JPH05131272A - Tig arc welding method for aluminum alloy - Google Patents

Tig arc welding method for aluminum alloy

Info

Publication number
JPH05131272A
JPH05131272A JP16931691A JP16931691A JPH05131272A JP H05131272 A JPH05131272 A JP H05131272A JP 16931691 A JP16931691 A JP 16931691A JP 16931691 A JP16931691 A JP 16931691A JP H05131272 A JPH05131272 A JP H05131272A
Authority
JP
Japan
Prior art keywords
current
welding
ratio
arc welding
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16931691A
Other languages
Japanese (ja)
Other versions
JP3088782B2 (en
Inventor
Kobo Ide
弘法 井手
Yasuhei Yamada
泰平 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Shinmaywa Industries Ltd
Original Assignee
Daihen Corp
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp, Shin Meiva Industry Ltd filed Critical Daihen Corp
Priority to JP16931691A priority Critical patent/JP3088782B2/en
Publication of JPH05131272A publication Critical patent/JPH05131272A/en
Application granted granted Critical
Publication of JP3088782B2 publication Critical patent/JP3088782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

PURPOSE:To provide the TIG arc welding method by which the weight is reduced by decreasing the amt. of reinforcement of weld and with which the welding result of high strength and high reliability is obtd. with a deep penetration. CONSTITUTION:This TIG arc welding method for aluminum alloys consists in changing over a non-equilibrium square wave AC current having a positive polarity ratio of over 0.6 and below 0.9 and a positive polarity DC current at 2/3 energization ratio and 1[Hz] changeover frequency, executing shielding with a gaseous mixture composed of gaseous argon and gaseous helium having approximately the same flow rate ratio, adding a filler wire during the energization of the AC current and energizing the welding current by which a weld metal having >=1 penetration ratio is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非消耗性電極と被溶接
物との間に供給する電圧の極性を周期的に切り換えて、
非消耗性電極を不活性ガスでシ−ルドし、フィラワイヤ
を添加して溶接するTIGア−ク溶接方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention periodically switches the polarity of a voltage supplied between a non-consumable electrode and a work piece,
The present invention relates to a TIG arc welding method in which a non-consumable electrode is shielded with an inert gas, a filler wire is added, and welding is performed.

【0002】[0002]

【従来の技術】従来から航空機の構造材料として使用さ
れるアルミニウム合金の接合部は、特に高度の品質が要
求されるので、安定した品質が得られるTIGア−ク溶
接方法によって溶接が行われている。通常のTIGパル
スア−ク溶接方法で水平隅肉溶接すると、溶け込み深さ
Pと溶接ビ−ド幅Wとの比P/Wは、図1に示すよう
に、1以下である。最近では、板厚が厚くなっても、又
水平隅肉溶接であっても、図2に示すように、6[mm]
以下の狭い溶接ビ−ド幅であって、その溶接ビ−ド幅と
同等以上の深さの溶け込み、すなわち溶け込み深さPと
溶接ビ−ド幅Wとの比の溶け込み比率P/Wを1以上に
することによって、余盛りを小さくして軽量化するとと
もに高強度の溶接をすることが要求されている。
2. Description of the Related Art Since aluminum alloy joints conventionally used as structural materials for aircraft are required to have particularly high quality, they are welded by the TIG arc welding method which can obtain stable quality. There is. When horizontal fillet welding is performed by the normal TIG pulse arc welding method, the ratio P / W between the penetration depth P and the welding bead width W is 1 or less as shown in FIG. Recently, even if the plate thickness becomes thicker or horizontal fillet welding is performed, as shown in FIG.
The following narrow weld bead width has a penetration depth equal to or greater than the weld bead width, that is, the penetration ratio P / W of the ratio of the penetration depth P and the weld bead width W is 1 As a result of the above, it is required to reduce the extra weight to reduce the weight and perform high-strength welding.

【0003】上記の要求に対応する溶接方法としては、
従来、つぎのTIGア−ク溶接方法又はプラズマア−ク
溶接方法が採用されている。第1の方法は、直流正極性
のTIGア−ク溶接方法が深い溶け込みが得られる(た
だし、アルミニウム合金の酸化皮膜をア−クによって除
去するクリ−ニング作用がない)ことに着目して、溶接
ア−ク発生前に、アルミニウムの酸化皮膜を機械的又は
化学的に除去しておいて、非消耗性電極をマイナスの極
性とする正極性の直流電流を通電してTIGア−ク溶接
する方法が採用されている。この第1の方法は、ある程
度の深い溶け込みを得ることはできるが、ア−クによる
クリ−ニング現象がないために、溶接ア−ク発生前に酸
化皮膜を除去する余分の工程が必要となり、さらに酸化
皮膜を除去しても時間が経過すると再発生した酸化皮膜
が溶接金属中に巻き込まれて溶接欠陥を発生することが
多い。
As a welding method that meets the above requirements,
Conventionally, the following TIG arc welding method or plasma arc welding method has been adopted. The first method is that the DC positive TIG arc welding method provides deep penetration (however, there is no cleaning action of removing the oxide film of the aluminum alloy by arc), Before the welding arc is generated, the aluminum oxide film is mechanically or chemically removed, and a TDC arc welding is performed by applying a positive DC current having a negative polarity to the non-consumable electrode. The method has been adopted. This first method can obtain a deep penetration to some extent, but since there is no cleaning phenomenon due to arc, an extra step of removing the oxide film before the welding arc is generated, Further, even if the oxide film is removed, over time, the regenerated oxide film is often caught in the weld metal to cause welding defects.

