JPH0512065B2 - - Google Patents

Info

Publication number
JPH0512065B2
JPH0512065B2 JP3468788A JP3468788A JPH0512065B2 JP H0512065 B2 JPH0512065 B2 JP H0512065B2 JP 3468788 A JP3468788 A JP 3468788A JP 3468788 A JP3468788 A JP 3468788A JP H0512065 B2 JPH0512065 B2 JP H0512065B2
Authority
JP
Japan
Prior art keywords
slab
cooling water
estimated
flow rate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3468788A
Other languages
Japanese (ja)
Other versions
JPH01210158A (en
Inventor
Tetsuji Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3468788A priority Critical patent/JPH01210158A/en
Publication of JPH01210158A publication Critical patent/JPH01210158A/en
Publication of JPH0512065B2 publication Critical patent/JPH0512065B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼の連続鋳造における鋳片の2次冷
却制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling secondary cooling of slabs in continuous steel casting.

〔従来の技術〕[Conventional technology]

鋼の連続鋳造における2次冷却帯の鋳片冷却制
御方法として、たとえば特開昭59−21257号公報
に記載の方法がある。この方法は、鋳片を一定単
位長の切片の集合体と仮想し、各切片毎に冷却履
歴情報を持ち、この冷却履歴情報をもとに冷却水
量を設定して、鉄片の表面温度が目標温度に一致
するようにれ冷却水量を制御する方法である。
As a method for controlling slab cooling in a secondary cooling zone in continuous steel casting, there is a method described in, for example, Japanese Patent Laid-Open No. 59-21257. In this method, the slab is assumed to be a collection of sections of a certain unit length, each section has cooling history information, and the amount of cooling water is set based on this cooling history information to reach the target surface temperature of the slab. This method controls the amount of cooling water to match the temperature.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

鉄鋼業においては、近年の省エネルギーの要請
により、連続鋳造で得られた鋳片をそのまま次工
程である圧延工場の加熱炉に装入する、あるいは
再加熱することなく直接圧延する方法が採用され
ている。このような連続鋳造片の加熱炉への直接
装入あるいは直接圧延においては、連続鋳造機出
側における鋳片の断面平均温度ができるだけ高い
方が望ましい。ところが、前記したような従来の
鋳片温度制御方法は、鋳片の表面温度を一定の目
標温度に制御しようとするものであるため、連続
鋳造工程において鋳造速度の変動があつた場合に
おいても、鋳片断面平均温度の可能な限り高い鋳
片を安定的に出片させたいとき、従来の表面温度
一定制御では最高の効率が得られないという問題
点があつた。すなわち、定常的には鋳片の完全凝
固完了位置がなるべく連続鋳造機出側の切断機手
前に近くにくるような速い鋳造速度で鋳造して、
鋳片断面平均温度を高く維持し、操業上やむを得
ない理由により鋳造速度が遅くなり、そのため完
全凝固完了位置が連続鋳造機出側より手前にな
り、鋳片断面平均温度が低くなるときには、冷却
水量を少なくして鋳片断面平均温度の低下を防ぐ
必要があるが、このような冷却制御は従来の方法
では達成できなかつた。
In the steel industry, due to the recent demand for energy conservation, methods have been adopted in which slabs obtained by continuous casting are directly charged into the heating furnace of the rolling mill, which is the next process, or are rolled directly without reheating. There is. In direct charging or direct rolling of such continuously cast slabs into a heating furnace, it is desirable that the cross-sectional average temperature of the slabs at the exit side of the continuous casting machine be as high as possible. However, the conventional slab temperature control method as described above attempts to control the surface temperature of the slab to a constant target temperature, so even when there is a fluctuation in the casting speed in the continuous casting process, When it is desired to stably eject a slab with the highest possible average cross-sectional temperature of the slab, there is a problem in that the conventional constant surface temperature control cannot achieve the highest efficiency. In other words, the cast piece is regularly cast at a fast casting speed so that the complete solidification position of the slab is as close as possible to the cutting machine on the outlet side of the continuous casting machine.
The average cross-sectional temperature of the slab is maintained high, and when the casting speed is slow due to unavoidable operational reasons, the complete solidification position is closer to the exit side of the continuous caster, and the average temperature of the slab cross-section becomes lower, the cooling water amount is reduced. It is necessary to prevent a drop in the average cross-sectional temperature of the slab by reducing the amount of cooling, but such cooling control could not be achieved using conventional methods.

