JPH01210158A - Method for controlling cooling of cast slab in continuous casting - Google Patents

Method for controlling cooling of cast slab in continuous casting

Info

Publication number
JPH01210158A
JPH01210158A JP3468788A JP3468788A JPH01210158A JP H01210158 A JPH01210158 A JP H01210158A JP 3468788 A JP3468788 A JP 3468788A JP 3468788 A JP3468788 A JP 3468788A JP H01210158 A JPH01210158 A JP H01210158A
Authority
JP
Japan
Prior art keywords
calculated
cooling water
continuous casting
cast slab
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3468788A
Other languages
Japanese (ja)
Other versions
JPH0512065B2 (en
Inventor
Tetsuji Fukushima
徹二 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3468788A priority Critical patent/JPH01210158A/en
Publication of JPH01210158A publication Critical patent/JPH01210158A/en
Publication of JPH0512065B2 publication Critical patent/JPH0512065B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a cast slab having high cross sectional average temp. in outlet side of continuous casting machine even in case casting speed varies by controlling cooling water rate in accordance with the difference between the reference values of the surface temp. and solidified thickness and the assuming calculated values to the cast slabs at the bending part and the horizontal part in the continuous casting process. CONSTITUTION:In the continuous casting process, the solidified thicknesses at multiple points in longitudinal direction of the cast slab 4 are calculated under assuming with a calculator for process control at every fixed periods. Successively, at the horizontal part, the cooling water rate for each cooling spray 5-1-5-n at the horizontal part is calculated from the preset reference solidified thickness pattern and the solidified thickness at each point calculated under assuming as the above in order to make the aimed value of the cast slab cross sectional average temp. at outlet side of the continuous casting machine. Then, this calculated value is correctively set to a secondary cooling water flow rate control device and the cast slab cross sectional average temp. at the outlet side of the continuous casting machine is approached to the aimed value in spite of any variation of the casting speed. Further, at the bending part of the cast slab 4, the surface temp. of the cast slab is calculated 6 under assuming and as the same way as the above, the calculated value is correctively set to the secondary cooling water flow rate control device to keep the surface temp. of the cast slab at the bending part to the reference temp. range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本廃明は、鋼の連続鋳造における鋳片の2次冷却制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling secondary cooling of slabs in continuous steel casting.

〔従来の技術〕[Conventional technology]

鋼の連続鋳造における2次冷却帯の鋳片冷却制御方法と
して、たとえば特開昭59−212157号公報に記載
の方法がある。この方法は、鋳片を一定単位長の切片の
集合体と仮想し、各切片毎に冷却履歴情報を持ち、この
冷却情報履歴をもとに冷却水量を設定して、鋳片の表面
温度が目標温度に一致するように冷却水量を制御する方
法である。
As a method for controlling slab cooling in a secondary cooling zone in continuous steel casting, there is a method described in, for example, Japanese Patent Laid-Open No. 59-212157. In this method, the slab is assumed to be a collection of sections of a certain unit length, each section has cooling history information, and the amount of cooling water is set based on this cooling information history, so that the surface temperature of the slab is This is a method of controlling the amount of cooling water to match the target temperature.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

