JPH05127174A - Production of liquid crystal display panel - Google Patents

Production of liquid crystal display panel

Info

Publication number
JPH05127174A
JPH05127174A JP31141891A JP31141891A JPH05127174A JP H05127174 A JPH05127174 A JP H05127174A JP 31141891 A JP31141891 A JP 31141891A JP 31141891 A JP31141891 A JP 31141891A JP H05127174 A JPH05127174 A JP H05127174A
Authority
JP
Japan
Prior art keywords
liquid crystal
display panel
crystal display
substrates
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31141891A
Other languages
Japanese (ja)
Other versions
JP3263927B2 (en
Inventor
Hideo Kataoka
秀雄 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31141891A priority Critical patent/JP3263927B2/en
Publication of JPH05127174A publication Critical patent/JPH05127174A/en
Application granted granted Critical
Publication of JP3263927B2 publication Critical patent/JP3263927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the specified and uniform building-in of the inter-substrate spacing of the liquid crystal display panel. CONSTITUTION:After a pair of the electrode substrates are formed in a stage 1, a sealing material consisting of a UV resin is printed and applied to the peripheral part on at least one of the substrate surface in a stage 3. A pair of the substrates are superposed on each other and are tentatively fixed in a stage 4. The sealing material is cured by subjecting the material to an irradiation treatment with UV rays while room temp. cooling is executed to stick a pair of the substrates, by which the liquid crystal display panel is formed in a stage 5. Since the curing is executed at room temp., the inter-substrate spacing is maintained constant and uniform without generating thermal stresses between the sealing material and the substrates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示パネルの製造
方法に関し、より詳しくは液晶表示パネルを構成する一
対の基板の貼り合わせ接着方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a liquid crystal display panel, and more particularly to a method for laminating and adhering a pair of substrates constituting the liquid crystal display panel.

【0002】[0002]

【従来の技術】従来の典型的な液晶表示パネルの製造方
法は、例えば特開昭57−94721号公報に開示され
ている。以下、図3を参照して従来の技術を簡潔に説明
する。液晶表示パネル101あるいは液晶セルは、一般
に透明電極102を形成した一対の基板103及び10
4を電極102が対向する様にして組み立てたものであ
る。一対の基板103,104は所定の間隙を介して周
辺部に沿ってシール材105により貼り合わされてい
る。この間隙内には液晶106が封入されている。対向
する電極102の間に電圧を印加し、その時に生ずる液
晶106の光学的変化により文字や図形等の表示を行な
うものである。液晶層106の厚みは通常5μm乃至1
5μm程度に設定されており、一対の基板の間隙寸法に
より規制される。この間隙寸法が一定且つ均一に保持さ
れないとパネル表面に色むらが生じるとともに、液晶の
応答時間にばらつきが生じ表示品位を低下させる。
2. Description of the Related Art A conventional method for manufacturing a typical liquid crystal display panel is disclosed in, for example, Japanese Patent Application Laid-Open No. 57-94721. Hereinafter, the related art will be briefly described with reference to FIG. The liquid crystal display panel 101 or the liquid crystal cell generally includes a pair of substrates 103 and 10 on which a transparent electrode 102 is formed.
4 is assembled so that the electrodes 102 face each other. The pair of substrates 103 and 104 are bonded together by a sealant 105 along a peripheral portion with a predetermined gap. A liquid crystal 106 is enclosed in this gap. A voltage is applied between the electrodes 102 facing each other, and characters or figures are displayed by the optical change of the liquid crystal 106 occurring at that time. The thickness of the liquid crystal layer 106 is usually 5 μm to 1
It is set to about 5 μm, and is regulated by the gap size of the pair of substrates. If the gap size is not kept constant and uniform, color unevenness will occur on the panel surface and the response time of the liquid crystal will vary, degrading the display quality.

【0003】通常、液晶セルの製造においては、シール
材105として接着性の優れた熱硬化型のエポキシ系樹
脂が利用されている。一対の基板103,104の一方
にシール材を所定の幅及び所定の厚みで印刷し、他方の
基板を重ね合わせ加熱加圧してセルを形成する。従って
液晶層106の厚みを上下から規制する一対の基板の間
隙は、加熱加圧処理した直後に固定される。しかしなが
ら、表示面積が5cm2 以上の大型液晶セルにおいては、
たとえ加熱加圧直後の基板間隙が均一であっても、シー
ル材の熱収縮あるいはシール材と基板との間の線膨張係
数の差に起因して、冷却過程において基板間隙が局部的
に変化し不均一になるという不具合が発生する。
In the manufacture of liquid crystal cells, a thermosetting epoxy resin having excellent adhesiveness is usually used as the sealing material 105. A sealing material is printed on one of the pair of substrates 103 and 104 with a predetermined width and a predetermined thickness, and the other substrate is stacked and heated and pressed to form a cell. Therefore, the gap between the pair of substrates that regulates the thickness of the liquid crystal layer 106 from above and below is fixed immediately after the heat and pressure treatment. However, in a large liquid crystal cell with a display area of 5 cm 2 or more,
Even if the substrate gap immediately after heating and pressing is uniform, the substrate gap locally changes during the cooling process due to the thermal contraction of the seal material or the difference in the linear expansion coefficient between the seal material and the substrate. The problem of non-uniformity occurs.

