JPH05121361A - Semiconductor wafer cooler - Google Patents

Semiconductor wafer cooler

Info

Publication number
JPH05121361A
JPH05121361A JP28116291A JP28116291A JPH05121361A JP H05121361 A JPH05121361 A JP H05121361A JP 28116291 A JP28116291 A JP 28116291A JP 28116291 A JP28116291 A JP 28116291A JP H05121361 A JPH05121361 A JP H05121361A
Authority
JP
Japan
Prior art keywords
pressure
gas introduction
semiconductor wafer
refrigerant gas
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28116291A
Other languages
Japanese (ja)
Inventor
Hidenori Sekiya
秀徳 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28116291A priority Critical patent/JPH05121361A/en
Publication of JPH05121361A publication Critical patent/JPH05121361A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the dispersion in quality of products by estimating the pressure of the refrigerant gas inside the space at the rear of a semiconductor from the pressures before and behind the pressure difference generating means inside a gas introduction path and from the pressure difference, keeping it constant with the valve opening/closing controller of a wafer cooler, and thereby keeping the cooling capacity constant. CONSTITUTION:A valve opening and closing controller 24 sends out an aperture instruction signal to a refrigerant gas introduction valve 10 so that the pressure P inside the space 6 between the stage 3 inside a vacuum chamber 1 and the semiconductor wafer 5 may be constant at all times based on the signals 25 and 26 representing the pressure before and behind the orifice 21 and sent from pressure measuring instruments 22 and 23, and adjusts the opening of the valve 10. Hereby, the quantity of the refrigerant gas 9 introduced into a gas introduction passage 8 is controlled, and the wafer is cooled with always constant capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばRIE(反応
性イオンエッチング)およびCVD(化学気相堆積)等
のような半導体ウエハ真空処理装置に用いられ、被処理
物としての半導体ウエハを冷却する半導体ウエハ冷却装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a semiconductor wafer vacuum processing apparatus such as RIE (reactive ion etching) and CVD (chemical vapor deposition) to cool a semiconductor wafer as an object to be processed. The present invention relates to a semiconductor wafer cooling device.

【0002】[0002]

【従来の技術】図3は従来の半導体ウエハ冷却装置が適
用された半導体ウエハ真空処理装置の概略構成を示す図
である。図において、1は壁面に反応ガス2の導入口1
aおよび真空ポンプ(図示せず)への接続口1bがそれ
ぞれ形成される真空チャンバー、3はこの真空チャンバ
ー2の底部に設けられ、Oリング4を介して半導体ウエ
ハ5を担持するステージ、6はこのステージ3と半導体
ウエハ5の裏面との間に形成される間隙、7は真空チャ
ンバー2の上部のステージ3と対向する位置に設けられ
る電極である。
2. Description of the Related Art FIG. 3 is a diagram showing a schematic structure of a semiconductor wafer vacuum processing apparatus to which a conventional semiconductor wafer cooling apparatus is applied. In the figure, 1 is an inlet 1 for the reaction gas 2 on the wall surface.
a and a vacuum chamber 3 in which a connection port 1b to a vacuum pump (not shown) is formed respectively, a vacuum chamber 3 is provided at the bottom of the vacuum chamber 2, and a stage for carrying a semiconductor wafer 5 via an O-ring 4 is provided. A gap 7 formed between the stage 3 and the back surface of the semiconductor wafer 5 is an electrode provided at a position facing the stage 3 above the vacuum chamber 2.

【0003】8はステージ3内を貫通して間隙6に連通
し、間隙6内に冷媒ガス9を導入するガス導入路、10
はこのガス導入路8に接続されガス導入路8内を流れる
冷媒ガス9の流量を調節する冷媒ガス導入バルブ、11
はガス導入路8内の圧力を測定する圧力測定器、12は
この圧力測定器11からの測定圧力信号13を取り込
み、冷媒ガス導入バルブ10へ開閉量指示信号14を送
出するバルブ開閉制御器である。そして、これら間隙
6、ガス導入路8、冷媒ガス導入バルブ10、圧力測定
器11およびバルブ開閉制御器12で半導体ウエハ冷却
装置20を構成している。
Reference numeral 8 denotes a gas introducing passage which penetrates through the stage 3 and communicates with the gap 6, and introduces a refrigerant gas 9 into the gap 6.
Is a refrigerant gas introduction valve which is connected to the gas introduction path 8 and adjusts the flow rate of the refrigerant gas 9 flowing in the gas introduction path 8;
Is a pressure measuring device for measuring the pressure in the gas introduction passage 8, and 12 is a valve opening / closing controller for taking in the measured pressure signal 13 from the pressure measuring device 11 and sending an opening / closing amount instruction signal 14 to the refrigerant gas introduction valve 10. is there. The gap 6, the gas introduction passage 8, the refrigerant gas introduction valve 10, the pressure measuring device 11 and the valve opening / closing controller 12 constitute a semiconductor wafer cooling device 20.