本発明は、湾曲型連続鋳造機による鋼の連続鋳
造において、鋳造速度が変動した場合において
も、連続鋳造機出側において断面平均温度の高い
鋳片を安定的に得ることを目的とする。
An object of the present invention is to stably obtain a slab having a high average cross-sectional temperature at the exit side of the continuous caster even when the casting speed fluctuates in continuous casting of steel using a curved continuous caster.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の鋳片の冷却制御方法は、その目的を達
成するために、湾曲型連続鋳造機による鋼の連続
鋳造において、鋳造過程における鋳片長さ方向の
複数の点について鋳片の凝固厚及び表面温度を推
定計算し、湾曲部にある鋳片に対しては表面温度
の基準値と推定計算値との差に応じて冷却水流量
を制御し、水平部にある鋳片に対しては凝固厚の
基準値と推定計算値との差に応じて冷却水流量を
制御することを特徴とする。
In order to achieve the object, the method for controlling cooling of a slab of the present invention is to control the solidification thickness and surface of the slab at multiple points in the longitudinal direction of the slab during the casting process in continuous casting of steel using a curved continuous casting machine. The temperature is estimated and the cooling water flow rate is controlled for slabs in curved areas according to the difference between the standard surface temperature value and the estimated calculated value, and for slabs in horizontal areas, the solidification thickness is controlled. The cooling water flow rate is controlled according to the difference between the reference value and the estimated calculated value.

上記本発明における基準値とは、鋳造する鋼
種、サイズ毎に、乾燥標準基準鋳造速度(鋼種、
サイズ毎一定値)およびその基準鋳造速度に対応
した基準冷却水量で鋳造した場合に実現される凝
固厚パターンであり、2次元熱伝達差分計算によ
りオフラインで求められる値を意味する。
The above reference value in the present invention refers to the dry standard casting speed (steel type,
It is a solidification thickness pattern realized when casting is performed with a standard cooling water amount corresponding to a constant value for each size) and a standard cooling water amount corresponding to the standard casting speed, and means a value determined off-line by two-dimensional heat transfer difference calculation.

一方、推定計算値とは、実際に鋳造中の鋳片に
ついて、実積の鋳造速度履歴および冷却水量履歴
から、オンラインで本発明の計算式を用いて計算
する値である。
On the other hand, the estimated calculated value is a value calculated online using the calculation formula of the present invention from the actual casting speed history and cooling water amount history for the slab actually being cast.

なお、オンラインでは2次元熱伝達差分計算を
採用しない理由は、制御設定周期が30秒程度であ
るのに比べ、2次元熱伝達差分計算を通常の制御
用計算機(2MIPS)で計算して数分オーダーの
時間がかかるためである。
The reason why 2D heat transfer difference calculation is not used online is that the control setting cycle is about 30 seconds, whereas 2D heat transfer difference calculation takes a few minutes with a normal control computer (2MIPS). This is because ordering takes time.

〔作用〕[Effect]

本発明において、鋳造鋳片の凝固厚はオンライ
ンで連続的に測定できないため、数式モデルでオ
ンライン推定を行いその値を正として制御を行う
ために、推定計算値と基準値を比べる。
In the present invention, since the solidified thickness of a cast slab cannot be continuously measured online, it is estimated online using a mathematical model, and the estimated calculated value is compared with a reference value in order to perform control using the estimated value as positive.

なお数式モデルを同定するために、鋲打ちを行
つて凝固厚を実測することはあるが、この方法で
は結果が判明するのに1時間以上かかる。
Note that in order to identify the mathematical model, the solidified thickness may be actually measured by driving rivets, but this method takes more than an hour to obtain the results.

また、湾曲部と水平部で基準値の対象が異なる
のは以下の理由による。
The reason why the reference values are different for the curved portion and the horizontal portion is as follows.

湾曲部では連鋳機の曲率変化により鋳片内部に
歪応力が作用するため、鋳造する鋼の脆化温度域
を避ける必要があり、温度制御が必要になる。
In curved sections, strain stress acts on the inside of the slab due to changes in the curvature of the continuous casting machine, so it is necessary to avoid the embrittlement temperature range of the steel being cast, and temperature control is required.