【0004】この対策として、前述した特開昭57−9
4721号公報には、加熱加圧処理後の徐冷技術が開示
されている。即ち、熱硬化型エポキシ系樹脂の硬化温度
(例えば150℃)以上で加熱加圧処理を行ないシール
材を硬化した後、該硬化温度からエポキシ系樹脂の二次
転移点(例えば108℃)以下まで徐冷を行なう。冷却
速度は例えば毎分15℃以下に設定される。この徐冷過
程により、エポキシ系樹脂とガラス基板の熱膨張係数の
差により発生する応力がある程度緩和され、加熱加圧処
理直後の基板間隙の均一性がある程度保存できる。
As a countermeasure against this, the above-mentioned Japanese Patent Laid-Open No. 57-9
Japanese Patent No. 4721 discloses a slow cooling technique after heat and pressure treatment. That is, after heating and pressurizing the sealing material at a temperature not lower than the curing temperature of the thermosetting epoxy resin (for example, 150 ° C.) to cure the sealing material, from the curing temperature to the secondary transition point of the epoxy resin (for example, 108 ° C.) or lower. Gradually cool. The cooling rate is set to, for example, 15 ° C. or less per minute. By this gradual cooling process, the stress generated due to the difference in thermal expansion coefficient between the epoxy resin and the glass substrate is relaxed to some extent, and the uniformity of the substrate gap immediately after the heat and pressure treatment can be preserved to some extent.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、熱硬化
型のシール材料を用いる限り高温の加熱加圧処理は避け
られない。又、無機材料からなる基板と有機材料からな
るシール材との間には一般的に大きな熱膨張係数の差が
ある。従って、原理的に冷却過程において歪が生ずる事
は避けられず、種々の対策を講じても基板間隙を一定に
制御する事は困難である。この困難性は特に液晶表示パ
ネルが大面積化された場合に顕著となる。
However, as long as a thermosetting sealing material is used, high temperature heating and pressure treatment is inevitable. Further, there is generally a large difference in coefficient of thermal expansion between the substrate made of an inorganic material and the seal material made of an organic material. Therefore, in principle, the occurrence of strain in the cooling process is unavoidable, and it is difficult to control the substrate gap constant even if various measures are taken. This difficulty becomes remarkable especially when the liquid crystal display panel has a large area.

【0006】かかる従来の技術の問題点あるいは課題に
鑑み、本発明は原理的に熱的歪の残留する事が無い液晶
セルの接着方法を提供する事を目的とする。
In view of the above problems and problems of the conventional technique, an object of the present invention is to provide a method for bonding liquid crystal cells in which thermal strain does not remain in principle.

【0007】[0007]

【課題を解決するための手段】従来の技術の課題を解決
し且つ本発明の目的を達成する為に講じられた手段は以
下の通りである。即ち、対向面に各々電極を有する一対
の基板をその周辺部に沿ってシール材を介して互いに対
向配置させ貼り合わせる工程を含む液晶表示パネルの製
造方法において、シール材として紫外線硬化型樹脂を用
い、且つ紫外線照射時の基板温度を室温あるいは常温に
保って紫外線硬化型樹脂を硬化させ一対の基板を貼り合
わせる事を特徴とする。
The measures taken to solve the problems of the prior art and to achieve the objects of the present invention are as follows. That is, in a method of manufacturing a liquid crystal display panel, which includes a step of laminating a pair of substrates each having an electrode on the opposite surface along a peripheral portion of the substrate with a sealing material therebetween, and bonding the substrates, an ultraviolet curable resin is used as the sealing material. Further, it is characterized in that the substrate temperature at the time of irradiation with ultraviolet rays is kept at room temperature or room temperature and the ultraviolet curable resin is cured to bond the pair of substrates.

【0008】紫外線硬化型樹脂の重合開始材がラジカル
である時には、紫外線の照度を15mW/cm2 以上に設定
する事が好ましい。又、紫外線硬化型樹脂の重合開始材
がイオンである時には、紫外線の照度を100ないし1
50mW/cm2 の範囲に設定する事が好ましい。この場合
には、紫外線照射後、基板間隙の均一性に悪影響を及ぼ
さない範囲で若干の加熱処理を施すとより良好な接着強
度が得られる。
When the polymerization initiator of the ultraviolet curable resin is a radical, it is preferable to set the illuminance of ultraviolet rays to 15 mW / cm 2 or more. Further, when the polymerization initiator of the ultraviolet curable resin is an ion, the illuminance of ultraviolet rays is 100 to 1
It is preferable to set it in the range of 50 mW / cm 2 . In this case, after the UV irradiation, if a slight heat treatment is performed within a range that does not adversely affect the uniformity of the substrate gap, a better adhesive strength can be obtained.