【0004】次に動作について説明する。RIEやCV
D等のような半導体ウエハ真空処理装置においては、反
応ガス2を導入口1aから真空チャンバー1内に流し込
み、真空チャンバー1内が所定の圧力となるように、真
空ポンプによって接続口1bから排気しながら、電極7
とステージ3間に高周波電力を印加し、両者7、3間に
プラズマを生成して半導体ウエハ5を処理している。こ
のような処理中に半導体ウエハ5はプラズマに曝され、
又、表面での化学反応により加熱される。
Next, the operation will be described. RIE and CV
In a semiconductor wafer vacuum processing apparatus such as D, the reaction gas 2 is flown into the vacuum chamber 1 through the inlet 1a, and is exhausted from the connection port 1b by a vacuum pump so that the vacuum chamber 1 has a predetermined pressure. While the electrode 7
The high-frequency power is applied between the stage 3 and the stage 3 to generate plasma between both 7 and 3 to process the semiconductor wafer 5. During such processing, the semiconductor wafer 5 is exposed to plasma,
Also, it is heated by a chemical reaction on the surface.

【0005】このような加熱の影響を防ぐために、装置
には半導体ウエハ冷却装置20が組み込まれている。す
なわち、半導体ウエハ冷却装置20は、ガス道入路8か
らステージ3と半導体ウエハ5の裏面との間に形成され
る間隙6へ冷媒ガス9を供給し、この冷媒ガス9によっ
て半導体ウエハ5の昇温を防止している。この際、冷媒
ガス9の伝熱能力は圧力によって異なるため、間隙6内
の圧力を一定に保持しておく必要がある。このため、O
リング4等のシール材により冷媒ガス9が真空チャンバ
ー1内に漏れるのを極力抑えるとともに、圧力測定器1
1によりガス導入路8内の圧力を検出し、この測定圧力
信号13に基づいてバルブ開閉制御器12は冷媒ガス導
入バルブ10へ開閉量指示信号14を送出し、冷媒ガス
導入バルブ10の開度を調節して間隙6内の冷媒ガス9
の圧力が一定になるように制御する。
In order to prevent the influence of such heating, a semiconductor wafer cooling device 20 is incorporated in the device. That is, the semiconductor wafer cooling device 20 supplies the refrigerant gas 9 from the gas passage 8 to the gap 6 formed between the stage 3 and the back surface of the semiconductor wafer 5, and the refrigerant gas 9 raises the semiconductor wafer 5. Prevents temperature. At this time, since the heat transfer capacity of the refrigerant gas 9 varies depending on the pressure, it is necessary to keep the pressure in the gap 6 constant. Therefore, O
The sealant such as the ring 4 suppresses the refrigerant gas 9 from leaking into the vacuum chamber 1 as much as possible, and the pressure measuring device 1
1, the pressure in the gas introduction passage 8 is detected, and based on the measured pressure signal 13, the valve opening / closing controller 12 sends an opening / closing amount instruction signal 14 to the refrigerant gas introduction valve 10 to open the refrigerant gas introduction valve 10. Adjusting the refrigerant gas 9 in the gap 6
The pressure is controlled to be constant.

【0006】[0006]