鉄鋼業においては、近年の省エネルギーの要請により、
連続鋳造で得られた鋳片をそのまま次工程である圧延工
場の加熱炉に装入する、あるいは再加熱することなく直
接圧延する方法が採用されている。このような連続鋳造
鋳片の加熱炉への直接装入あるいは直接圧延においては
、連続鋳造機出側における鋳片の断面平均温度ができる
だけ高い方が望ましい。ところが、前記したような従来
の鋳片温度制御方法は、鋳片の表面温度を一定の目標温
度に制御しようとするものであるため、連続鋳造工程に
おいて鋳造速度の変動があった場合においても、鋳片断
面平均温度の可能な限り高い鋳片を安定的に出片させた
いとき、従来の表面温度一定制御では最高の効率が得ら
れないという問照点があった。すなわち、定常的には鋳
片の完全凝固完了位置がなるべく連続鋳造機出側の切断
機手前近(に(るような速い鋳造速度で鋳造して、鋳片
断面平均温度を高く維持し、操業上やむを得ない理由に
より鋳造速度が遅くなり、そのため完全凝固完了位置が
連続鋳造機出側より手前になり、鋳片断面平均温度が低
くなるときには、冷却水量を少なくして鋳片断面平均温
度の低下を防ぐ必要があるが、このような冷却制御は従
来の方法では達成できなかった。
In the steel industry, due to recent demands for energy conservation,
A method is adopted in which the slab obtained by continuous casting is directly charged into a heating furnace in a rolling mill, which is the next step, or it is directly rolled without being reheated. When such continuously cast slabs are directly charged into a heating furnace or directly rolled, it is desirable that the cross-sectional average temperature of the slabs at the exit side of the continuous caster be as high as possible. However, the conventional slab temperature control method described above attempts to control the surface temperature of the slab to a constant target temperature, so even if there is a fluctuation in the casting speed in the continuous casting process, When it is desired to stably eject a slab with the highest possible average cross-sectional temperature of the slab, there was a problem that conventional surface temperature constant control could not achieve the highest efficiency. In other words, on a regular basis, cast at a fast casting speed such that the complete solidification of the slab is as close as possible to the cutting machine on the exit side of the continuous caster, and the average cross-sectional temperature of the slab is maintained high. If the casting speed is slow due to unavoidable reasons, and as a result, the complete solidification point is closer to the exit side of the continuous caster and the average cross-sectional temperature of the slab is lower, reduce the amount of cooling water to lower the average cross-sectional temperature of the slab. However, such cooling control could not be achieved using conventional methods.

本発明は、湾曲型連続鋳造機による鋼の連続鋳造におい
て、鋳造速度が変動した場合においても、連続鋳造機出
側において断面平均温度の高い鋳片を安定的に得ること
を目的とする。
An object of the present invention is to stably obtain a slab having a high average cross-sectional temperature at the exit side of the continuous caster even when the casting speed fluctuates in continuous casting of steel using a curved continuous caster.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の鋳片の冷却制御方法は、その目的を達成するた
めに、湾曲型連続鋳造機による鋼の連続鋳造において、
鋳造過程にふける鋳片長さ方向の複数の点について鋳片
の凝固厚及び表面温度を推定計算し、湾曲部にある鋳片
に対しては表面温度Q基準値と推定計算値との差に応じ
て冷却水流量を制御し、水平部にある鋳片に対しては凝
固厚の基準値と推定計算値との差に応じて冷却水流量を
制御することを特徴とする。
In order to achieve the object, the method for controlling cooling of a slab according to the present invention, in continuous casting of steel using a curved continuous casting machine,
The solidified thickness and surface temperature of the slab are estimated and calculated at multiple points in the longitudinal direction of the slab during the casting process, and for slabs in curved areas, the surface temperature Q is estimated according to the difference between the reference value and the estimated calculated value. The cooling water flow rate is controlled according to the difference between the reference value and the estimated calculated value of the solidification thickness for slabs in the horizontal part.

〔実施例〕〔Example〕

以下、図面を参照しながら、実施例により本発明の特徴
を具体的に説明する。
Hereinafter, the features of the present invention will be specifically explained using examples with reference to the drawings.

第1図は本発明の実施例における制御系を示す図である
FIG. 1 is a diagram showing a control system in an embodiment of the present invention.

同図において、取鍋1内の溶鋼はタンデイツシュ2を経
て鋳型3に注入され、下方に引抜かれて鋳片4となる。
In the figure, molten steel in a ladle 1 is injected into a mold 3 through a tundish 2, and is drawn downward to become a slab 4.

鋳片4は湾曲部及び水平部の各冷却水スプレー5−1.
5−2.・・・、5−nにより冷却されながら引き抜か
れ、連続鋳造機外に出片される。
The slab 4 has cooling water sprays 5-1 on the curved portion and the horizontal portion.
5-2. . . , 5-n while being cooled and ejected into pieces from the continuous casting machine.