【0004】また、第2の方法は、矩形波の低周波の交
流パルス電流を通電して非消耗性電極の極性がマイナス
となる正極性期間とその極性がプラスとなる逆極性期間
との通電時間比率又は各期間における通電電流値比率又
はこれらの両者を調整した交流パルス電流を通電してT
IGア−ク溶接する方法が採用されている。この第2の
方法においては、例えば図2に示すように、板厚が16
[mm]で、水平隅肉溶接を行って上記の溶け込み深さP
が深い溶け込みを得ようとすれば、300[A]以上の
溶接電流を必要とし、電流値をできるだけ小さくしよう
とすれば予熱も必要となる。航空機構造物は、多種複雑
な形状の内外面、曲線、曲面などの溶接が多いために、
手溶接が多く使用されている。この手溶接をするとき
に、上記の第1図の溶接のように300[A]もの高電
流を使用すると、ア−クの輻射熱のために作業者の身体
に負担がかかり、短時間しか作業が継続できない。さら
に、このような高電流になると、フィラワイヤの溶融量
も多くなり、溶着量が大きくなり、構造物の軽量化を図
ることができない。さらに第3の方法は、交流プラズマ
ア−ク溶接方法が採用されているが、この方法は、上記
の深い溶け込みを得ようとすれば、大電流となるため
に、溶接ト−チにシリ−ズア−クが発生し易くなり、電
極、ノズル等が焼損することがあるので、実用上板厚8
[mm]以下の中厚板までしか適切な溶接をすることがで
きない。
The second method is to energize a positive polarity period in which the polarity of the non-consumable electrode is negative and a reverse polarity period in which the polarity is positive by energizing a rectangular wave low-frequency AC pulse current. The AC pulse current is adjusted by adjusting the time ratio or the ratio of the energizing current value in each period or both of them, and then applying T
The IG arc welding method is adopted. In the second method, for example, as shown in FIG.
[Mm], horizontal fillet welding is performed to obtain the above penetration depth P.
In order to obtain a deep penetration, a welding current of 300 [A] or more is required, and preheating is also required if the current value is made as small as possible. Since aircraft structures often have welded inner and outer surfaces of various complicated shapes, curves, curved surfaces, etc.,
Hand welding is often used. If a high current of 300 [A] is used during the manual welding as in the welding shown in FIG. 1, the radiant heat of the arc puts a heavy burden on the operator's body, and the work is performed only for a short time. Cannot continue. Further, at such a high current, the filler wire also has a large amount of fusion, and the amount of deposition is large, so that the weight of the structure cannot be reduced. Further, as the third method, an AC plasma arc welding method is adopted. However, in this method, if an attempt is made to obtain the above-mentioned deep penetration, a large current will be applied, and therefore a welding torch will be welded. Since it is apt to generate a quark and the electrodes, nozzles, etc. may be burnt out, the plate thickness is practically 8
Appropriate welding can be performed only on medium-thick plates of [mm] or less.

【0010】[0010]

【発明が解決しようとする課題】本発明アルミニウム合
金を最も安定した品質で効率的に接合することのできる
TIGア−ク溶接方法において、適正なクリ−ニング
幅を確保すること、溶接ビ−ド幅を狭くして余盛り量
を減少させること、溶け込み深さを大きくして接合強
度を確保すること、非消耗電極(以下、電極という)
の消耗を少なくして溶接結果を一定に保持すること、
低電流を使用して作業者の負担を軽減するとともに、長
い溶接長を中断することなく継続して溶接することによ
って品質の安定を図ることなどにある。
In the TIG arc welding method capable of efficiently joining the aluminum alloy of the present invention with the most stable quality, ensuring a proper cleaning width and welding bead Narrowing the width to reduce the excess amount, increasing the penetration depth to secure the bonding strength, non-consumable electrode (hereinafter referred to as electrode)
To keep the welding result constant by reducing the consumption of
This is to reduce the burden on the operator by using a low current, and to stabilize the quality by continuing long welding length without interruption.

【0020】[0020]

【課題を解決するための手段】本発明は、下記の手段を
備えた溶接方法である。 電極と被溶接物との間に供給する電圧の極性を周期的
に切り換えてフィラワイヤを添加してアルミニウム合金
を溶接するTIGア−ク溶接方法である。 電極がマイナスのときの通電時間Tsで波高値Isの
正極性電流と電極がプラスのときの通電時間Trで波高
値Irの逆極性電流との正極性比率SP/RP=Is・
Ts/(Is・Ts+Ir・Tr)が0.6を越え0.
9未満となる非平衡矩形波交流電流を通電する。 上記非平衡矩形波交流電流を通電期間Ta通電した後
に、正極性直流電流を通電期間Td通電し、この非平衡
交流電流と正極性直流電流とを通電比率Ta/Td=2
/3で切換周波数F=1[Hz]以下の低周波で切り換
える。 電極を略同流量比率のアルゴンガスとヘリウムガスと
の混合ガスでシ−ルドする。 非平衡矩形波交流電流の通電期間中にフィラワイヤを
添加する。 溶け込み深さPと溶接ビ−ド幅Wとの溶け込み比率P
/Wが1以上の溶接金属を得る溶接電流を通電する。
The present invention is a welding method provided with the following means. This is a TIG arc welding method in which the polarity of the voltage supplied between the electrode and the object to be welded is periodically switched to add a filler wire to weld an aluminum alloy. Positive polarity ratio SP / RP = Is between the positive polarity current having the peak value Is at the energization time Ts when the electrode is negative and the reverse polarity current having the peak value Ir at the energization time Tr when the electrode is positive.
Ts / (Is.Ts + Ir.Tr) exceeds 0.6 and is less than 0.
An unbalanced rectangular wave alternating current of less than 9 is applied. After the non-equilibrium rectangular wave alternating current is applied for the energizing period Ta, the positive direct current is applied for the energizing period Td, and the unbalanced alternating current and the positive direct current are supplied at the energizing ratio Ta / Td = 2.
At / 3, switching is performed at a low frequency below the switching frequency F = 1 [Hz]. The electrode is shielded with a mixed gas of argon gas and helium gas having substantially the same flow rate. The filler wire is added during the period when the unbalanced rectangular wave alternating current is applied. Penetration ratio P between penetration depth P and welding bead width W
A welding current is applied to obtain a weld metal having a / W of 1 or more.