【発明が解決しようとする課題】従来の半導体ウエハ冷
却装置は以上のように構成され、圧力測定器11はガス
導入路8の途中に1個所しか設けられていないため、O
リング4の部分から冷媒ガス9の漏れが起こっている場
合には、圧力測定器11で測定されるガス導入路8内の
冷媒ガス9の圧力を一定に制御しても、冷媒ガス9の漏
れが起こっている部分に近い半導体ウエハ5の裏面で
は、冷媒ガス9の圧力が低下し冷却能力が低下する。こ
の冷却能力の低下は冷媒ガス9の漏れ量が多い場合やガ
ス導入路8の径が細い場合に著しくなり、これが原因で
起こる半導体ウエハ5毎の温度差によりエッチング特性
や成膜特性に差が生じたり、半導体ウエハ5にダメージ
を与えたりして、製品品質にバラツキが発生するという
問題点があった。
The conventional semiconductor wafer cooling device is constructed as described above, and since the pressure measuring device 11 is provided only at one place in the middle of the gas introduction passage 8,
When the refrigerant gas 9 leaks from the ring 4, even if the pressure of the refrigerant gas 9 in the gas introduction passage 8 measured by the pressure measuring device 11 is controlled to be constant, the refrigerant gas 9 leaks. On the back surface of the semiconductor wafer 5 close to the portion where the heat generation occurs, the pressure of the refrigerant gas 9 decreases and the cooling capacity decreases. This decrease in cooling capacity becomes remarkable when the amount of leakage of the refrigerant gas 9 is large or when the diameter of the gas introduction passage 8 is small, and the temperature difference between the semiconductor wafers 5 caused by this causes a difference in etching characteristics and film forming characteristics. There is a problem that variations occur in the product quality due to the occurrence or damage to the semiconductor wafer 5.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、冷却能力を常に一定に保持する
ことにより、製品品質のバラツキを防止することができ
る半導体ウエハ冷却装置を提供することを目的とするも
のである。
The present invention has been made in order to solve the above problems, and provides a semiconductor wafer cooling device capable of preventing variations in product quality by always maintaining a constant cooling capacity. The purpose is that.

【0008】[0008]

【課題を解決するための手段】この発明に係る半導体ウ
エハ冷却装置は、真空チャンバー内に設けられ半導体ウ
エハを所定の間隙を介して支持するステージと、間隙内
へガス導入路を介して所定量の冷媒ガスを導入する冷媒
ガス導入バルブと、ガス導入路内に設けられガス導入路
内に圧力差を発生させる圧力差発生手段と、この圧力差
発生手段の前後にそれぞれ設けられガス導入路内のそれ
ぞれの位置の圧力を測定する第1および第2の圧力測定
器と、これら第1および第2の圧力測定器でそれぞれ測
定される各圧力値および圧力差によって冷媒ガス導入バ
ルブの開閉量を調節して間隙内の圧力を一定に制御する
圧力制御手段とを備えたものである。
SUMMARY OF THE INVENTION A semiconductor wafer cooling device according to the present invention comprises a stage provided in a vacuum chamber for supporting a semiconductor wafer through a predetermined gap, and a predetermined amount through a gas introduction passage into the gap. Refrigerant gas introduction valve for introducing the refrigerant gas, pressure difference generation means for generating a pressure difference in the gas introduction path provided in the gas introduction path, and in the gas introduction path respectively provided before and after the pressure difference generation means The first and second pressure measuring devices that measure the pressure at the respective positions, and the opening and closing amount of the refrigerant gas introduction valve based on the pressure values and the pressure differences measured by the first and second pressure measuring devices, respectively. And a pressure control means for adjusting the pressure in the gap to a constant value.

【0009】[0009]

【作用】この発明における半導体ウエハ冷却装置のバル
ブ開閉制御器は、ガス導入路内に形成される圧力差発生
手段前後で測定される圧力と圧力差によって、半導体裏
面の間隙内の冷媒ガスの圧力を予測し、この予測圧力が
一定となるように、冷媒ガス導入バルブの開閉量を制御
する。
The valve opening / closing controller of the semiconductor wafer cooling apparatus according to the present invention determines the pressure of the refrigerant gas in the gap on the back surface of the semiconductor by the pressure and the pressure difference measured before and after the pressure difference generating means formed in the gas introduction passage. Is predicted, and the opening / closing amount of the refrigerant gas introduction valve is controlled so that the predicted pressure becomes constant.

【0010】[0010]

【実施例】実施例1 以下、この発明の実施例を図について説明する。図1は
この発明の実施例1における半導体ウエハ冷却装置が適
用された半導体ウエハ真空処理装置の概略構成を示す図
である。図において、真空チャンバー1、導入口1a、
反応ガス2、ステージ3、Oリング4、半導体ウエハ
5、間隙6、電極7、ガス導入路8、冷媒ガス9および
冷媒ガス導入バルブ10は図3に示す従来装置における
ものと同様である。
Embodiment 1 Embodiments of the present invention will be described below with reference to the drawings. 1 is a diagram showing a schematic configuration of a semiconductor wafer vacuum processing apparatus to which a semiconductor wafer cooling apparatus according to a first embodiment of the present invention is applied. In the figure, a vacuum chamber 1, an inlet 1a,
The reaction gas 2, stage 3, O-ring 4, semiconductor wafer 5, gap 6, electrode 7, gas introduction path 8, refrigerant gas 9 and refrigerant gas introduction valve 10 are the same as those in the conventional apparatus shown in FIG.

