800 Example 7 12.5 12.0 18.0 500 10 5000 Example 8 10.5 12.3 5.1 1200 12 14400 Example 9 10.5 12.1 5.1 950 10 9500

【0027】[0027]

【発明の効果】本発明に係る複合酸化物ゾルは、分散微
粒子の比表面積が大きく、微粒子の内部に多数の細孔を
有している。従って、触媒としての用途以外にも、以下
のような種々の用途に適用することができる。
INDUSTRIAL APPLICABILITY The complex oxide sol according to the present invention has a large specific surface area of dispersed fine particles and has a large number of fine pores inside the fine particles. Therefore, in addition to the use as a catalyst, it can be applied to various uses such as the following.

【0028】(1)バインダー力が大きいので、種々の
耐火物用のバインダーとして用いれば、高強度の成形体
を得ることができ、例えば、精密鋳造用ロストワックス
法のバインダーとして用いれば、強度に優れた型を得る
ことができる。また、セラミックスシート等の無機繊維
のバインダーとして用いれば、引張強度の優れた無機繊
維が得られる。 (2)陽イオン吸着能力が大きいので、排水中のアンモ
ニウムイオンおよび重金属イオンを吸着除去するための
吸着剤や、高分子電解質の固定化剤、または、合成洗剤
に配合されるビルダーとして利用できる。
(1) Since it has a large binder strength, it can be used as a binder for various refractory materials to obtain a high-strength molded article. For example, if it is used as a binder in the lost wax method for precision casting, it will have high strength. An excellent mold can be obtained. When it is used as a binder for inorganic fibers such as ceramic sheets, inorganic fibers having excellent tensile strength can be obtained. (2) Since it has a large ability to adsorb cations, it can be used as an adsorbent for adsorbing and removing ammonium ions and heavy metal ions in waste water, a fixing agent for polymer electrolytes, or a builder compounded in synthetic detergents.

【0029】(3)特に、高アルカリ側で安定であるこ
とから、セメント配合剤や土壌硬化剤としても用いるこ
とができ、土壌硬化剤として用いた場合には、配合量に
よって硬化剤のゲル化速度を調整することが可能にな
る。 (4)更に、多孔質であることから、低屈折率用のフィ
ラーとしたり、コロイド粒子の細孔中に染料や顔料を固
定して色素材料としての利用も可能である。 (5)その他、清酒、ビールの製造過程で使用されるオ
リ下げ剤、クロマトグラフ充填剤、各種プラスチックや
ゴムの充填剤、滑り性向上剤、化粧品配合剤、潤滑剤、
増粘剤、食料品の鮮度保持剤等に有用である。
(3) In particular, since it is stable on the high alkaline side, it can be used also as a cement compounding agent or a soil hardening agent. When it is used as a soil hardening agent, the hardening agent gels depending on the blending amount. It becomes possible to adjust the speed. (4) Furthermore, since it is porous, it can be used as a filler for a low refractive index, or can be used as a coloring material by fixing a dye or pigment in the pores of colloid particles. (5) In addition, a depressant used in the manufacturing process of sake and beer, a chromatographic filler, a filler for various plastics and rubbers, a slipperiness improver, a cosmetic compounding agent, a lubricant,
It is useful as a thickener and a freshness-keeping agent for foods.

【0030】本発明に係る複合酸化物ゾルの製造法は、
反応液のpHコントロールを不要とするものであるか
ら、コロイド粒子を生成させる操作が容易で、製造プロ
セスを簡略化することができる。
The method for producing the complex oxide sol according to the present invention is as follows:
Since it is not necessary to control the pH of the reaction solution, the operation of generating colloidal particles is easy and the manufacturing process can be simplified.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリカとシリカ以外の無機酸化物の1種
または2種以上とからなる複合酸化物の微粒子が分散し
たゾルであって、該微粒子の平均粒径(Dp)と比表面積
(S)が、不等式 S(m2/g)≧3000/ Dp(nm) を満足することを特徴とする複合酸化物ゾル。
1. A sol in which fine particles of a composite oxide comprising silica and one or more kinds of inorganic oxides other than silica are dispersed, wherein the average particle diameter (Dp) and the specific surface area (S ) Satisfies the inequality S (m 2 / g) ≧ 3000 / Dp (nm).
【請求項2】 アルカリ金属、アンモニウムまたは有機
塩基の珪酸塩と、アルカリ可溶の無機化合物とを、pH
10以上のアルカリ水溶液中に同時に添加し、この反応
液のpHを制御せずにコロイド粒子を生成させることを
特徴とする複合酸化物ゾルの製造法。
2. A silicate of an alkali metal, ammonium or an organic base, and an alkali-soluble inorganic compound are mixed in a pH range.
A method for producing a complex oxide sol, which comprises simultaneously adding to 10 or more aqueous alkali solutions to produce colloidal particles without controlling the pH of the reaction solution.
【請求項3】 シード粒子が分散したpH10以上の分
散液中に、アルカリ金属、アンモニウムまたは有機塩基
の珪酸塩と、アルカリ可溶の無機化合物とを同時に添加
し、この分散液のpHを制御せずにシード粒子を核とし
て複合酸化物の粒子成長を行わせることを特徴とする複
合酸化物ゾルの製造法。
3. The pH of the dispersion liquid is controlled by simultaneously adding an alkali metal, ammonium or organic base silicate and an alkali-soluble inorganic compound to a dispersion liquid of pH 10 or more in which seed particles are dispersed. A method for producing a complex oxide sol, characterized in that the complex oxide particles are grown without using seed particles as nuclei.
JP09165092A 1991-03-23 1992-03-17 Composite oxide sol and process for producing the same Expired - Lifetime JP3729205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09165092A JP3729205B2 (en) 1991-03-23 1992-03-17 Composite oxide sol and process for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-83578 1991-03-23
JP8357891 1991-03-23
JP09165092A JP3729205B2 (en) 1991-03-23 1992-03-17 Composite oxide sol and process for producing the same