一方水平部においては、そのような曲率変化は
ないため、基本的には機端までに完全凝固すれば
良いのであつて、鋳造速度履歴により、既に完全
凝固していれば冷却水量は機械保全のための最少
水量で良く、一方凝固が遅れ気味であれば、最低
限機端までに完全凝固するような冷却水量を設定
する必要があることによる。
On the other hand, in the horizontal part, there is no such change in curvature, so basically it is sufficient to completely solidify by the end of the machine, but depending on the casting speed history, if it has already completely solidified, the amount of cooling water will be reduced to the extent necessary for machine maintenance. On the other hand, if solidification is delayed, it is necessary to set the minimum amount of cooling water that will completely solidify by the end of the machine.

〔実施例〕〔Example〕

以下、図面を参照しながら、実施例により本発
明の特徴を具体的に説明する。
Hereinafter, the features of the present invention will be specifically explained using examples with reference to the drawings.

第1図は本発明の実施例における制御系を示す
図である。
FIG. 1 is a diagram showing a control system in an embodiment of the present invention.

同図において、取鍋1内の溶鋼はタンデイツシ
ユ2を経て鋳型3に注入され、下方に引抜かれて
鋳片4となる。鋳片4は湾曲部及び水平部の各冷
却水スプレー5−1,5−2,……,5−nによ
り冷却されながら引き抜かれ、連続鋳造機外に出
片される。
In the figure, molten steel in a ladle 1 is injected into a mold 3 through a tundish 2, and is drawn downward to become a slab 4. The slab 4 is pulled out while being cooled by cooling water sprays 5-1, 5-2, .

この鋳造過程において、プロセス制御用計算機
6により一定周期(例えば30秒)毎に、鋳片4を
仮想的に多数個に分割した離散的な計算点S1
S2、……、Snの各点における凝固厚及び表面温
度を推定計算する。
During this casting process, the process control computer 6 virtually divides the slab 4 into a large number of discrete calculation points S 1 at regular intervals (for example, 30 seconds).
The solidification thickness and surface temperature at each point of S 2 , ..., S n are estimated and calculated.

凝固厚の推定計算は、鋳片の非加速凝固域と加
速凝固域とに分けて計算する。
Estimating the solidification thickness is calculated separately for the non-accelerated solidification region and the accelerated solidification region of the slab.

非加速凝固域における凝固厚推定式は Xs(t+Δt)=−Ax/S +√()+)2+・(1) を用い、加速凝固域における凝固厚推定式は Xs(t+Δt)=Xh −√−())2−・ (2) ただし Xs(t):時刻tにおける推定凝固厚 Ax、Bx、Cx:調整係数 Δt:計算周期 S:熱伝達係数パラメータ(=熱伝達係数h/熱
伝導率k) Xh:鋳片厚さの1/2厚さ を用いる。
The formula for estimating the solidification thickness in the non -accelerated solidification region is: √−()) 2 −・ (2) where Xs(t): Estimated solidification thickness at time t Ax, Bx, Cx: Adjustment coefficient Δt: Calculation period S: Heat transfer coefficient parameter (=heat transfer coefficient h/thermal conduction Ratio k) Xh: Use 1/2 thickness of slab thickness.

また、表面温度推定式は、 Ys(t+Δt)=AY/S・Xs(t+Δt)+BY +(Ys(t)−AY/S・Xs(t)+BY) ×exp(−2α・S・Xs(t)+BY/Xs(t)2Δt)(3
) Us(t+Δt)=Ys(t+Δt)(Ts−Uw)+Uw (4) ただし Ys(t):時刻tにおける表面温度パラメータ Us(t):時刻tにおける推定表面温度 Ts:固相凝固温度 Uw:二次冷却水温度 AY、BY:調整係数 α:物理定数 前記(1)式により非加速凝固域における鋳片の各
計算点の凝固厚を推定計算し、(2)式により加速凝
固域における鋳片の各計算点の凝固厚を推定計算
する。
In addition, the surface temperature estimation formula is Ys(t+Δt)=A Y /S・Xs(t+Δt)+B Y +(Ys(t)−A Y /S・Xs(t)+B Y ) ×exp(−2α・S・Xs(t)+B Y /Xs(t) 2 Δt)(3
) Us (t + Δt) = Ys (t + Δt) (Ts - Uw) + Uw (4) where Ys (t): surface temperature parameter at time t Us (t): estimated surface temperature at time t Ts: solid phase solidification temperature Uw: Secondary cooling water temperature A Y , B Y : Adjustment coefficient α: Physical constant Estimating the solidification thickness at each calculation point of the slab in the non-accelerated solidification region using equation (1) above, and calculating the estimated solidification thickness at each calculation point of the slab in the non-accelerated solidification region using equation (2). Estimating the solidification thickness at each calculation point of the slab.