この鋳造過程において、プロセス制御用計算機6により
一定周期(例えば30秒)毎に、鋳片4を仮想的に多数
個に分割した離散的な計算点S、、S2゜・・・l5I
Kの各点にふける凝固厚及び表面温度を推定計算する。
In this casting process, the process control computer 6 virtually divides the slab 4 into a large number of discrete calculation points S, S2°...l5I at regular intervals (for example, 30 seconds).
Estimating the solidification thickness and surface temperature at each point of K.

凝固厚の推定計算は、鋳片の非加速凝固域と加速凝固域
とに分けて計算する。
Estimating the solidification thickness is calculated separately for the non-accelerated solidification region and the accelerated solidification region of the slab.

非加速凝固域における凝固厚推定式は を用い、加速凝固域における凝固厚推定式はxS(t+
Δt) = Xh −J(Xb−XsD))  −CX ・△t(2)ただ
し X5(t) :時刻tにおける推定凝固厚AX、 Bx
、 CX  :調整係数 Δt:計算周期 S:熱伝達係数パラメータ (=熱伝達係数h/熱伝導率k) Xh:鋳片厚さの各厚さ を用いる。
The formula for estimating the solidification thickness in the non-accelerated solidification region is xS(t+
Δt) = Xh −J(Xb−XsD)) −CX ・Δt(2) However, X5(t): Estimated solidification thickness AX, Bx at time t
, CX: Adjustment coefficient Δt: Calculation period S: Heat transfer coefficient parameter (=heat transfer coefficient h/thermal conductivity k) Xh: Each thickness of slab thickness is used.

また、表面温度推定式は、 S  −X5(t+Δt)+Bv Us(t+Δt)= Ys(t+Δt) (Ts −U
w) + Uw  (4)ただし Ys(t) :時刻tにおける表面温度パラメータUs
(t) :時刻tにおける推定表面温度Ts:固相凝固
温度 Uw:二次冷却水温度 Ay、Bv:調整係数 α;物理定数 前記(1)式により非加速凝固域における鋳片の各計算
点の凝固厚を推定計算し、(2)式により加速凝固域に
おける鋳片の各計算点の凝固厚を推定計算する。
Moreover, the surface temperature estimation formula is S −X5(t+Δt)+Bv Us(t+Δt)= Ys(t+Δt) (Ts −U
w) + Uw (4) where Ys(t): surface temperature parameter Us at time t
(t): Estimated surface temperature at time t Ts: Solid phase solidification temperature Uw: Secondary cooling water temperature Ay, Bv: Adjustment coefficient α; Physical constant Each calculation point of the slab in the non-accelerated solidification region using the above formula (1) The solidification thickness of each calculation point of the slab in the accelerated solidification region is estimated and calculated using equation (2).

また前記(4)式により湾曲部における鋳片の各計算点
の表面温度を計算する。
Furthermore, the surface temperature at each calculation point of the slab in the curved portion is calculated using the above equation (4).

そして、前記(1)式及び(2)式から求めた水平部の
各計算点の凝固厚と、予め鋼種、サイズ毎に定めた水平
部の各計算点位置に対応する点の基準凝固厚とを用いて
、二次冷却帯の冷却水スプレー5−1゜5−2.・・・
、5−nの各スプレーゾーン毎に、下式により各冷却水
スプレーの冷却水流量を算出する。
Then, the solidification thickness at each calculation point in the horizontal part obtained from equations (1) and (2) above, and the standard solidification thickness at the point corresponding to each calculation point position in the horizontal part determined in advance for each steel type and size. Spray cooling water in the secondary cooling zone using 5-1°5-2. ...
, 5-n, the cooling water flow rate of each cooling water spray is calculated using the following formula.