【0009】[0009]

【作用】本発明によれば、シール材として従来の熱硬化
型樹脂に代えて紫外線硬化型樹脂を用いている。この
為、原理的に高温の加熱加圧処理を必要とせず紫外線照
射により組み立てを行なう事ができる。しかしながら、
照射処理に一般的に用いられる紫外線ランプは目的とす
る紫外線の他に可視光線や赤外線等の熱線も放射する。
この為、何らの対策を講じない場合には基板温度は照射
処理中上昇し熱的歪が生じる原因となる。例えば、90
秒の照射で基板温度は70ないし80℃に上昇する。こ
の為、本発明においては特に紫外線照射処理中冷却を行
ない基板温度を室温(例えば22.5℃ないし23.5
℃)に保持している。
According to the present invention, the ultraviolet curable resin is used as the sealing material in place of the conventional thermosetting resin. Therefore, in principle, the assembly can be performed by irradiating the ultraviolet rays without the need for high-temperature heat and pressure treatment. However,
Ultraviolet lamps generally used for irradiation treatment emit heat rays such as visible rays and infrared rays in addition to the desired ultraviolet rays.
For this reason, if no measures are taken, the substrate temperature rises during the irradiation process and causes thermal strain. For example, 90
The substrate temperature rises to 70 to 80 ° C. by irradiation for 2 seconds. Therefore, in the present invention, the substrate temperature is set to room temperature (for example, 22.5 ° C. to 23.5 ° C.) by cooling during the ultraviolet irradiation process.
C)).

【0010】ところで、紫外線ランプからの放熱は基板
間隙の均一性制御には悪影響を及ぼす一方、紫外線樹脂
の接着強度の向上にはある程度寄与している。従って、
室温照射を行なった場合接着強度の低下が懸念される。
しかしながら、室温照射においても、重合開始材との関
連で紫外線照度等を適切に設定する事により実用的に十
分な接着強度が得られる事が判明した。例えば、重合開
始材がラジカルである時には紫外線照度は15mW/cm2
以上に設定される。又、重合開始材がイオンである時に
は、紫外線照度は100ないし150mW/cm2 の範囲に
設定される。
Incidentally, the heat radiation from the ultraviolet lamp adversely affects the uniformity control of the substrate gap, but contributes to some extent to the improvement of the adhesive strength of the ultraviolet resin. Therefore,
When irradiation is performed at room temperature, there is a concern that the adhesive strength may decrease.
However, it was found that even at room temperature, a practically sufficient adhesive strength can be obtained by appropriately setting the ultraviolet illuminance and the like in relation to the polymerization initiator. For example, when the polymerization initiator is a radical, the UV illuminance is 15 mW / cm 2
The above is set. When the polymerization initiator is an ion, the UV illuminance is set in the range of 100 to 150 mW / cm 2 .

【0011】[0011]

【実施例】以下図面を参照して本発明の好適な実施例を
詳細に説明する。図1は本発明にかかる液晶表示パネル
の製造方法を示す工程図である。まず、工程1におい
て、電極基板を作成する。即ち、ガラス等からなる平面
基材の表面にITO等の透明導電膜を全面的に付着した
後選択的エッチングを行ない所望のパタンを有する電極
を形成する。加えて、液晶の配向制御に用いられる配向
膜を全面に形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a process chart showing a method for manufacturing a liquid crystal display panel according to the present invention. First, in step 1, an electrode substrate is created. That is, after a transparent conductive film such as ITO is entirely attached to the surface of a flat base material made of glass or the like, selective etching is performed to form an electrode having a desired pattern. In addition, an alignment film used for controlling the alignment of the liquid crystal is formed on the entire surface.

【0012】工程2において、必要に応じ表面処理を行
なう。この処理はシール材の接着強度を上げる為に行な
われる。例えば、配向膜の組成によってはシール材との
相容性が悪いものがあるので、基板表面周辺部からこの
配向膜を除去する。あるいは、基板表面周辺部に沿って
界面活性剤を施す下地処理を行なっても良い。又、紫外
線硬化型樹脂は、一般的に酸化シリコン系物質に対して
相容性が優れているので、基板表面周辺に沿って酸化シ
リコン系薄膜を形成しても良い。
In step 2, surface treatment is carried out if necessary. This treatment is performed to increase the adhesive strength of the sealing material. For example, depending on the composition of the alignment film, the compatibility with the sealing material may be poor, so the alignment film is removed from the peripheral portion of the substrate surface. Alternatively, a base treatment for applying a surfactant may be performed along the peripheral portion of the substrate surface. Further, since the ultraviolet curable resin is generally excellent in compatibility with the silicon oxide type substance, the silicon oxide type thin film may be formed along the periphery of the substrate surface.

【0013】次に工程3において、少なくとも一方の基
板表面周辺部に沿って紫外線硬化型樹脂(以下UV樹脂
と表記する場合がある)からなるシール材を印刷塗布す
る。この塗布は例えば液状のシール材をスクリーン印刷
して行なわれる。
Next, in step 3, a seal material made of an ultraviolet curable resin (hereinafter sometimes referred to as a UV resin) is applied by printing along at least one peripheral portion of the substrate surface. This application is performed, for example, by screen-printing a liquid sealing material.