また前記(4)式により湾曲部における鋳片の各計
算点の表面温度を計算する。
Furthermore, the surface temperature at each calculation point of the slab in the curved portion is calculated using the above equation (4).

そして、前記(1)式及び(2)式から求めた水平部の
各計算点の凝固厚と、予め鋼種、サイズ毎に定め
た水平部の各計算点位置に対応する点の基準凝固
厚とを用いて、二次冷却帯の冷却水スプレー5−
1,5−2,……,5−nの各スプレーゾーン毎
に、下式により各冷却水スプレーの冷却水流量を
算出する。
Then, the solidification thickness at each calculation point in the horizontal part obtained from equations (1) and (2) above, and the standard solidification thickness at the point corresponding to each calculation point position in the horizontal part determined in advance for each steel type and size. Spray cooling water in the secondary cooling zone using
For each spray zone 1, 5-2, . . . , 5-n, the cooling water flow rate of each cooling water spray is calculated using the following formula.

Qwo=Qws+{a(Xs−Xss)3 +b(Xs−Xss)2+c(Xs−Xss)} (5) ただし Qwo:各スプレー毎の冷却水設定制御流量 Qws:各スプレーゾーン内の基準凝固厚のもと
における基準冷却水流量 Xs:各スプレーゾーン内の平均推定凝固厚 Xss:各スプレーゾーン内の基準凝固厚 a、b、c:定数 一方、湾曲部に対しては、鋳片の表面温度が高
温脆化域温度になつて表面割れを発生するなどの
表面品質劣化を防ぐために、下式により各冷却水
スプレーの冷却水流量を算出する。
Qwo=Qws+{a(Xs−Xss) 3 +b(Xs−Xss) 2 +c(Xs−Xss)} (5) where Qwo: Cooling water setting control flow rate for each spray Qws: Standard solidification thickness in each spray zone Standard cooling water flow rate under In order to prevent surface quality deterioration such as surface cracking due to the high-temperature embrittlement temperature, calculate the cooling water flow rate of each cooling water spray using the following formula.

So=S+G(Us−Uss) (6) Qwo=(k・So・b)/a1/c・As (7) ただし So:最適熱伝達パラメータ S:熱伝達係数パラメータ G:制御調整係数 Us:各スプレーゾーン内平均推定表面厚温度 Uss:各スプレーゾーン内基準表面温度 a、b、c:熱伝達係数用定数 k:熱伝導率 As:冷却水スプレーの有効面積 そして、水平部の冷却水スプレーに対しては前
記(5)式により算出した各冷却水流量を、また、湾
曲部の冷却水スプレーに対しては前記(7)式により
算出した各冷却水流量を、一定周期(例えば30
秒)毎に、プロセス制御用計算機6から冷却制御
用計算機7に入力する。この入力された冷却水流
量にしたがつて、冷却制御用計算機7は各流制御
装置8−1〜8−nに対する流量設定値を修正
し、各流量調節バルブ9−1〜9−n、各流量計
10−1〜10−nが、各冷却水スプレー5〜1
−5−nの冷却水流量を制御する。
So=S+G(Us-Uss) (6) Qwo=(k・So・b)/a 1/c・As (7) where So: Optimal heat transfer parameter S: Heat transfer coefficient parameter G: Control adjustment coefficient Us: Average estimated surface thickness temperature in each spray zone Uss: Standard surface temperature in each spray zone a, b, c: Heat transfer coefficient constant k: Thermal conductivity As: Effective area of cooling water spray And cooling water spray in the horizontal area For the cooling water spray at the curved part, each cooling water flow rate calculated by the above equation (5) is calculated, and for the cooling water spray at the curved part, each cooling water flow rate calculated by the above equation (7) is calculated at a fixed period (for example, 30
seconds) from the process control computer 6 to the cooling control computer 7. According to the input cooling water flow rate, the cooling control computer 7 corrects the flow rate setting values for each flow control device 8-1 to 8-n, and adjusts the flow rate setting value for each flow control valve 9-1 to 9-n. Flowmeters 10-1 to 10-n are connected to each cooling water spray 5 to 1.
-5-n control the cooling water flow rate.