【0011】21はガス導入路8内に形成される圧力差
発生手段としてのオリフイス、22はこのオリフイス2
1の冷媒ガス9の流れの下流側に接続され圧力を測定す
る第1の圧力測定器、23はオリフイス21の冷媒ガス
9の流れの上流側に接続され圧力を測定する第2の圧力
測定器、24はこれら第1および第2の圧力測定器2
2,23によってそれぞれ測定され、出力される各測定
圧力信号25,26に基づいて、冷媒ガス導入バルブ1
0へ開閉量指示信号27を送出して、ガス導入路8内に
導入される冷媒ガス9の流量を制御するバルブ開閉制御
器である。そして、これら間隙6、ガス導入路8、冷媒
ガス9、冷媒ガス導入バルブ10、オリフイス21、第
1の圧力測定器22、第2の圧力測定器23およびバル
ブ開閉制御器24で半導体ウエハ冷却装置30を構成し
ている。
Reference numeral 21 is an orifice as a pressure difference generating means formed in the gas introduction passage 8, and 22 is the orifice 2.
1 is a first pressure measuring device connected to the downstream side of the flow of the refrigerant gas 9 to measure the pressure, and 23 is a second pressure measuring device connected to the upstream side of the flow of the refrigerant gas 9 of the orifice 21 to measure the pressure , 24 are the first and second pressure measuring devices 2
The refrigerant gas introduction valve 1 is based on the measured pressure signals 25 and 26 which are respectively measured and output by 2 and 23.
The valve opening / closing controller controls the flow rate of the refrigerant gas 9 introduced into the gas introduction passage 8 by sending the opening / closing amount instruction signal 27 to 0. Then, the gap 6, the gas introduction passage 8, the refrigerant gas 9, the refrigerant gas introduction valve 10, the orifice 21, the first pressure measuring device 22, the second pressure measuring device 23, and the valve opening / closing controller 24 are used to cool the semiconductor wafer cooling device. Make up thirty.

【0012】次に、上記のように構成されるこの発明の
実施例1における半導体ウエハ冷却装置30の動作につ
いて説明する。図2(A)は図1における半導体ウエハ
冷却装置30のガス導入路8の詳細を示す拡大断面図、
図2(B)は図2(A)の各部に対応した冷媒ガス流系
の等価回路図であり、図中、Iはガス導入路8内を流れ
る冷媒ガス9の流量、P1は第1の圧力測定器22で測
定される圧力値、P2は第2の圧力測定器23で測定さ
れる圧力値、Pは半導体ウエハ5の裏面に形成される間
隙6内の圧力値、R0はオリフイス21の流路抵抗、R1
はガス道入路8内の流路抵抗、R2はOリング4部から
の冷媒ガス9の漏れ流路抵抗をそれぞれ表す。
Next, the operation of the semiconductor wafer cooling device 30 according to the first embodiment of the present invention configured as described above will be described. 2A is an enlarged sectional view showing details of the gas introduction passage 8 of the semiconductor wafer cooling device 30 in FIG.
2B is an equivalent circuit diagram of the refrigerant gas flow system corresponding to each part of FIG. 2A, in which I is the flow rate of the refrigerant gas 9 flowing in the gas introduction passage 8 and P 1 is the first Pressure value measured by the second pressure measuring device 23, P 2 is a pressure value measured by the second pressure measuring device 23, P is a pressure value in the gap 6 formed on the back surface of the semiconductor wafer 5, and R 0 is Flow path resistance of orifice 21 R 1
Represents the flow passage resistance in the gas passage inlet 8, and R 2 represents the flow passage resistance of the refrigerant gas 9 from the O-ring 4 portion.