【0014】UV樹脂としては一般的にアクリル系のも
のが用いられ、その構造は例えば以下の化学式1によっ
て表わされる。基本単位としてアクリレートあるいはメ
タアクリレートが組み込まれている。置換基X,Yにつ
いては、樹脂の要求特性に応じて適宜選択される。アク
リル系UV樹脂の重合開始材としては一般にラジカルが
利用されている。この種のUV樹脂は例えばソニーケミ
カル社から入手可能である。
An acrylic resin is generally used as the UV resin, and its structure is represented by the following chemical formula 1, for example. Acrylate or methacrylate is incorporated as a basic unit. The substituents X and Y are appropriately selected according to the required characteristics of the resin. Radicals are generally used as polymerization initiators for acrylic UV resins. UV resins of this type are available, for example, from Sony Chemicals.

【化1】 [Chemical 1]

【0015】最近アクリル系UV樹脂に代えてエポキシ
系UV樹脂が開発されている。エポキシ系はアクリル系
に比べて接着性に優れている。エポキシ系UV樹脂の構
造は例えば以下の化学式によって表わされ、一般的にビ
スフェノールA型と呼ばれる構造を持つものが多い。結
合基Xは樹脂の要求特性によって適宜選択される。この
種のUV樹脂は例えばソニーケミカル社から開発品とし
て入手可能である。重合開始材としてはラジカル及びイ
オンの両者が利用可能であるが、本発明においては特に
取り扱いの容易なイオン系重合開始材を用いている。
Recently, epoxy UV resins have been developed in place of acrylic UV resins. Epoxy type has better adhesiveness than acrylic type. The structure of the epoxy UV resin is represented by, for example, the following chemical formula, and many of them have a structure generally called bisphenol A type. The bonding group X is appropriately selected according to the required characteristics of the resin. This type of UV resin is available as a developed product from Sony Chemical Company, for example. Although both radicals and ions can be used as the polymerization initiator, in the present invention, an ionic polymerization initiator that is particularly easy to handle is used.

【化2】 [Chemical 2]

【0016】次に工程4において、印刷塗布されたUV
樹脂をはさんで、一対の基板を重ね合わせプレス等によ
り加圧して仮止め固定する。この時、基板表面に、一定
の粒径を有するスペーサを散布し基板間隙を一定に保つ
様にしても良い。
Next, in step 4, the UV applied by printing is applied.
A pair of substrates are superposed on each other with resin sandwiched therebetween and pressed by a press or the like to temporarily fix them. At this time, spacers having a constant particle size may be dispersed on the surface of the substrate to keep the substrate gap constant.

【0017】工程5において、本発明の要部をなす室温
冷却紫外線照射が行なわれ、シール材硬化処理を実施す
る。この紫外線照射は、例えば水銀灯等の紫外線ランプ
を用い透明なガラス基板を介して行なわれる。紫外線ラ
ンプの放熱により、基板温度が上昇するのを防止する為
に室温あるいは常温冷却が行なわれる。この温度範囲は
例えば22.5℃ないし23.5℃の間である。室温冷
却の方法としては、スポットクーラを用いて基板に横方
向から冷風を吹き込む手段が挙げられる。あるいは、こ
れに代えて紫外線ランプの下に熱線反射ミラーを取り付
け、紫外線のみを選択的に照射する方法も利用可能であ
る。あるいは、照射に用いる紫外線ランプを水冷二重管
構造とし放熱を除去しても良い。何れにしても、何らの
冷却対策を施さない場合には、基板温度は容易に80℃
以上に上昇する。
In step 5, room temperature-cooled UV irradiation, which is an essential part of the present invention, is carried out to carry out a sealing material curing treatment. This ultraviolet irradiation is carried out through a transparent glass substrate using an ultraviolet lamp such as a mercury lamp. Room temperature or room temperature cooling is performed to prevent the substrate temperature from rising due to heat radiation from the ultraviolet lamp. This temperature range is for example between 22.5 ° C and 23.5 ° C. As a method of cooling at room temperature, there is a means of blowing cold air from the lateral direction to the substrate using a spot cooler. Alternatively, instead of this, a method of attaching a heat ray reflecting mirror under an ultraviolet lamp and selectively irradiating only ultraviolet rays can be used. Alternatively, the ultraviolet lamp used for irradiation may have a water-cooled double tube structure to remove heat radiation. In any case, if no cooling measures are taken, the substrate temperature will be 80 ° C easily.
Rise above.

【0018】室温冷却下においても実用レベルの接着強
度を保証する為に、紫外線照度を適切に制御する。例え
ばアクリル系UV樹脂とラジカル系重合開始材を組み合
わせて用いた場合には、紫外線の照度を15mW/cm2
上に設定する。又、エポキシ系UV樹脂とイオン系重合
開始材を組み合わせて用いた時には、紫外線の照度を1
00ないし150mW/cm2 の範囲に設定する。
The ultraviolet illuminance is appropriately controlled in order to guarantee a practical adhesive strength even under room temperature cooling. For example, when an acrylic UV resin and a radical polymerization initiator are used in combination, the illuminance of ultraviolet rays is set to 15 mW / cm 2 or more. Also, when the epoxy-based UV resin and the ionic-based polymerization initiator are used in combination, the illuminance of ultraviolet rays is 1
Set in the range of 00 to 150 mW / cm 2 .