このように、鋳造過程において、プロセス制御
用計算機により一定周期(例えば30秒)毎に、鋳
片の長さ方向の多数の点について鋳片の凝固厚を
推定計算し、水平部に関して、連続鋳造機出側の
鋳片断面平均温度を目標値とするために予め定め
た基準凝固厚パターンと前記推定計算した各点の
凝固厚とから、水平部の各冷却水スプレーの冷却
水流量を算出し、この算出値を2次冷却水流量制
御装置に修正設定することにより、鋳造速度の変
動に拘らず連続鋳造機出側の鋳片断面平均温度を
目標値に可能な限り近づけることができる。
In this way, during the casting process, the process control computer estimates the solidification thickness of the slab at a number of points in the length direction of the slab at regular intervals (for example, 30 seconds), and calculates the solidification thickness of the slab at a number of points in the length direction of the slab at regular intervals (for example, every 30 seconds). The cooling water flow rate of each cooling water spray in the horizontal section is calculated from the predetermined standard solidification thickness pattern and the estimated solidification thickness at each point in order to set the average temperature of the slab cross section on the exit side as the target value. By correcting and setting this calculated value in the secondary cooling water flow rate control device, it is possible to bring the average cross-sectional temperature of the slab at the exit side of the continuous casting machine as close as possible to the target value, regardless of fluctuations in the casting speed.

また、鋳片の表面品質上、表面温度の制御が必
要な湾曲部に関して、プロセス制御用計算機によ
り一定周期(例えば30秒)毎に、鋳片の長さ方向
の他数の点について鋳片の表面温度を推定計算
し、予め定めた基準表面温度パターンと前記推定
計算した各点の表面温度とから、湾曲部の各冷却
水スプレーの冷却水流量を算出し、この算出値を
2次冷却水流量制御装置に修正設定することによ
り、鋳造速度の変動に拘わらず湾曲部における鋳
片表面温度を基準温度範囲に維持することができ
る。
In addition, regarding curved parts where surface temperature control is required due to the surface quality of the slab, a process control computer checks the length of the slab at several other points at regular intervals (for example, 30 seconds). The surface temperature is estimated and calculated, and the cooling water flow rate of each cooling water spray in the curved part is calculated from the predetermined reference surface temperature pattern and the estimated and calculated surface temperature at each point, and this calculated value is used as the secondary cooling water. By correcting the flow rate control device, the surface temperature of the slab at the curved portion can be maintained within the reference temperature range regardless of fluctuations in casting speed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においては、湾曲
部にある鋳片に対しては表面温度の基準値と推定
計算値との差に応じて冷却水流量を制御し、水平
部にある鋳片に対しては凝固厚の基準値と推定計
算値との差に応じて冷却水流量を制御する。これ
により、鋳造速度が変動しても安定的に鋳片断面
平均温度の高い鋳片を出片することができる。ま
た同時に、湾曲部における鋳片の表面温度を割れ
等の発生しない温度範囲に維持できて、表面品質
の優れた鋳片を製造できる。
As explained above, in the present invention, the flow rate of cooling water is controlled for slabs in curved sections according to the difference between the standard surface temperature value and the estimated calculated value, and for slabs in horizontal sections. In contrast, the cooling water flow rate is controlled according to the difference between the reference value of the solidification thickness and the estimated calculated value. Thereby, even if the casting speed fluctuates, a slab having a high average cross-sectional temperature of the slab can be stably cast. At the same time, the surface temperature of the slab at the curved portion can be maintained within a temperature range where cracks and the like do not occur, and slabs with excellent surface quality can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における制御系を示す
図である。 1:取鍋、2:タンデイツシユ、3:鋳型、
4:鋳片、5−1〜5−n:冷却水スプレー、
6:プロセス制御用計算機、7:冷却制御用計算
機、8−1〜8−n:流量制御装置、9−1〜9
−n:流量調節バルブ、10−1〜10−n:流
量計、S1〜Sm:計算点。
FIG. 1 is a diagram showing a control system in an embodiment of the present invention. 1: ladle, 2: tundish, 3: mold,
4: Slab, 5-1 to 5-n: Cooling water spray,
6: Process control computer, 7: Cooling control computer, 8-1 to 8-n: Flow rate control device, 9-1 to 9
-n: flow control valve, 10-1 to 10-n: flow meter, S 1 to Sm: calculation point.