Publications (2)

Publication Number Publication Date
JPH05132309A true JPH05132309A (en) 1993-05-28
JP3729205B2 JP3729205B2 (en) 2005-12-21

Family

ID=26424617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09165092A Expired - Lifetime JP3729205B2 (en) 1991-03-23 1992-03-17 Composite oxide sol and process for producing the same

Country Status (1)

Country Link
JP (1) JP3729205B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859404A (en) * 1994-08-26 1996-03-05 Catalysts & Chem Ind Co Ltd Antimicrobial inorganic oxide particle
JPH0867505A (en) * 1994-08-26 1996-03-12 Catalysts & Chem Ind Co Ltd Inorganic oxide particle
JPH0920888A (en) * 1995-07-06 1997-01-21 Nissan Chem Ind Ltd Injection agent for ground
JPH10237362A (en) * 1997-02-26 1998-09-08 Catalysts & Chem Ind Co Ltd Electrodeposition coating material and electrodeposition coating
WO2004006873A1 (en) 2002-07-11 2004-01-22 Catalysts & Chmicals Industries Co.,Ltd. Cosmetic
JP2006247460A (en) * 2005-03-08 2006-09-21 Catalysts & Chem Ind Co Ltd Manufacturing method of adsorbent
WO2011155536A1 (en) 2010-06-09 2011-12-15 日揮触媒化成株式会社 Support for protein immobilization, immobilized protein and method for producing same
JP2013508256A (en) * 2010-04-27 2013-03-07 広東省生態環境与土壌研究所 Foliar composite silicon fertilizer used to reduce heavy metal and nitrate content in vegetables and its preparation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859404A (en) * 1994-08-26 1996-03-05 Catalysts & Chem Ind Co Ltd Antimicrobial inorganic oxide particle
JPH0867505A (en) * 1994-08-26 1996-03-12 Catalysts & Chem Ind Co Ltd Inorganic oxide particle
JPH0920888A (en) * 1995-07-06 1997-01-21 Nissan Chem Ind Ltd Injection agent for ground
JPH10237362A (en) * 1997-02-26 1998-09-08 Catalysts & Chem Ind Co Ltd Electrodeposition coating material and electrodeposition coating
WO2004006873A1 (en) 2002-07-11 2004-01-22 Catalysts & Chmicals Industries Co.,Ltd. Cosmetic
JP2006247460A (en) * 2005-03-08 2006-09-21 Catalysts & Chem Ind Co Ltd Manufacturing method of adsorbent
JP2013508256A (en) * 2010-04-27 2013-03-07 広東省生態環境与土壌研究所 Foliar composite silicon fertilizer used to reduce heavy metal and nitrate content in vegetables and its preparation method
WO2011155536A1 (en) 2010-06-09 2011-12-15 日揮触媒化成株式会社 Support for protein immobilization, immobilized protein and method for producing same

Also Published As

Publication number Publication date
JP3729205B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP5334385B2 (en) Production and use of polysilicate particulate material
US5221497A (en) Elongated-shaped silica sol and method for preparing the same
US3652215A (en) Preparation of silica gels
US9234104B2 (en) Composite metal oxide particles and methods of making and using the same
JP2013049620A (en) Method of preparing fumed metal oxide dispersion
JP3463328B2 (en) Method for producing acidic silica sol
JP3729205B2 (en) Composite oxide sol and process for producing the same
JPS61158810A (en) Production of high-purity silica sol
CN110482559A (en) Modified acidic silicasol of a kind of aluminium and its preparation method and application
US9695111B2 (en) Method of producing soluble silicates with organic cations
JP3338720B2 (en) Method for producing composite oxide sol
JP3362793B2 (en) Method for producing silica sol
JPH07291620A (en) Highly hot water-resistant high-silica zeolite and its production
JP3159771B2 (en) Mold material
JP3746308B2 (en) Coating liquid for forming antioxidant coating
KR20020011820A (en) The manufacturing method of silica sol
US3345132A (en) Process of preparing silicic acid in a two-dimensional structure
KR100452960B1 (en) Preparing method of water-soluble high ratio silicates
JPS63162520A (en) Production of synthetic mazzite
JPH0457604B2 (en)
JP2022500344A (en) Manufacturing method of mordenite zeolite with controllable particle size
JP3478395B2 (en) Silica sol and silica powder
JP2535972B2 (en) Method for producing silica sol
JP5483814B2 (en) Colloidal faujasite type zeolite and its synthesis method
JP3478394B2 (en) Silica sol and silica powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7