【0013】まず、図2(B)に示す等価回路から次式
が成立する。 P2−P1=R0I・・・・・・・・・・・(1) P1−P=R1I ・・・・・・・・・・・(2) 上記式(1)、(2)よりIを消去してPについて整理
すると、 P=P1−R1/R0(P2−P1)・・・・(3) が得られる。この式(3)より、圧力Pを一定に制御す
るためには、第1の圧力測定器22で測定される圧力値
1から、オリフイス21の前後で第1および第2の圧
力測定器22,23で測定される圧力値の差(P2
1)に係数R1/R0を乗じた値を差し引いた値が一定
となるように制御すれば良いことがわかる。
First, the following equation is established from the equivalent circuit shown in FIG. P 2 -P 1 = R 0 I (1) P 1 -P = R 1 I (2) Formula (1) , (2), I is deleted and rearranged for P, P = P 1 −R 1 / R 0 (P 2 −P 1 ) ... (3) is obtained. According to this equation (3), in order to control the pressure P to be constant, the first and second pressure measuring devices 22 before and after the orifice 21 are calculated from the pressure value P 1 measured by the first pressure measuring device 22. , 23, the difference in pressure values measured (P 2
It can be seen that the value obtained by subtracting the value obtained by multiplying P 1 ) by the coefficient R 1 / R 0 may be controlled to be constant.

【0014】又、係数R1/R0は、半導体ウエハ5がス
テージ3上に載置されていない状態(圧力P=0とみな
せる)にて、第1および第2の圧力測定器22,23で
それぞれの位置の圧力値P1,P2を測定することによっ
て容易に得られる。すなわち、上記各圧力値P1,P2
10,P20とすると、式(3)は 0=P10−R1/R0(P20−P10)・・・(4) となり、式4を整理すると、 R1/R0=P10/P20−P10・・・・・・(5) となり、式5として求めることができる。
Further, the coefficients R 1 / R 0 are the first and second pressure measuring instruments 22 and 23 when the semiconductor wafer 5 is not placed on the stage 3 (the pressure P can be regarded as 0). Can be easily obtained by measuring the pressure values P 1 and P 2 at the respective positions. That is, assuming that the pressure values P 1 and P 2 are P 10 and P 20 , respectively, the equation (3) becomes 0 = P 10 −R 1 / R 0 (P 20 −P 10 ) ... (4), When Formula 4 is arranged, R 1 / R 0 = P 10 / P 20 −P 10 ... (5) and can be obtained as Formula 5.

【0015】したがって、バルブ開閉制御器24は第1
および第2の圧力測定器22,23からの各測定圧力信
号25,26と、予め式(5)によって求められる係数
とを基に、式3に示される間隙6内の圧力Pが常に一定
になるように、冷媒ガス導入バルブ10へ開閉量指示信
号を送出して、冷媒ガス導入バルブ10の開度を調節す
ることにより、ガス導入路8内に導入される冷媒ガス9
の流量を制御すれば、間隙6内に裏面が隣接される半導
体ウエハ5は常に一定能力で冷却されるので個々でエッ
チング特性や成膜特性に差が生じることはなくなる。
Therefore, the valve opening / closing controller 24 has the first
Based on the measured pressure signals 25 and 26 from the second pressure measuring devices 22 and 23 and the coefficient previously obtained by the equation (5), the pressure P in the gap 6 shown in the equation 3 is always constant. As described above, the opening / closing amount instruction signal is sent to the refrigerant gas introduction valve 10 to adjust the opening degree of the refrigerant gas introduction valve 10 to introduce the refrigerant gas 9 into the gas introduction passage 8.
If the flow rate is controlled, the semiconductor wafer 5 whose back surface is adjacent to the inside of the gap 6 is always cooled with a constant capacity, so that there is no difference in etching characteristics and film forming characteristics.

【0016】実施例2 尚、上記実施例1では圧力差発生手段としてオリフイス
21を示して説明したが、ニードルバルブ等のように流
路抵抗を持つものであれば何でも良く、上記実施例1と
同様の効果を奏する。
Embodiment 2 In the first embodiment, the orifice 21 is shown as the pressure difference generating means, but any device having a flow path resistance such as a needle valve may be used. Has the same effect.