【0030】[0030]

【作用】以下、本発明の作用について説明する。 (表1の説明)The function of the present invention will be described below. (Explanation of Table 1)

【表1】 は、アルミニウム合金のTIGア−ク溶接を、交流矩形
波電流で溶接したときの B. 電極がマイナスのときの溶接電流(正極性電流)
の波高値 Is C. 電極がマイナスのときの通電時間 Ts D. 電極がプラスのときの溶接電流(逆極性電流)の
波高値 Ir E. 電極がプラスのときの通電時間 Tr の4つのパラメ−タが、 クリ−ニング幅の広狭 溶接ビ−ド幅の広狭 溶け込み深さの深い、浅い 電極消耗の大小 に及ぼす影響を記載している。
[Table 1] B. when TIG arc welding of an aluminum alloy was welded with an AC rectangular wave current. Welding current when the electrode is negative (positive current)
Crest value of Is C.I. Energization time when the electrode is negative Ts D. Peak value of welding current (reverse polarity current) when the electrode is positive Ir E. It describes the effect of four parameters of the energization time Tr when the electrode is positive on the width of the cleaning width, the width of the welding bead, the width of the welding bead, the depth of penetration, and the shallow consumption of the electrode.

【0031】この表1から、電極がマイナスのときの溶
接電流の波高値Isが大で通電時間Tsが大である程、
溶け込み深さが大で電極の消耗を少なくすることができ
るが、適正又は必要最小限度のクリ−ニング幅を得るた
めには、電極がプラスのときの逆極性電流の通電が必要
である。この逆極性電流の波高値Ir及び通電時間Tr
が大になると、電極の消耗が大になるので、適正又は必
要最小限度のクリ−ニング幅及び溶接ビ−ド幅を得るこ
とができる低い値を選定する。
From Table 1, the higher the peak value Is of the welding current and the longer the energizing time Ts when the electrode is negative,
Although the penetration depth is large and the consumption of the electrode can be reduced, in order to obtain a proper or minimum required cleaning width, it is necessary to apply a reverse polarity current when the electrode is positive. The peak value Ir of this reverse polarity current and the conduction time Tr
The larger the value, the greater the consumption of the electrode. Therefore, a low value that can obtain a proper or minimum required cleaning width and welding bead width is selected.

【0032】(図3の説明)図3は、本発明の溶接方法
において通電する溶接電流の波形を示す図である。同図
において、電極がマイナスのときの通電時間Tsで波高
値Isの正極性電流と電極がプラスのときの通電時間T
rで波高値Irの逆極性電流との正極性比率 SP/RP=Is・Ts/(Is・Ts+Ir・Tr) …(1) が0.5をこえる非平衡矩形波交流電流を通電期間Ta
通電した後に、正極性直流電流を通電期間Td通電して
いる。
(Explanation of FIG. 3) FIG. 3 is a diagram showing a waveform of a welding current conducted in the welding method of the present invention. In the figure, a positive current having a peak value Is and an energization time T when the electrode is positive at an energization time Ts when the electrode is negative.
At r, the positive polarity ratio of the peak value Ir to the reverse polarity current SP / RP = Is.Ts / (Is.Ts + Ir.Tr) (1) exceeds 0.5, and a non-equilibrium rectangular wave alternating current is applied during the energization period Ta.
After being energized, a positive polarity direct current is energized for an energizing period Td.

【0033】(図4の説明)図4は、上記(1)式の正
極性比率SP/RP(横軸)と溶け込み比率P/W(縦
軸)との関係を示す図である。同図において、溶け込み
比率P/Wは、板厚10[mm]の材質A5083のアル
ミニウム合金の平板上に、溶接電流の全波整流の平均値
250[A]で溶接速度20[cm/min]で、正極性比率
SP/RPを変化させて、アルゴンガスをシ−ルドガス
としてTIGア−ク溶接したときの図5に示す溶け込み
深さPと溶接ビ−ド幅Wとの関係を示している。同図に
示すように、正極性比率SP/RPが0.6を越える
と、溶け込み比率P/Wが大となっている。しかし、他
方、アルミニウム合金のTIGア−ク溶接においては、
正極性比率SP/RPが0.9以上になると、溶接ビ−
ド幅Wを得るためのクリ−ニング幅の確保が困難とな
り、溶接ビ−ドに酸化皮膜を形成してしまうので、正極
性比率SP/RPは、0.6を越え0.9未満の範囲が
適切である。
(Explanation of FIG. 4) FIG. 4 is a diagram showing the relationship between the positive polarity ratio SP / RP (horizontal axis) and the penetration ratio P / W (vertical axis) in the above equation (1). In the figure, the penetration rate P / W is a welding speed of 20 [cm / min] on a flat plate of aluminum alloy of material A5083 having a plate thickness of 10 [mm] and an average value of full-wave rectification of welding current of 250 [A]. 5 shows the relationship between the penetration depth P and the welding bead width W shown in FIG. 5 when the positive polarity ratio SP / RP is changed and TIG arc welding is performed using argon gas as the shield gas. .. As shown in the figure, when the positive polarity ratio SP / RP exceeds 0.6, the penetration ratio P / W becomes large. However, on the other hand, in TIG arc welding of aluminum alloys,
When the positive polarity ratio SP / RP becomes 0.9 or more, welding bead
It becomes difficult to secure the cleaning width to obtain the width W, and an oxide film is formed on the weld bead. Therefore, the positive polarity ratio SP / RP is in the range of more than 0.6 and less than 0.9. Is appropriate.

【0034】(図6の説明)前述した図4においては、
アルゴンガスをシ−ルドガスとしている限り、正極性比
率SP/RPは、本発明の溶接方法が目標とする1を超
えることができない。そこで、電位傾度の高いヘリウム
ガスをアルゴンガスに混合したシ−ルドガスを使用する
必要がある。図6は、アルゴンガスとヘリウムガスとの
流量混合比率[%](横軸)を変化させてTIGア−ク
溶接したときの溶け込み比率P/W(縦軸)の変化を示
す図である。同図において、溶け込み比率P/Wは、前
述した図5と同じ溶接条件で、さらに正極性比率SP/
RPを0.7に固定する代りにアルゴンガスとヘリウム
ガスとの混合比率を変化させている。同図に示すよう
に、ヘリウムガスの混合比率が45[%]以上になる
と、溶け込み比率P/Wを1以上にすることができる。
(Explanation of FIG. 6) In FIG. 4 described above,
As long as the argon gas is used as the shield gas, the positive polarity ratio SP / RP cannot exceed 1 targeted by the welding method of the present invention. Therefore, it is necessary to use a shield gas in which helium gas having a high potential gradient is mixed with argon gas. FIG. 6 is a diagram showing changes in the penetration ratio P / W (vertical axis) when TIG arc welding is performed by changing the flow rate mixing ratio [%] (horizontal axis) of argon gas and helium gas. In the figure, the penetration ratio P / W is the same as that of FIG.
Instead of fixing RP to 0.7, the mixing ratio of argon gas and helium gas is changed. As shown in the figure, when the mixing ratio of helium gas is 45% or more, the penetration ratio P / W can be 1 or more.