Qwo= Qws+ (a (Xs −X5s)3+ 
b(Xs−Xss)2+ c(Xs−Xss))  (
5)ただし Qwo :各スプレー毎の冷却水設定制御流量Qws 
:各スプレーゾーン内の基準凝固厚のもとにおける基準
冷却水流量 xs:各スプレーゾーン内の平均推定凝固厚Xss :
各スプレーゾーン内の基準凝固厚a、b、c:定数 一方、湾曲部に対しては、鋳片の表面温度が高温脆化域
温度になって表面割れを発生するなどの表面品質劣化を
防ぐた袷に、下式により各冷却水スプレーの冷却水流量
を算出する。
Qwo= Qws+ (a (Xs −X5s)3+
b(Xs-Xss)2+ c(Xs-Xss)) (
5) However, Qwo: Cooling water setting control flow rate Qws for each spray
: Standard cooling water flow rate xs under the standard solidified thickness in each spray zone: Average estimated solidified thickness Xss in each spray zone:
Standard solidification thickness a, b, c in each spray zone: constant On the other hand, for curved sections, prevent surface quality deterioration such as surface cracking due to the surface temperature of the slab reaching the high temperature embrittlement range temperature. In addition, calculate the cooling water flow rate of each cooling water spray using the formula below.

So = S + G(Us −Uss)      
    (6)ただし So:最適熱伝達パラメータ S:熱伝達係数パラメータ G:制御調整係数 Us:各スプレーゾーン内平均推定表面温度Uss :
各スプレーゾーン内基準表面温度a、 b、 c:熱伝
達係数用定数 に:熱伝導率 As:冷却水スプレーの有効面積 そして、水平部の冷却水スプレーに対しては前記(5)
式により算出した各冷却水流量を、また、湾曲部の冷却
水スプレーに対しては前記(7)式により算出した各冷
却水流量を、一定周期(例えば30秒)毎に、プロセス
制御用計算機6から冷却制御用計算機7に入力する。こ
の入力された冷却水流量にしたがって、冷却制御用計算
機7は各流量制御装置8−1〜8−nに対する滝壷設定
値を修正し、各流量調節バルブ9−1〜9−n、各流量
計10−1〜10−nが、各冷却水スプレー5−1〜5
−nの冷却水流量を制御する。
So = S + G (Us - Uss)
(6) However, So: Optimal heat transfer parameter S: Heat transfer coefficient parameter G: Control adjustment coefficient Us: Average estimated surface temperature within each spray zone Uss:
Reference surface temperature in each spray zone a, b, c: constant for heat transfer coefficient: thermal conductivity As: effective area of cooling water spray, and (5) above for horizontal cooling water spray.
The process control computer calculates each cooling water flow rate calculated by the formula, and for the cooling water spray at the curved part, the cooling water flow rate calculated by the above formula (7) at regular intervals (for example, 30 seconds). 6 to the cooling control computer 7. According to the input cooling water flow rate, the cooling control computer 7 corrects the waterfall basin setting values for each flow rate control device 8-1 to 8-n, and adjusts the waterfall setting value for each flow rate control valve 9-1 to 9-n and each flow meter. 10-1 to 10-n are each cooling water spray 5-1 to 5
-n controls the cooling water flow rate.

このように、鋳造過程において、プロセス制御用計算機
により一定周期(例えば30秒)毎に、鋳片の長さ方向
の多数の点について鋳片の凝固厚を推定計算し、水平部
に関して、連続鋳造機出側の鋳片断面平均温度を目標値
とするために予め定めた基準凝固厚パターンと前記推定
計算した各点の凝固厚とから、水平部の各冷却水スプレ
ーの冷却水流量を算出し、この算出1直を2次冷却水流
量制御装置に修正設定することにより、鋳造速度の変動
に拘らず連続鋳造機出側の鋳片断面平均温度を目標i直
に可能な限り近づけることができる。
In this way, during the casting process, the process control computer estimates the solidification thickness of the slab at a number of points in the length direction of the slab at regular intervals (for example, 30 seconds), and calculates the solidified thickness of the slab at regular intervals (for example, every 30 seconds), and then The cooling water flow rate of each cooling water spray in the horizontal section is calculated from the predetermined standard solidification thickness pattern and the estimated solidification thickness at each point in order to set the average temperature of the slab cross section on the exit side as the target value. By correcting and setting this calculated 1st shift in the secondary cooling water flow rate control device, it is possible to bring the average cross-sectional temperature of the slab at the exit side of the continuous caster as close as possible to the target i-shift, regardless of fluctuations in the casting speed. .