【0017】[0017]

【発明の効果】以上のように、この発明によれば真空チ
ャンバー内に設けられ半導体ウエハを所定の間隙を介し
て支持するステージと、間隙内へガス導入路を介して所
定量の冷媒ガスを導入する冷媒ガス導入バルブと、ガス
導入路内に設けられガス導入路内に圧力差を発生させる
圧力差発生手段と、この圧力差発生手段の前後にそれぞ
れ設けられガス導入路内のそれぞれの位置の圧力を測定
する第1および第2の圧力測定器と、これら第1および
第2の圧力測定器でそれぞれ測定される各圧力値および
圧力差によって冷媒ガス導入バルブの開閉量を調節して
間隙内の圧力を一定に制御する圧力制御手段とを備えた
ので、冷却能力を常に一定に保持して、製品品質のバラ
ツキを防止することができる半導体ウエハ冷却装置を提
供することを目的とするものである。
As described above, according to the present invention, a stage provided in a vacuum chamber for supporting a semiconductor wafer via a predetermined gap and a predetermined amount of a refrigerant gas into the gap via a gas introduction passage. Refrigerant gas introduction valve to be introduced, pressure difference generation means provided in the gas introduction passage for generating a pressure difference in the gas introduction passage, and respective positions in the gas introduction passage provided before and after the pressure difference generation means And the second pressure measuring device for measuring the pressure of the refrigerant, and the opening and closing amount of the refrigerant gas introduction valve is adjusted by each pressure value and the pressure difference measured by the first and second pressure measuring devices, respectively, and the gap is adjusted. An object of the present invention is to provide a semiconductor wafer cooling device which is provided with a pressure control means for controlling the internal pressure to be constant, so that the cooling capacity can always be kept constant and variation in product quality can be prevented. It is intended to.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1における半導体ウエハ冷却
装置が適用された半導体ウエハ真空処理装置の概略構成
を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a semiconductor wafer vacuum processing apparatus to which a semiconductor wafer cooling apparatus according to a first embodiment of the present invention is applied.

【図2】図2(A)は図1における半導体ウエハ冷却装
置のガス導入路の詳細を示す拡大断面図、図2(B)は
図2(A)の各部に対応した冷媒ガス流系の等価回路図
である。
2 (A) is an enlarged cross-sectional view showing details of a gas introduction path of the semiconductor wafer cooling device in FIG. 1, and FIG. 2 (B) is a refrigerant gas flow system corresponding to each part of FIG. 2 (A). It is an equivalent circuit diagram.

【図3】従来の半導体ウエハ冷却装置が適用された半導
体ウエハ真空処理装置の概略構成を示す図である。
FIG. 3 is a diagram showing a schematic configuration of a semiconductor wafer vacuum processing apparatus to which a conventional semiconductor wafer cooling apparatus is applied.

【符号の説明】[Explanation of symbols]

1 真空チャンバー 3 ステージ 5 半導体ウエハ 6 間隙 7 電極 8 ガス導入路 9 冷媒ガス 10 冷媒ガス導入バルブ 21 オリフイス(圧力差発生手段) 22 第1の圧力測定器 23 第2の圧力測定器 24 バルブ開閉制御器(圧力制御手段) 30 半導体ウエハ冷却装置 DESCRIPTION OF SYMBOLS 1 Vacuum chamber 3 Stage 5 Semiconductor wafer 6 Gap 7 Electrode 8 Gas introduction path 9 Refrigerant gas 10 Refrigerant gas introduction valve 21 Orifice (pressure difference generating means) 22 First pressure measuring instrument 23 Second pressure measuring instrument 24 Valve opening / closing control Container (pressure control means) 30 semiconductor wafer cooling device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空チャンバー内に設けられ半導体ウエ
ハを所定の間隙を介して支持するステージと、上記間隙
内へガス導入路を介して所定量の冷媒ガスを導入する冷
媒ガス導入バルブと、上記ガス導入路内に設けられ上記
ガス導入路内に圧力差を発生させる圧力差発生手段と、
この圧力差発生手段の前後にそれぞれ設けられ上記ガス
導入路内のそれぞれの位置の圧力を測定する第1および
第2の圧力測定器と、これら第1および第2の圧力測定
器でそれぞれ測定される各圧力値および圧力差によって
上記冷媒ガス導入バルブの開閉量を調節して上記間隙内
の圧力を一定に制御する圧力制御手段とを備えたことを
特徴とする半導体ウエハ冷却装置。
1. A stage provided in a vacuum chamber for supporting a semiconductor wafer via a predetermined gap, a refrigerant gas introduction valve for introducing a predetermined amount of a refrigerant gas into the gap via a gas introduction path, A pressure difference generating means for generating a pressure difference in the gas introduction path provided in the gas introduction path,
First and second pressure measuring devices, which are respectively provided before and after the pressure difference generating means and measure pressures at respective positions in the gas introduction passage, are measured by the first and second pressure measuring devices, respectively. A semiconductor wafer cooling device, comprising: a pressure control unit that adjusts the opening / closing amount of the refrigerant gas introduction valve according to each pressure value and pressure difference to constantly control the pressure in the gap.
JP28116291A 1991-10-28 1991-10-28 Semiconductor wafer cooler Pending JPH05121361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28116291A JPH05121361A (en) 1991-10-28 1991-10-28 Semiconductor wafer cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28116291A JPH05121361A (en) 1991-10-28 1991-10-28 Semiconductor wafer cooler