【0035】(図7及び図8の説明)しかし、ヘリウム
ガスの混合比率が60[%]以上になると、図7(A)
に示すように、溶接ビ−ド表面に黒いアルミニウム合金
元素の酸化物(MgO 、SiO 、Al2O3 )が付着し、さら
に図7(B)に示すように、溶接金属中に、これらの酸
化物が巻き込まれたりする。したがって、アルゴンガス
とヘリウムガスとの流量混合比率は45乃至55[%]
の略同流量比率の混合ガスを使用すると、図8(A)に
示すように、溶接ビ−ド表面に黒い酸化物が発生しない
し、また図8(B)に示すように、溶接金属中に酸化物
が巻き込まれることもない。なお、図8(A)に示すよ
うに、溶接ビ−ド幅Wよりも若干広いクリ−ニング幅Y
が得られている。
(Explanation of FIG. 7 and FIG. 8) However, when the mixing ratio of helium gas is 60 [%] or more, FIG.
As shown in Fig.7, black oxides of aluminum alloy elements (MgO, SiO2, Al2O3) adhere to the surface of the weld bead, and as shown in Fig. 7 (B), these oxides are contained in the weld metal. I get caught. Therefore, the flow rate mixing ratio of argon gas and helium gas is 45 to 55 [%].
When a mixed gas having substantially the same flow rate is used, no black oxide is generated on the surface of the weld bead as shown in FIG. 8 (A), and in the weld metal as shown in FIG. 8 (B). Oxides are not caught in the. As shown in FIG. 8A, the cleaning width Y is slightly wider than the welding bead width W.
Has been obtained.

【0036】前述したように、アルゴンガスとヘリウム
ガスとの略同流量比率の混合ガスを使用して正極性比率
SP/RP=0.7の非平衡矩形波交流電流を通電して
も、本発明のTIGア−ク溶接方法に使用する図3に示
す溶接電流の正極性直流電流の通電期間Tdが非平衡矩
形波交流電流の通電期間Taにくらべて、所定の比率を
越えると、通電期間Tdの間にクリ−ニング作用された
領域がなくなってしまう。したがって、このTaとTd
との通電比率Ta/Tdを2/3にすれば、正極性直流
電流通電期間Td中であっても、クリ−ニング作用が残
存している。また、フィラワイヤを添加する時期として
は、添加するフィラワイヤのクリ−ニング作用を行わせ
るために、交流電流通電期間Ta中にする必要があり、
さらに、フィラワイヤを添加するための時間を確保する
ために、交流電流の通電期間Taと正極性直流電流の通
電期間Tdとの切換周波数1[Hz]以下の低周波で切
り換える必要がある。また、交流の通電期間Taによっ
て得られたクリ−ニング領域が正極性直流通電期間Td
中に残存している時間はどんなに長くても1.5秒以下
であり、それ以上正極性直流通電期間Tdが長くなる
と、酸化皮膜を巻込み、健全な溶接部が得られなくな
る。従って、1/(1+1.5)=0.4Hz以上(T
d=1.5秒ならTa/Td=2/3よりTa=1秒)
の切換周波数が必要となる。
As described above, even if a non-equilibrium rectangular wave alternating current with a positive polarity ratio SP / RP = 0.7 is applied by using a mixed gas of argon gas and helium gas at substantially the same flow ratio, When the energizing period Td of the positive polarity direct current of the welding current shown in FIG. 3 used in the TIG arc welding method of the invention exceeds a predetermined ratio as compared with the energizing period Ta of the unbalanced rectangular wave alternating current, the energizing period is The region that has undergone the cleaning action during Td disappears. Therefore, this Ta and Td
If the energization ratio Ta / Td is set to 2/3, the cleaning action remains even during the positive DC current application period Td. In addition, the filler wire must be added during the alternating current energization period Ta in order to perform the cleaning action of the filler wire to be added.
Further, in order to secure the time for adding the filler wire, it is necessary to switch at a low switching frequency of 1 [Hz] or less between the alternating current energization period Ta and the positive polarity direct current energization period Td. Further, the cleaning region obtained by the AC energization period Ta is the positive DC energization period Td.
The time remaining inside is 1.5 seconds or less at most, and if the positive polarity DC energization period Td becomes longer than that, an oxide film will be involved and a sound weld will not be obtained. Therefore, 1 / (1 + 1.5) = 0.4 Hz or more (T
If d = 1.5 seconds, Ta / Td = 2/3, so Ta = 1 second)
Switching frequency is required.

【0040】[0040]

【実施例】【Example】

(図9の説明)図9(A)及び(B)は、それぞれ、本
発明のTIGア−ク溶接方法によって水平隅肉溶接をし
たときの溶接ビ−ドの外観及び断面を示す図である。こ
の本発明の実施例の溶接条件は次のとおりである。板厚
20[mm]のアルミニウム・マグネシウム合金A508
3を図3に示す波形の溶接電流(Is=170[A]、
Ts=10[ms]、Ir=500[A]、Tr=1[m
s]、Ta/Td=2/3、切換周波数F=1[H
z]、平均値200[A])で、アルゴンガスとヘリウ
ムガスとの略同一混合比率の混合ガスを使用し、溶接速
度15[cm/min]で、水平隅肉溶接をしている。この溶
接条件でTIGア−ク溶接すると本発明が目的とする通
常のTIGパルスア−ク溶接方法の溶接電流の平均値よ
りも低い電流値で、図9(A)及び(B)に示すよう
に、溶け込み比率P/W=1.1のウエブ1とフランジ
2との溶融橋絡部3を得ることができる。
(Explanation of FIG. 9) FIGS. 9A and 9B are views showing the appearance and cross section of a weld bead when horizontal fillet welding is performed by the TIG arc welding method of the present invention. .. The welding conditions of this embodiment of the present invention are as follows. Aluminum-magnesium alloy A508 with a plate thickness of 20 [mm]
3 is the welding current of the waveform shown in FIG. 3 (Is = 170 [A],
Ts = 10 [ms], Ir = 500 [A], Tr = 1 [m
s], Ta / Td = 2/3, switching frequency F = 1 [H
z] and an average value of 200 [A]) and using a mixed gas of argon gas and helium gas at substantially the same mixing ratio, horizontal fillet welding is performed at a welding speed of 15 [cm / min]. When the TIG arc welding is performed under these welding conditions, the current value is lower than the average value of the welding current of the normal TIG pulse arc welding method intended by the present invention, as shown in FIGS. 9 (A) and 9 (B). It is possible to obtain the molten bridging portion 3 between the web 1 and the flange 2 having the penetration ratio P / W = 1.1.