Claims (1)

【特許請求の範囲】[Claims] 1 湾曲型連続鋳造機による鋼の連続鋳造におい
て、鋳造過程における鋳片長さ方向の複数の点に
ついて鋳片の凝固厚及び表面温度を推定計算し、
湾曲部にある鋳片に対しては表面温度の基準値と
推定計算値との差に応じて冷却水流量を制御し、
水平部にある鋳片に対しては凝固厚の基準値と推
定計算値との差に応じて冷却水流量を制御するこ
とを特徴とする連続鋳造における鋳片の冷却制御
方法。
1. In the continuous casting of steel using a curved continuous casting machine, the solidification thickness and surface temperature of the slab are estimated and calculated at multiple points in the length direction of the slab during the casting process,
For slabs in curved sections, the flow rate of cooling water is controlled according to the difference between the standard surface temperature value and the estimated calculated value.
A method for controlling cooling of a slab in continuous casting, characterized in that the flow rate of cooling water is controlled for a slab in a horizontal portion according to the difference between a standard solidification thickness value and an estimated calculated value.
JP3468788A 1988-02-16 1988-02-16 Method for controlling cooling of cast slab in continuous casting Granted JPH01210158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3468788A JPH01210158A (en) 1988-02-16 1988-02-16 Method for controlling cooling of cast slab in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3468788A JPH01210158A (en) 1988-02-16 1988-02-16 Method for controlling cooling of cast slab in continuous casting

Publications (2)

Publication Number Publication Date
JPH01210158A JPH01210158A (en) 1989-08-23
JPH0512065B2 true JPH0512065B2 (en) 1993-02-17

Family

ID=12421305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3468788A Granted JPH01210158A (en) 1988-02-16 1988-02-16 Method for controlling cooling of cast slab in continuous casting

Country Status (1)

Country Link
JP (1) JPH01210158A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585739B2 (en) * 2012-08-14 2014-09-10 Jfeスチール株式会社 Solidification completion position control method and solidification completion position control device

Also Published As

Publication number Publication date
JPH01210158A (en) 1989-08-23

Similar Documents

Publication Publication Date Title
US4699202A (en) System and method for controlling secondary spray cooling in continuous casting
US3478808A (en) Method of continuously casting steel
US4463795A (en) Method of cooling a continuous casting
US6044895A (en) Continuous casting and rolling system including control system
US5762127A (en) Method to control the deformations of the sidewalls of a crystalliser and continuous-casting crystalliser
KR101781805B1 (en) Method for the continuous casting of metal strand
US6880616B1 (en) Method and device for making a metal strand
US4483387A (en) Method of controlling cooling of a continuous casting
US4562880A (en) Process for adjusting the secondary-cooling rate of a continuous-casting machine
JPS638868B2 (en)
JPH06264B2 (en) Level control method in continuous casting
JPH0512065B2 (en)
JPS5835055A (en) Controller for flow rate of cooling water for continuous casting machine
JPH0523811A (en) Method for controlling molten metal surface level in continuous casting
JPS63104754A (en) Method for controlling water volume of spray cooled mold
US4756357A (en) Process and device for controlling the rate of cooling a continuously cast ingot
Ji et al. Online dynamic control of secondary cooling for the continuous casting process
JP2634108B2 (en) Metal surface level control method in continuous casting
JPS58173005A (en) Endless rolling method
JPH08276258A (en) Method for estimating solidified shell thickness of continuously cast slab
JP3546304B2 (en) Estimation method of perfect freezing point of strand during continuous casting
JPH0250822B2 (en)
JPH0722812B2 (en) Method and apparatus for controlling molten metal level in continuous casting
US5454417A (en) Method for casting steels in arcuate continuous casting installations
JP2002178117A (en) Continuous casting method