Publications (1)

Publication Number Publication Date
JPH05121361A true JPH05121361A (en) 1993-05-18

Family

ID=17635220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28116291A Pending JPH05121361A (en) 1991-10-28 1991-10-28 Semiconductor wafer cooler

Country Status (1)

Country Link
JP (1) JPH05121361A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100213448B1 (en) * 1996-07-25 1999-08-02 윤종용 An air supplying apparatus for semiconductor device fabrication system
US6012509A (en) * 1996-06-04 2000-01-11 Tokyo Electron Limited Mechanism and method for holding a substrate on a substrate stage of a substrate treatment apparatus
US6059891A (en) * 1997-07-23 2000-05-09 Tokyo Electron Limited Apparatus and method for washing substrate
US6115867A (en) * 1997-08-18 2000-09-12 Tokyo Electron Limited Apparatus for cleaning both sides of substrate
US6431184B1 (en) 1997-08-05 2002-08-13 Tokyo Electron Limited Apparatus and method for washing substrate
JP2013191882A (en) * 2007-01-26 2013-09-26 Hitachi Kokusai Electric Inc Substrate processing method, method of manufacturing semiconductor device, and semiconductor manufacturing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6012509A (en) * 1996-06-04 2000-01-11 Tokyo Electron Limited Mechanism and method for holding a substrate on a substrate stage of a substrate treatment apparatus
KR100213448B1 (en) * 1996-07-25 1999-08-02 윤종용 An air supplying apparatus for semiconductor device fabrication system
US6059891A (en) * 1997-07-23 2000-05-09 Tokyo Electron Limited Apparatus and method for washing substrate
US6431184B1 (en) 1997-08-05 2002-08-13 Tokyo Electron Limited Apparatus and method for washing substrate
US6115867A (en) * 1997-08-18 2000-09-12 Tokyo Electron Limited Apparatus for cleaning both sides of substrate
US6276378B1 (en) 1997-08-18 2001-08-21 Tokyo Electron Limited Apparatus for cleaning both sides of substrate
JP2013191882A (en) * 2007-01-26 2013-09-26 Hitachi Kokusai Electric Inc Substrate processing method, method of manufacturing semiconductor device, and semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
US6532796B1 (en) Method of substrate temperature control and method of assessing substrate temperature controllability
US5547539A (en) Plasma processing apparatus and method
EP1073096B1 (en) Semiconductor workpiece processing apparatus
US6135052A (en) Method and apparatus for temperature control of the semiconductor
US6401359B1 (en) Vacuum processing method and apparatus
JP3005449B2 (en) Vacuum valve with heating function
KR102575664B1 (en) Temperature change rate control apparatus, method and semiconductor process device
JPH05121361A (en) Semiconductor wafer cooler
JPH05136095A (en) Dry etching apparatus
JP3931357B2 (en) Manufacturing method of semiconductor device
JP2008159875A (en) Substrate suction system and semiconductor manufacturing apparatus
JP2001338914A (en) Gas introducing mechanism, method for gas introduction, method for detecting gas leakage, and vacuum processing equipment
US20010052359A1 (en) Method of substrate temperature control and method of assessing substrate temperature controllability
CN110571118B (en) Flow threshold determination method, control device and semiconductor processing equipment
JP3355238B2 (en) Semiconductor film forming equipment
JPH05299379A (en) Temperature control device and method thereof
JP2630118B2 (en) Vacuum processing method and device
JPH09158833A (en) Evacuation device
JPH08139085A (en) Semiconductor manufacturing equipment
JP3966735B2 (en) Gas introduction mechanism, gas introduction method, and plasma processing apparatus
KR200182140Y1 (en) Vacuum system of low pressure chemical vapor deposition equipment
JP2022141001A (en) Temperature control unit and processing device
JPH0529264A (en) Semiconductor wafer processing device
JP3074192B2 (en) Wafer processing equipment
JPH01274427A (en) Specimen rear gass pressure controller