【0041】なお、図1に示す通常のTIGパルスア−
ク溶接方法によって水平隅肉溶接をすると、溶接ビ−ド
幅Wが広く、溶け込み深さPの浅い溶け込み比率P/W
=0.5しか得られない。この通常のTIGパルスア−
ク溶接条件は、正極性比率0.7の矩形波交流電流で、
溶接電流の全波整流の平均値は300[A]で、アルゴ
ンガスを使用し、溶接速度は10[cm/min]である。
The normal TIG pulse signal shown in FIG.
When horizontal fillet welding is performed by the welding method, the weld bead width W is wide and the penetration depth P is shallow.
= 0.5 can only be obtained. This normal TIG pulse
The welding condition is a square wave alternating current with a positive polarity ratio of 0.7,
The average value of full-wave rectification of the welding current is 300 [A], argon gas is used, and the welding speed is 10 [cm / min].

【0043】(図10の説明)図10(A)乃至(C)
は、本発明のTIGア−ク溶接方法によって、電極4と
ウエブ1及びフランジ2から成る被溶接物との間にア−
ク5を発生させて、電極先端4aと被溶接物との距離L
tを変化させたときの距離Ltの適正値を判断する説明
図である。距離Ltが3[mm]になると、同図(A)に
示すように、ウエブ1に片溶け部分1aが生じ、距離L
tが1[mm]未満になると、同図(B)に示すように、
手振れによって電極先端4aと被溶接物2とが接触する
ことがあるので、同図(A)に示すように、距離Ltを
1乃至2[mm]にすることが必要である。
(Description of FIG. 10) FIGS. 10A to 10C
According to the TIG arc welding method of the present invention, an arc is formed between the electrode 4 and the work piece consisting of the web 1 and the flange 2.
And the distance L between the electrode tip 4a and the workpiece is generated.
It is explanatory drawing which judges the appropriate value of the distance Lt when t is changed. When the distance Lt becomes 3 [mm], the one-side melted portion 1a is generated on the web 1 as shown in FIG.
When t becomes less than 1 [mm], as shown in FIG.
Since the electrode tip 4a and the workpiece 2 may come into contact with each other due to camera shake, it is necessary to set the distance Lt to 1 to 2 [mm], as shown in FIG.

【0044】(図11の説明)図11は、溶接電流の全
波整流の平均値I[A](横軸)と図5に示す平板の板
厚t[mm](縦軸)とを変化させてフィラワイヤを添加
しないでTIGア−ク溶接したときの溶け込み比率P/
Wを示す図である。同図に示す点線ZZは、通常のTI
Gパルスア−ク溶接方法によって溶接したときのP/W
を示し、また実線AAは、本発明のTIGア−ク溶接方
法によって溶接したときのP/Wを示す。点線ZZの通
常のTIGパルスア−ク溶接方法の溶接条件は、正極性
比率SP/RP=0.7の矩形波交流電流で、アルゴン
ガスを使用し、溶接速度は20[cm/min]である。ま
た、実線AAの本発明のTIGア−ク溶接方法の溶接条
件は、正極性比率SP/RP=0.7で通電比率Ta/
Td=2/3でアルゴンガスとヘリウムガスとの略同一
混合比率の混合ガスを使用し、溶接速度20[cm/min]
である。
(Explanation of FIG. 11) FIG. 11 shows changes in the average value I [A] (horizontal axis) of full-wave rectification of the welding current and the plate thickness t [mm] (vertical axis) of the flat plate shown in FIG. Permeation ratio P / when TIG arc welding is performed without adding filler wire
It is a figure which shows W. The dotted line ZZ shown in the figure is a normal TI.
P / W when welded by G pulse arc welding method
And the solid line AA shows P / W when welding is performed by the TIG arc welding method of the present invention. The welding condition of the normal TIG pulse arc welding method indicated by the dotted line ZZ is a rectangular wave alternating current with a positive polarity ratio SP / RP = 0.7, argon gas is used, and the welding speed is 20 [cm / min]. .. The welding conditions of the TIG arc welding method of the present invention indicated by the solid line AA are as follows: positive ratio SP / RP = 0.7 and energization ratio Ta /
Welding speed is 20 [cm / min] with Td = 2/3 and using a mixed gas of argon gas and helium gas with substantially the same mixing ratio.
Is.

【0045】同図において、( )内の数値は、溶け込
み比率P/Wを示し、溶接電流の全波整流の平均値が2
00[A]のとき、点線ZZに示す通常のTIGパルス
ア−ク溶接方法においては、板厚10[mm]までしか溶
融させることができないで、また溶け込み比率が0.7
であるのに対して、実線AAに示す本発明のTIGア−
ク溶接方法においては、板厚20[mm]まで溶融させる
ことができ、また溶け込み比率が1.3にすることがで
きる。
In the figure, the numerical value in the parentheses indicates the penetration ratio P / W, and the average value of the full-wave rectification of the welding current is 2
At the time of 00 [A], in the normal TIG pulse arc welding method shown by the dotted line ZZ, it is possible to melt up to a plate thickness of 10 [mm], and the penetration ratio is 0.7.
On the other hand, the TIG array of the present invention shown by the solid line AA
In the welding method, it is possible to melt up to a plate thickness of 20 [mm], and the penetration ratio can be 1.3.