【0019】続いて、工程6において、必要に応じ後加
熱処理を行なう。この後加熱処理は接着強度を更に上げ
る事を目的とし、特にエポキシ系UV樹脂とイオン系重
合開始材との組み合わせを用いた場合に有効である。重
合開始材が活性イオンであり、ラジカルに比べ寿命が長
い為、後加熱処理を行なうと活性イオンが熱的エネルギ
ーを与えられて重合反応を更に進行させる。後加熱処理
の温度としては、基板間隙の均一性に悪影響を及ぼさな
い範囲で、例えば50℃程度に設定される。
Subsequently, in step 6, post-heat treatment is performed if necessary. The post heat treatment is intended to further increase the adhesive strength, and is particularly effective when a combination of an epoxy UV resin and an ionic polymerization initiator is used. Since the polymerization initiator is an active ion and has a longer life than a radical, the post-heating treatment gives thermal energy to the active ion to further advance the polymerization reaction. The temperature of the post heat treatment is set to, for example, about 50 ° C. within a range that does not adversely affect the uniformity of the substrate gap.

【0020】次に、工程7において、貼り合わされた基
板の分割を行ない個々のセルに分離する。最後に、工程
8において個々のセルの間隙に液晶を封入し表示パネル
を得る。この様に、一般にパネル製造を効率的に行なう
為に多数個取り方式を採用している。この場合、上記例
に代えて、液晶を封入した後、セル分割を行っても良
い。又、アクティブマトリクスタイプの液晶パネルを製
造する場合には、最初から単個取り方式を採用しても良
い。
Next, in step 7, the bonded substrates are divided into individual cells. Finally, in step 8, liquid crystal is filled in the spaces between the individual cells to obtain a display panel. In this way, generally, a multi-cavity method is adopted in order to efficiently manufacture the panel. In this case, instead of the above example, the cell division may be performed after enclosing the liquid crystal. Further, when manufacturing an active matrix type liquid crystal panel, a single-cavity method may be adopted from the beginning.

【0021】種々のサンプルを作成し、接着強度を測定
して本発明の効果を評価した。図2にサンプルの形状を
示す。150mm角のガラス基板11を用いてサンプルを
作成した。この基板上に、スクリーン印刷を用いてUV
樹脂を窓枠状に複数塗布した。個々の窓枠形状の寸法は
縦19mmで横16mmである。UV樹脂を乾燥した後、ガ
ラス基板11上に略同寸法の石英基板(図示せず)を重
ね合わせプレスにより仮止め固定した。続いて、紫外線
照射あるいは紫外線露光を行ないUV樹脂を硬化して両
基板を接着した。個々の窓枠パタン12の間において縦
方向及び横方向に沿ってケガキ線13を入れた。このケ
ガキ線はダイアモンドカッタ等を用いてガラス基板及び
石英基板の両面から入れた。貼り合わされた基板に衝撃
を与えケガキ線に沿って個々に分離して37個のダミー
液晶セルサンプルを得た。個々のサンプルについて窓枠
パタン12を観察し剥離が生じているかどうかを評価し
た。その際、衝撃による分離段階で剥れたサンプル個数
と分離後剥離が観察された個数とを合わせて剥離数とし
た。なお、ガラス基板と石英基板が完全に分離したもの
を完全剥離とし、窓枠パタン12が部分的に剥離したも
のを部分剥離として計数した。
Various samples were prepared and the adhesive strength was measured to evaluate the effect of the present invention. The shape of the sample is shown in FIG. A sample was prepared using a glass substrate 11 of 150 mm square. UV is printed on this substrate using screen printing.
A plurality of resins were applied in a window frame shape. The size of each window frame shape is 19 mm in length and 16 mm in width. After the UV resin was dried, a quartz substrate (not shown) having substantially the same size was superposed on the glass substrate 11 and temporarily fixed by a press. Then, UV irradiation or UV exposure was performed to cure the UV resin and bond the two substrates. Marking lines 13 were put between the individual window frame patterns 12 along the longitudinal direction and the lateral direction. The marking line was placed from both sides of the glass substrate and the quartz substrate using a diamond cutter or the like. The bonded substrates were impacted and separated individually along the marking line to obtain 37 dummy liquid crystal cell samples. The window frame pattern 12 was observed for each sample to evaluate whether peeling occurred. At that time, the number of peeled samples was combined with the number of samples peeled at the separation stage due to impact and the number of peeling observed after separation. It should be noted that the case where the glass substrate and the quartz substrate were completely separated was counted as complete peeling, and the case where the window frame pattern 12 was partially peeled was counted as partial peeling.