また、鋳片の表面品質上、表面温度の制御が必要な湾曲
部に関して、プロセス制御用計算機により一定周期(例
えば30秒)毎に、鋳片の長さ方向の多数の点について
鋳片の表面温度を推定計算し、予約定めた基準表面温度
パターンと前記推定計算した各点の表面温度とから、湾
曲部の各冷却水スプレーの冷却水流量を算出し、この算
出値を2次冷却水流量制御装置に修正設定することによ
り、鋳造速度の変動に拘らず湾曲部における鋳片表面温
度を基準温度範囲に維持することができる。
In addition, regarding curved parts where surface temperature control is required due to the surface quality of the slab, a process control computer checks the surface of the slab at numerous points in the length direction of the slab at regular intervals (for example, 30 seconds). The temperature is estimated, and the cooling water flow rate of each cooling water spray in the curved part is calculated from the predetermined standard surface temperature pattern and the estimated calculated surface temperature at each point, and this calculated value is used as the secondary cooling water flow rate. By making correction settings in the control device, the surface temperature of the slab in the curved portion can be maintained within the reference temperature range regardless of fluctuations in the casting speed.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、湾曲部にあ
る鋳片に対しては表面温度の基準値と推定計算値との差
に応じて冷却水流量を制御し、水平部にある鋳片に対し
ては凝固厚の基準値と推定計算値との差に応じて冷却水
流量を制御する。これにより、鋳造速度が変動しても安
定的に鋳片断面平均温度の高い鋳片を出片することがで
きる。
As explained above, in the present invention, the cooling water flow rate is controlled for slabs in curved sections according to the difference between the standard surface temperature value and the estimated calculated value, and the flow rate of cooling water is controlled for slabs in curved sections, and For this, the cooling water flow rate is controlled according to the difference between the reference value of the solidification thickness and the estimated calculated value. Thereby, even if the casting speed fluctuates, a slab having a high average cross-sectional temperature of the slab can be stably cast.

また同時に、湾曲部における鋳片の表面温度を割れ等の
発生しない温度範囲に維持できて、表面品質の優れた鋳
片を製造できる。
At the same time, the surface temperature of the slab at the curved portion can be maintained within a temperature range where cracks and the like do not occur, and slabs with excellent surface quality can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における制御系を示す図である
。 ■:取鍋       2:クンディッシュ3:鋳型 
      4:鋳片 5−1〜5−n:冷却水スプレー 6:プロセス制御用計算機 7:冷却制御用計算機 8−1〜8−〇二流量制御装置 9−1〜9−n二流量調節バルブ 10−1〜10−n :流量計 81〜Sm;計算点 特許出願人    新日本製鐵 株式会社代  理  
人      小  堀   益 (ほか2名)第1図
FIG. 1 is a diagram showing a control system in an embodiment of the present invention. ■: Ladle 2: Kundish 3: Mold
4: Slabs 5-1 to 5-n: Cooling water spray 6: Process control computer 7: Cooling control computer 8-1 to 8-〇2 Flow rate control device 9-1 to 9-n 2 Flow rate adjustment valve 10 -1~10-n: Flowmeter 81~Sm; Calculation point patent applicant Nippon Steel Corporation Agent
Masu Kobori (and 2 others) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、湾曲型連続鋳造機による鋼の連続鋳造において、鋳
造過程における鋳片長さ方向の複数の点について鋳片の
凝固厚及び表面温度を推定計算し、湾曲部にある鋳片に
対しては表面温度の基準値と推定計算値との差に応じて
冷却水流量を制御し、水平部にある鋳片に対しては凝固
厚の基準値と推定計算値との差に応じて冷却水流量を制
御することを特徴とする連続鋳造における鋳片の冷却制
御方法。
1. In continuous casting of steel using a curved continuous casting machine, the solidification thickness and surface temperature of the slab are estimated and calculated at multiple points in the length direction of the slab during the casting process, and the surface temperature is calculated for slabs in curved parts. The cooling water flow rate is controlled according to the difference between the standard temperature value and the estimated calculated value, and for slabs in horizontal areas, the cooling water flow rate is controlled according to the difference between the standard solidification thickness value and the estimated calculated value. A cooling control method for slabs in continuous casting, characterized by controlling the cooling of slabs in continuous casting.
JP3468788A 1988-02-16 1988-02-16 Method for controlling cooling of cast slab in continuous casting Granted JPH01210158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3468788A JPH01210158A (en) 1988-02-16 1988-02-16 Method for controlling cooling of cast slab in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3468788A JPH01210158A (en) 1988-02-16 1988-02-16 Method for controlling cooling of cast slab in continuous casting