【0050】(図12及び図13の説明)図12は、通
常のTIGパルスア−ク溶接方法を実施する溶接装置の
ブロック図を示す。同図において、1及び2は被溶接物
で、4は電極で、10は例えば商用交流電源を整流した
直流電源回路であり、L1 は直流リアクトル、C1 は整
流用コンデンサ、TR1及びTR2は逆極性電流通電用
トランジスタ、TS1及びTS2は正極性電流通電用ト
ランジスタである。PC1はこれらのトランジスタの導
通及び遮断を制御する極性切換回路であり、NT1は極
性切換信号Pc1 を入力として反転した逆極性通電信号
Srを出力する。図13(A)乃至(C)は、それぞ
れ、図12に示す極性切換信号Pc1 (=正極性通電信
号Ss)の波形を示す図、逆極性通電信号Srの波形を
示す図及び被溶接物から電極方向の溶接電流Iの波形を
示す図である。同図(A)に示す正極性通電信号Ssと
同図(B)に示す逆極性通電信号Srとによってトラン
ジスタTS1とTS2及びトランジスタTR1とTR2
とをそれぞれ導通及び遮断して同図(C)に示す矩形波
交流電流を通電する。
(Explanation of FIGS. 12 and 13) FIG. 12 is a block diagram of a welding apparatus for carrying out a normal TIG pulse arc welding method. In the figure, 1 and 2 are objects to be welded, 4 are electrodes, 10 is a DC power supply circuit obtained by rectifying a commercial AC power supply, L1 is a DC reactor, C1 is a rectifying capacitor, and TR1 and TR2 have opposite polarities. Current-carrying transistors, TS1 and TS2, are positive-current-carrying transistors. PC1 is a polarity switching circuit that controls conduction and interruption of these transistors, and NT1 receives the polarity switching signal Pc1 as an input and outputs a reversed polarity energization signal Sr. 13A to 13C show the waveform of the polarity switching signal Pc1 (= positive polarity energization signal Ss) shown in FIG. 12, the waveform of the reverse polarity energization signal Sr, and the workpiece, respectively. It is a figure which shows the waveform of the welding current I of an electrode direction. Transistors TS1 and TS2 and transistors TR1 and TR2 are generated by the positive polarity energization signal Ss shown in FIG. 7A and the reverse polarity energization signal Sr shown in FIG.
And are respectively turned on and off, and the rectangular wave alternating current shown in FIG.

【0060】(図14及び図15の説明)図14は、本
発明のTIGア−ク溶接方法を実施する溶接装置のブロ
ック図であり、同図において、図12と同一の符号は図
12の説明と同じであるので省略し、相違個所について
説明する。図14において、NT2は図15(A)に示
す極性切換信号Pc1 を反転して図15(B)に示す反
転信号Nt2 を出力するNOT回路であり、MM1はモ
ノマルチバイブレ−タ回路であって、矩形波交流電流の
通電期間Taと正極性直流電流の通電期間Tdとの通電
比率Ta/Tdを切換周波数F[Hz]によって定める
図15(C)に示す低周波信号Mm1 を出力する。ND
1は、NOT回路NT2の反転信号Nt2 及び低周波信
号Mm1 を入力として、両信号が低レベルLのときに、
図15(D)に示す正極性通電信号Ssを出力するNA
ND回路である。図15(D)は、図13(A)と同様
の正極性通電信号Ssであって、トランジスタTS1及
びTS2を導通及び遮断し、図15(E)は、図13
(B)と同様に逆極性電流通電信号Srであって、トラ
ンジスタTR1及びTR2を導通及び遮断し、これらの
トランジスタの導通及び遮断によって図15(F)に示
す矩形波交流電流及び正極性直流電流を通電する。
(Explanation of FIGS. 14 and 15) FIG. 14 is a block diagram of a welding apparatus for carrying out the TIG arc welding method of the present invention. In FIG. 14, the same symbols as those in FIG. Since it is the same as the description, it is omitted and only different points will be described. In FIG. 14, NT2 is a NOT circuit which inverts the polarity switching signal Pc1 shown in FIG. 15 (A) and outputs an inverted signal Nt2 shown in FIG. 15 (B), and MM1 is a mono-multivibrator circuit. , A low-frequency signal Mm1 shown in FIG. 15 (C) which determines the energization ratio Ta / Td between the energization period Ta of the rectangular wave alternating current and the energization period Td of the positive polarity direct current by the switching frequency F [Hz]. ND
1 receives the inverted signal Nt2 of the NOT circuit NT2 and the low frequency signal Mm1 as input, and when both signals are at the low level L,
NA for outputting the positive polarity energization signal Ss shown in FIG.
It is an ND circuit. FIG. 15D shows a positive polarity energization signal Ss similar to that of FIG. 13A, which turns on and off the transistors TS1 and TS2, and FIG.
As in the case of (B), the reverse polarity current energization signal Sr is used to turn on / off the transistors TR1 and TR2, and the rectangular wave AC current and the positive DC current shown in FIG. Energize.

【0070】[0070]

【発明の効果】本発明は、板厚が厚くなっても、又水平
隅肉溶接であっても、6[mm]以下の狭い溶接ビ−ド幅
であって、その溶接ビ−ド幅と同等以上の深い溶け込み
にすることによって、余盛りを小さくして軽量化すると
ともに高強度のアルミニウム合金の溶接を行うことがで
き、また、溶接電流の低電流化によるア−ク熱の減少に
よって作業者の疲労を軽減し、また、電極の消耗が少な
いので長時間継続して使用することができるので、長尺
物を継続して溶接することもでき、さらに、予め定めた
交流電流通電期間中に確実にフィラワイヤの添加をする
ことができるなどによって高信頼度の溶接結果を得るこ
とができるので、安全性を重視しなければならない航空
機構造物、原子力構造物などには欠くことができない。
The present invention has a narrow welding bead width of 6 [mm] or less, even if the plate thickness is thick or in horizontal fillet welding. By making the deep penetration equal to or more than the above, it is possible to reduce the excess weight to reduce the weight and perform the welding of high-strength aluminum alloy. Also, the work current is reduced due to the reduction of the arc heat due to the lower welding current. It reduces the fatigue of the operator and the electrode is less consumed so that it can be used continuously for a long time, so long objects can be continuously welded. Since it is possible to obtain a highly reliable welding result by reliably adding filler wire, it is indispensable for aircraft structures, nuclear structures, etc. where safety must be emphasized.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、通常のTIGパルスア−ク溶接方法に
よる水平隅肉溶接の溶け込み深さPと溶接ビ−ド幅Wと
の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a penetration depth P and a welding bead width W in horizontal fillet welding by a normal TIG pulse arc welding method.