【0022】結果を以下の表1に示す。シール材として
用いたUV樹脂の種類や紫外線照度を変えて5種類のサ
ンプルを作成し評価した。各サンプルについて試料個数
は74である。又、紫外線の波長は365nmのものを用
い、表1に示す紫外線照度は試料表面で測定した数値を
載せている。
The results are shown in Table 1 below. Five types of samples were prepared and evaluated by changing the type of UV resin used as the sealing material and the illuminance of ultraviolet rays. The number of samples is 74 for each sample. Further, the wavelength of the ultraviolet ray is 365 nm, and the ultraviolet illuminance shown in Table 1 is the numerical value measured on the sample surface.

【表1】 [Table 1]

【0023】第1番目のサンプルについてはアクリル系
UV樹脂とラジカル系重合開始材との組み合わせを用い
た。紫外線照度は15mW/cm2 に設定した。この時、U
V樹脂の仕様に合わせて積算光量が3000〜5000
mJ/cm2 となる様に照射時間を設定した。紫外線照射
中、基板温度が室温あるいは常温に保持される様に冷却
を行なっている。この様にして得られた74個の試料あ
るいは標本の剥離個数は0であった。
For the first sample, a combination of an acrylic UV resin and a radical polymerization initiator was used. The ultraviolet illuminance was set to 15 mW / cm 2 . At this time, U
Accumulated light quantity is 3000-5000 according to the specifications of V resin
The irradiation time was set so that it would be mJ / cm 2 . During the ultraviolet irradiation, cooling is performed so that the substrate temperature is kept at room temperature or room temperature. The number of peeled 74 samples or specimens thus obtained was zero.

【0024】第2番目のサンプルについてはエポキシ系
のUV樹脂とイオン系の重合開始材の組み合わせを用い
た。基板温度を室温に保持し紫外線照度を17ないし2
0mW/cm2 に設定した。積算光量が5000mJ/cm2
なる様に照射時間を決めた。74個の標本の全てに完全
剥離が生じた。
For the second sample, a combination of an epoxy UV resin and an ionic polymerization initiator was used. The substrate temperature is kept at room temperature and the UV illuminance is 17 to 2
It was set to 0 mW / cm 2 . The irradiation time was determined so that the integrated light quantity would be 5000 mJ / cm 2 . Complete detachment occurred in all 74 specimens.

【0025】第3番目のサンプルは紫外線照度を50mW
/cm2 に増加した点を除き第2番目のサンプルと同様の
条件で作成した。74個の標本の全てに部分剥離が生じ
た。
The third sample has an ultraviolet illuminance of 50 mW
The sample was prepared under the same conditions as the second sample except that it was increased to / cm 2 . Partial delamination occurred in all 74 specimens.

【0026】第4番目のサンプルは、第3番目のサンプ
ルと同一の条件で作成した標本を50℃で10分間後加
熱処理したものである。74個の標本の内45個に部分
剥離が生じた。
The fourth sample is a sample prepared under the same conditions as the third sample, and post-heated at 50 ° C. for 10 minutes. Partial peeling occurred in 45 of the 74 specimens.

【0027】最後に第5番目のサンプルは、同様にエポ
キシ系UV樹脂とイオン系重合開始材との組み合わせを
用い室温冷却下で紫外線照射を行なったものである。但
し、第3番目のサンプルに比較して、紫外線照度を更に
100ないし120mW/cm2 に増加するともに積算光量
が20000mJ/cm2 となる様に照射時間を定めた。7
4個の標本の内剥離を生じたものは無かった。
Finally, the fifth sample was similarly irradiated with ultraviolet rays while cooling at room temperature using a combination of an epoxy UV resin and an ionic polymerization initiator. However, as compared with the third sample, the irradiation time was set so that the ultraviolet light intensity was further increased to 100 to 120 mW / cm 2 and the integrated light quantity was 20000 mJ / cm 2 . 7
None of the four specimens had internal detachment.

【0028】以上の結果から以下の事実が明らかになっ
た。アクリル系UV樹脂については、比較的表面照射強
度が低くても十分に室温硬化が可能である。一方、エポ
キシ系UV樹脂については室温下紫外線照射により硬化
させる場合、100mW/cm2 以上の表面照射強度及び2
0000mJ/cm2 程度の積算光量が必要である。但し、
紫外線照度を150mW/cm2 を越えて設定すると基板温
度が室温以上に上昇する恐れがある。又、エポキシ系U
V樹脂を用いた場合、照射処理後加熱処理を施す事によ
り接着強度を改善できる。なお、剥離を生じなかった全
ての標本について基板間隙を測定したところ極めて均一
且つ一定した数値が得られた。
From the above results, the following facts have become clear. An acrylic UV resin can be sufficiently cured at room temperature even if the surface irradiation intensity is relatively low. On the other hand, epoxy UV resin has a surface irradiation intensity of 100 mW / cm 2 or more and 2 when cured by UV irradiation at room temperature.
A cumulative light amount of about 0000 mJ / cm 2 is required. However,
If the UV illuminance is set to exceed 150 mW / cm 2 , the substrate temperature may rise above room temperature. Also, epoxy type U
When V resin is used, the adhesive strength can be improved by performing heat treatment after irradiation treatment. When the substrate gaps were measured for all the samples that did not peel, extremely uniform and constant numerical values were obtained.