Publications (2)

Publication Number Publication Date
JPH01210158A true JPH01210158A (en) 1989-08-23
JPH0512065B2 JPH0512065B2 (en) 1993-02-17

Family

ID=12421305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3468788A Granted JPH01210158A (en) 1988-02-16 1988-02-16 Method for controlling cooling of cast slab in continuous casting

Country Status (1)

Country Link
JP (1) JPH01210158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027543A1 (en) * 2012-08-14 2014-02-20 Jfeスチール株式会社 Method for controlling solidification completion position and device for controlling solidification completion position

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027543A1 (en) * 2012-08-14 2014-02-20 Jfeスチール株式会社 Method for controlling solidification completion position and device for controlling solidification completion position
JP5585739B2 (en) * 2012-08-14 2014-09-10 Jfeスチール株式会社 Solidification completion position control method and solidification completion position control device
KR20150033724A (en) * 2012-08-14 2015-04-01 제이에프이 스틸 가부시키가이샤 Method for controlling solidification completion position and device for controlling solidification completion position
CN104540617A (en) * 2012-08-14 2015-04-22 杰富意钢铁株式会社 Method for controlling solidification completion position and device for controlling solidification completion position

Also Published As

Publication number Publication date
JPH0512065B2 (en) 1993-02-17

Similar Documents

Publication Publication Date Title
US4699202A (en) System and method for controlling secondary spray cooling in continuous casting
TWI382888B (en) Method and means of continuous casting
US5762127A (en) Method to control the deformations of the sidewalls of a crystalliser and continuous-casting crystalliser
KR100304759B1 (en) Continuous casting equipment operation method
US4562880A (en) Process for adjusting the secondary-cooling rate of a continuous-casting machine
CA1313451C (en) Direct cast strip thickness control
JPH01210158A (en) Method for controlling cooling of cast slab in continuous casting
JPS638868B2 (en)
JP3458758B2 (en) Method and apparatus for cooling steel sheet
JPS5835055A (en) Controller for flow rate of cooling water for continuous casting machine
JPH01241362A (en) Method for controlling surface temperature of continuously cast slab
JPS63104754A (en) Method for controlling water volume of spray cooled mold
JPH09141408A (en) Secondary cooling method in continuous casting
JP2634108B2 (en) Metal surface level control method in continuous casting
JPH04339555A (en) Method for controlling surface temperature on continuously cast slab
JPH0250822B2 (en)
JP2003019546A (en) Method for preventing warpage of continuously casting slab
JP2002248553A (en) Method for controlling secondary cooling of continuous- cast steel piece
US7040379B2 (en) Method and apparatus for the regulation of strip temperature in a continuous metallic strip casting plant
JPS63235055A (en) Method for controlling surface temperature of continuously cast slab
JPH0679423A (en) Method for controlling molten metal surface level in continuous casting
JP2867894B2 (en) Continuous casting method
JP3546304B2 (en) Estimation method of perfect freezing point of strand during continuous casting
KR20150009869A (en) Twin roll strip caster
JPH02160154A (en) Method and apparatus for controlling molten metal surface level in mold