【図2】図2は、最近の航空機構造物に要求される水平
隅肉溶接の溶け込み深さPと溶接ビ−ド幅Wとの関係を
示す図である。
FIG. 2 is a diagram showing a relationship between a penetration depth P and a welding bead width W of horizontal fillet welding required for a recent aircraft structure.

【図3】図3は、本発明の溶接方法において通電する溶
接電流の波形を示す図である。
FIG. 3 is a diagram showing a waveform of a welding current conducted in the welding method of the present invention.

【図4】図4は、アルゴンガスを使用したときの正極性
比率SP/RP(横軸)と溶け込み比率P/W(縦軸)
との関係を示す図である。
FIG. 4 is a positive polarity ratio SP / RP (horizontal axis) and a penetration ratio P / W (vertical axis) when argon gas is used.
It is a figure which shows the relationship with.

【図5】図5は、平板上に溶接をしたときの溶け込み深
さPと溶接ビ−ド幅Wとの関係を示す図である。
FIG. 5 is a diagram showing a relationship between a penetration depth P and a welding bead width W when welding is performed on a flat plate.

【図6】図6は、アルゴンガスとヘリウムガスとの流量
比率[%](横軸)を変化させてTIGア−ク溶接した
ときの溶け込み比率P/W(縦軸)の変化を示す図であ
る。
FIG. 6 is a diagram showing changes in the penetration ratio P / W (vertical axis) when TIG arc welding is performed by changing the flow rate ratio [%] (horizontal axis) of argon gas and helium gas. Is.

【図7】図7(A)及び(B)は、それぞれ、アルゴン
ガス40[%]とヘリウムガス60[%]の混合ガスを
使用してTIGア−ク溶接したときの溶接ビ−ド表面の
外観及び溶接ビ−ド断面の外観を示す図である。
7 (A) and 7 (B) are weld bead surfaces when TIG arc welding is performed using a mixed gas of argon gas 40 [%] and helium gas 60 [%], respectively. FIG. 3 is a view showing the external appearance and the external appearance of the weld bead cross section.

【図8】図8(A)及び(B)は、それぞれ、アルゴン
ガス50[%]とヘリウムガス50[%]の混合ガスを
使用してTIGア−ク溶接したときの溶接ビ−ド表面の
外観及び溶接ビ−ド断面の外観を示す図である。
8 (A) and 8 (B) are welding bead surfaces when TIG arc welding is performed using a mixed gas of argon gas 50 [%] and helium gas 50 [%], respectively. FIG. 3 is a view showing the external appearance and the external appearance of the weld bead cross section.

【図9】図9(A)及び(B)は、それぞれ、本発明の
TIGア−ク溶接方法によって水平隅肉溶接をしたとき
の溶接ビ−ドの外観及び断面を示す図である。
9 (A) and 9 (B) are views showing the appearance and cross section of a weld bead when horizontal fillet welding is performed by the TIG arc welding method of the present invention, respectively.

【図10】図10(A)乃至(C)は、本発明のTIG
ア−ク溶接方法によって電極先端と被溶接物との距離L
tを変化させたときの距離Ltの適正値を判断する説明
図である。
10 (A) to 10 (C) are TIGs of the present invention.
Depending on the arc welding method, the distance L between the electrode tip and the object to be welded
It is explanatory drawing which judges the appropriate value of the distance Lt when t is changed.

【図11】図11は、溶接電流の全波整流の平均値I
[A](横軸)と板厚t[mm](縦軸)とを変化させた
ときの溶け込み比率P/Wを示す図である。
FIG. 11 is an average value I of full-wave rectification of welding current.
It is a figure which shows penetration ratio P / W when [A] (horizontal axis) and board thickness t [mm] (vertical axis) are changed.

【図12】図12は、通常のTIGパルスア−ク溶接方
法を実施する溶接装置のブロック図である。
FIG. 12 is a block diagram of a welding apparatus for carrying out a normal TIG pulse arc welding method.

【図13】図13(A)乃至(C)は、それぞれ図12
のブロック図の各回路の出力信号の波形を示す図であ
る。
FIG. 13A to FIG. 13C respectively show FIG.
3 is a diagram showing waveforms of output signals of respective circuits in the block diagram of FIG.

【図14】図14は、本発明のTIGア−ク溶接方法を
実施する溶接装置のブロック図である。
FIG. 14 is a block diagram of a welding apparatus for carrying out the TIG arc welding method of the present invention.

【図15】図15(A)乃至(F)は、それぞれ図14
のブロック図の各回路の出力信号の波形を示す図であ
る。
15A to 15F are respectively the same as in FIG.
3 is a diagram showing waveforms of output signals of respective circuits in the block diagram of FIG.

【符号の説明】[Explanation of symbols]

P…溶け込み深さ W…溶接ビ−ド幅 P/W…溶け込み比率 I…溶接電流(全波整流の平均値) Is…電極がマイナスのときの溶接電流(正極性電流)
の波高値 Ts…電極がマイナスのときの通電時間 Ir…電極がプラスのときの溶接電流(逆極性電流)の
波高値 Tr…電極がプラスのときの通電時間 SP/RP…正極性比率=Is・Ts/(Is・Ts+
Ir・Tr) Ta…矩形波交流電流の通電期間 Td…正極性直流電流の通電期間 Ta/Td…通電比率 F…切換周波数 Y…クリ−ニング幅 t…板厚
P ... Penetration depth W ... Weld bead width P / W ... Penetration ratio I ... Welding current (average value of full-wave rectification) Is ... Welding current when electrode is negative (positive current)
Peak value of Ts ... energization time when the electrode is negative Ir ... peak value of welding current (reverse polarity current) when the electrode is positive Tr ... energization time when the electrode is positive SP / RP ... Positive polarity ratio = Is・ Ts / (Is ・ Ts +
Ir · Tr) Ta ... Rectangular wave AC current energization period Td ... Positive polarity DC current energization period Ta / Td ... Energization ratio F ... Switching frequency Y ... Cleaning width t ... Plate thickness