【0029】[0029]

【発明の効果】以上説明した様に、本発明によれば、室
温下で紫外線照射処理を行なう事により、液晶パネルの
基板間隙を従来に比し均一且つ一定に制御できるという
効果がある。室温硬化であるので原理的に液晶パネルの
熱的歪を防止できるという効果がある。従来の熱硬化処
理時間に比べて紫外線照射時間はかなり短い為、パネル
の製造に要するタクトタイムが大幅に短縮できるという
効果がある。更に、実用的に十分な接着強度が得られる
ので製品の長期信頼性を保証できるという効果がある。
As described above, according to the present invention, there is an effect that the substrate gap of the liquid crystal panel can be controlled to be uniform and constant as compared with the conventional case by performing the ultraviolet irradiation treatment at room temperature. Since it is cured at room temperature, it has the effect of preventing thermal distortion of the liquid crystal panel in principle. Since the ultraviolet irradiation time is considerably shorter than the conventional heat curing processing time, there is an effect that the tact time required for manufacturing the panel can be significantly shortened. Further, since practically sufficient adhesive strength can be obtained, there is an effect that long-term reliability of the product can be guaranteed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる液晶表示パネルの製造方法を示
す工程図である。
FIG. 1 is a process drawing showing a method of manufacturing a liquid crystal display panel according to the present invention.

【図2】評価用サンプルの形状を示す模式的な平面図で
ある。
FIG. 2 is a schematic plan view showing the shape of an evaluation sample.

【図3】液晶表示パネルの一般的な構造を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing a general structure of a liquid crystal display panel.

【符号の説明】[Explanation of symbols]

1 電極基板作成工程 2 表面処理工程 3 VU樹脂シール材印刷工程 4 基板重ね合わせ工程 5 室温冷却紫外線照射硬化工程 6 後加熱処理工程 7 液晶封入工程 8 セル分割工程 1 Electrode Substrate Making Step 2 Surface Treatment Step 3 VU Resin Sealing Material Printing Step 4 Substrate Laminating Step 5 Room Temperature Cooling UV Irradiation Curing Step 6 Post Heat Treatment Step 7 Liquid Crystal Encapsulation Step 8 Cell Division Step

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 対向面に各々電極を有する一対の基板を
その周辺部に沿ってシール材を介して互いに対向配置さ
せ貼り合わせる工程を含む液晶表示パネルの製造方法に
おいて、 シール材として紫外線硬化型樹脂を用い、紫外線照射時
の基板温度を室温に保って前記紫外線硬化型樹脂を硬化
させ一対の基板を貼り合わせる事を特徴とする液晶表示
パネルの製造方法。
1. A method of manufacturing a liquid crystal display panel, comprising a step of arranging and adhering a pair of substrates, each having electrodes on opposing surfaces, along a peripheral portion thereof with a sealing material interposed therebetween, and bonding the substrates together. A method for manufacturing a liquid crystal display panel, which comprises using a resin and curing the ultraviolet curable resin while keeping the substrate temperature at the time of ultraviolet irradiation at room temperature to bond a pair of substrates.
【請求項2】 前記紫外線硬化型樹脂の重合開始材がラ
ジカルであり、紫外線の照度が15mW/cm2 以上である
事を特徴とする請求項1記載の液晶表示パネルの製造方
法。
2. The method for producing a liquid crystal display panel according to claim 1, wherein the polymerization initiator of the ultraviolet curable resin is a radical, and the illuminance of ultraviolet rays is 15 mW / cm 2 or more.
【請求項3】 前記紫外線硬化型樹脂の重合開始材がイ
オンであり、紫外線の照度が100〜150mW/cm2
ある事を特徴とする請求項1記載の液晶表示パネルの製
造方法。
3. The method for producing a liquid crystal display panel according to claim 1, wherein the polymerization initiator of the ultraviolet curable resin is an ion, and the illuminance of ultraviolet rays is 100 to 150 mW / cm 2 .
【請求項4】 紫外線照射後、加熱処理を施した事を特
徴とする請求項3記載の液晶表示パネルの製造方法。
4. The method for producing a liquid crystal display panel according to claim 3, wherein heat treatment is performed after the irradiation of ultraviolet rays.
JP31141891A 1991-10-31 1991-10-31 Liquid crystal display panel manufacturing method Expired - Fee Related JP3263927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31141891A JP3263927B2 (en) 1991-10-31 1991-10-31 Liquid crystal display panel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31141891A JP3263927B2 (en) 1991-10-31 1991-10-31 Liquid crystal display panel manufacturing method

Publications (2)

Publication Number Publication Date
JPH05127174A true JPH05127174A (en) 1993-05-25
JP3263927B2 JP3263927B2 (en) 2002-03-11

Family

ID=18016967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31141891A Expired - Fee Related JP3263927B2 (en) 1991-10-31 1991-10-31 Liquid crystal display panel manufacturing method