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非消耗性電極と被溶接物との間に供給す
る電圧の極性を周期的に切り換えて前記非消耗性電極を
不活性ガスでシ−ルドし、フィラワイヤを添加してアル
ミニウム合金を溶接するTIGア−ク溶接方法におい
て、前記非消耗性電極がマイナスのときの通電時間Ts
の溶接電流の波高値Isの正極性電流と非消耗性電極が
プラスのときの通電時間Trの溶接電流の波高値Irの
逆極性電流との正極性比率SP/RP=Is・Ts/
(Is・Ts+Ir・Tr)が0.6を越え0.9未満
となる非平衡矩形波交流電流を期間Ta通電した後に、
正極性直流電流を期間Td通電し、前記非平衡矩形波交
流電流と正極性直流電流とを通電比率Ta/Td=2/
3で切換周波数1[Hz]以下の低周波で切り換え、前
記非消耗性電極を略同流量比率のアルゴンガスとヘリウ
ムガスとの混合ガスでシ−ルドをし、かつ、前記非平衡
矩形波交流電流の通電期間中にフィラワイヤを添加し
て、溶け込み深さPと溶接ビ−ド幅Wとの溶け込み比率
P/Wが1以上の溶接金属を得る溶接電流を通電してア
ルミニウム合金を溶接するアルミニウム合金のTIGア
−ク溶接方法。
1. An aluminum alloy in which a filler wire is added by shielding the non-consumable electrode with an inert gas by periodically switching the polarity of the voltage supplied between the non-consumable electrode and the object to be welded. In the TIG arc welding method for welding the above, the energization time Ts when the non-consumable electrode is negative
Ratio of the positive polarity current of the peak value Is of the welding current and the reverse polarity current of the peak value Ir of the welding current of the energizing time Tr when the non-consumable electrode is positive SP / RP = Is · Ts /
After a non-equilibrium rectangular wave alternating current with (Is · Ts + Ir · Tr) exceeding 0.6 and less than 0.9 is applied for a period Ta,
A positive direct current is supplied for a period Td, and the non-equilibrium rectangular wave alternating current and the positive direct current are supplied at an energization ratio Ta / Td = 2 /
3, the switching frequency is switched at a low frequency of 1 [Hz] or less, the non-consumable electrode is shielded with a mixed gas of argon gas and helium gas having substantially the same flow rate, and the non-equilibrium rectangular wave alternating current is used. Aluminum for welding aluminum alloy by applying a welding current to obtain a weld metal having a penetration ratio P / W between the penetration depth P and the welding bead width W of 1 or more by adding a filler wire during the current application period. Alloy TIG arc welding method.
JP16931691A 1991-06-13 1991-06-13 TIG arc welding method for aluminum alloy Expired - Lifetime JP3088782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16931691A JP3088782B2 (en) 1991-06-13 1991-06-13 TIG arc welding method for aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16931691A JP3088782B2 (en) 1991-06-13 1991-06-13 TIG arc welding method for aluminum alloy

Publications (2)

Publication Number Publication Date
JPH05131272A true JPH05131272A (en) 1993-05-28
JP3088782B2 JP3088782B2 (en) 2000-09-18

Family

ID=15884281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16931691A Expired - Lifetime JP3088782B2 (en) 1991-06-13 1991-06-13 TIG arc welding method for aluminum alloy

Country Status (1)

Country Link
JP (1) JP3088782B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082163A (en) * 2002-08-27 2004-03-18 Sansha Electric Mfg Co Ltd Welding method and electric power unit for welding
CN114227137A (en) * 2021-11-24 2022-03-25 上海航天精密机械研究所 Defect repairing method for Mg-Gd-Y-Zr heat-resistant magnesium alloy casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082163A (en) * 2002-08-27 2004-03-18 Sansha Electric Mfg Co Ltd Welding method and electric power unit for welding
JP4643113B2 (en) * 2002-08-27 2011-03-02 株式会社三社電機製作所 Welding method and power supply device for welding
CN114227137A (en) * 2021-11-24 2022-03-25 上海航天精密机械研究所 Defect repairing method for Mg-Gd-Y-Zr heat-resistant magnesium alloy casting

Also Published As

Publication number Publication date
JP3088782B2 (en) 2000-09-18

Similar Documents

Publication Publication Date Title
US5225660A (en) Consumable-electrode ac gas shield arc welding method and apparatus therefor
JP3809983B2 (en) Consumable electrode type AC gas shield welding equipment
JPH10328837A (en) Ac pulse mig welding method and welding equipment
Street Pulsed arc welding: an introduction
JPH05131272A (en) Tig arc welding method for aluminum alloy
JPH01299768A (en) Consumable electrode type rectangular wave ac arc welding method
JPH04333368A (en) Method and equipment for mag arc welding
JP3421014B2 (en) TIG arc welding method for aluminum alloy
JP3158545B2 (en) TIG arc welding method for aluminum alloy
JPH05277741A (en) Tig arc welding method for aluminum alloy
JP2711138B2 (en) AC TIG welding method and apparatus
JPH01299769A (en) Output control method for gas shielded arc welding power source
JP2854613B2 (en) AC arc welding method and apparatus for consumable electrode type gas shielded arc welding
JP2819607B2 (en) MIG and MAG pulse arc welding method
JP2000254779A (en) Method and machine for ac pulse arc welding
JP3856355B2 (en) Consumable electrode type AC gas shielded arc welding method and apparatus
JPS62114772A (en) Mig welding method
JPS62252677A (en) Plasma arc welding method using ac rectangular wave
JP2711137B2 (en) AC TIG welding equipment
JPS6257438B2 (en)
JPH03106567A (en) Consumable electrode ac square wave welding method
JP2917651B2 (en) Arc welding method
JPS6320168A (en) Power source feeder for both ac and dc for arc welding
JPS639913B2 (en)
JP3232645B2 (en) Grain refinement welding method for aluminum alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070714

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090714

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

EXPY Cancellation because of completion of term