Country Status (1)

Country Link
JP (1) JP3263927B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011467A1 (en) * 1996-09-13 1998-03-19 Matsushita Electric Industrial Co., Ltd. Macromolecular dispersion type liquid crystal display element and method of manufacturing the same
US5959712A (en) * 1997-07-11 1999-09-28 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a liquid crystal display element having a decreased fluctuation of aperture ratio
US6221443B1 (en) 1996-09-13 2001-04-24 Matsushita Electric Industrial Co., Ltd. Macromolecular dispersion type liquid crystal display element and method of manufacturing the same
JP2007025419A (en) * 2005-07-20 2007-02-01 Seiko Epson Corp Method of manufacturing liquid crystal device and liquid crystal device
US7436483B2 (en) 2002-03-15 2008-10-14 Lg Display Co., Ltd. System for fabricating liquid crystal display with calculated pattern of liquid crystal drops that do not contact sealant and method of fabricating liquid crystal display using the same
CN102122626A (en) * 2010-10-26 2011-07-13 深圳市华星光电技术有限公司 Conveying device and method, and display panel assembly equipment and method applied thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595268B1 (en) 1992-10-28 2001-03-21 Victor Company Of Japan, Limited Variable transfer rate control coding apparatus and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998011467A1 (en) * 1996-09-13 1998-03-19 Matsushita Electric Industrial Co., Ltd. Macromolecular dispersion type liquid crystal display element and method of manufacturing the same
US6221443B1 (en) 1996-09-13 2001-04-24 Matsushita Electric Industrial Co., Ltd. Macromolecular dispersion type liquid crystal display element and method of manufacturing the same
US6355315B1 (en) 1996-09-13 2002-03-12 Matsushita Electric Industrial Co., Ltd. Macromolecular dispersion type liquid crystal display element and method of manufacturing the same
US6355314B1 (en) 1996-09-13 2002-03-12 Matsushita Electric Industrial Co., Ltd. Macromolecular dispersion type liquid crystal display element and method of manufacturing the same
US6365239B1 (en) 1996-09-13 2002-04-02 Matsushita Electric Industrial Co., Ltd. Macromolecular dispersion type liquid crystal display element and method of manufacturing the same
US6368680B1 (en) 1996-09-13 2002-04-09 Matsushita Electric Industrial Co., Ltd. Macromolecular dispersion type liquid crystal display element and method of manufacturing the same
US6551667B2 (en) 1996-09-13 2003-04-22 Matsushita Electric Ind Co Ltd Macromolecular dispersion type liquid crystal display element and method of manufacturing the same
US5959712A (en) * 1997-07-11 1999-09-28 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a liquid crystal display element having a decreased fluctuation of aperture ratio
US7436483B2 (en) 2002-03-15 2008-10-14 Lg Display Co., Ltd. System for fabricating liquid crystal display with calculated pattern of liquid crystal drops that do not contact sealant and method of fabricating liquid crystal display using the same
JP2007025419A (en) * 2005-07-20 2007-02-01 Seiko Epson Corp Method of manufacturing liquid crystal device and liquid crystal device
JP4760180B2 (en) * 2005-07-20 2011-08-31 セイコーエプソン株式会社 Manufacturing method of liquid crystal device
CN102122626A (en) * 2010-10-26 2011-07-13 深圳市华星光电技术有限公司 Conveying device and method, and display panel assembly equipment and method applied thereby

Also Published As

Publication number Publication date
JP3263927B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
JPH10115833A (en) Production of liquid crystal display element
JPH075479A (en) Production of ferromagnetic liquid crystal element
JP3263927B2 (en) Liquid crystal display panel manufacturing method
JPH11281988A (en) Production of liquid crystal display element
JP2609088B2 (en) Manufacturing method of liquid crystal display
JP2002341359A (en) Method and device for manufacturing liquid crystal display element
JPH07128626A (en) Production of liquid crystal display device
JP2000002862A (en) Manufacture of liquid crystal display element
JPH11223819A (en) Production of liquid crystal display device
JPS62231927A (en) Production of liquid crystal display element
JP2715067B2 (en) Liquid crystal device manufacturing method
JP2522549B2 (en) Laminating structure
JPS62131224A (en) Production of liquid crystal cell
JP2910729B2 (en) Manufacturing method of liquid crystal display device
JPH0439651B2 (en)
JP2002311443A (en) Liquid crystal display panel and its manufacturing method
JP2002350871A (en) Manufacturing method and manufacturing device for liquid crystal display element
JP2002365643A (en) Method for manufacturing liquid crystal display element
JP2002357836A (en) Liquid crystal panel and manufacturing method therefor
JP3050214B2 (en) Manufacturing method of liquid crystal display device
JP4240143B2 (en) Manufacturing method of electro-optical device
JPH07281141A (en) Production of liquid crystal display device
JPH10197879A (en) Production of liquid crystal device
JPH11167119A (en) Production of electrode substrate and production of liquid crystal element
JPH1115007A (en) Liquid crystal display element and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071228

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091228

LAPS Cancellation because of no payment of annual fees