JPH05118935A - Micro load cell - Google Patents

Micro load cell

Info

Publication number
JPH05118935A
JPH05118935A JP30413491A JP30413491A JPH05118935A JP H05118935 A JPH05118935 A JP H05118935A JP 30413491 A JP30413491 A JP 30413491A JP 30413491 A JP30413491 A JP 30413491A JP H05118935 A JPH05118935 A JP H05118935A
Authority
JP
Japan
Prior art keywords
printed circuit
circuit board
stainless steel
load cell
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30413491A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Fukuda
光宏 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Electronics Corp
Original Assignee
Copal Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Copal Electronics Co Ltd filed Critical Copal Electronics Co Ltd
Priority to JP30413491A priority Critical patent/JPH05118935A/en
Publication of JPH05118935A publication Critical patent/JPH05118935A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)

Abstract

PURPOSE:To make this detector compact, and realize the high performance by bonding each member with a welding method which gives the member a little heat, and catching a fine change of a thin film semiconductor strain gauge as a voltage change, and amplifying this voltage change with an amplifying circuit of a printed circuit board. CONSTITUTION:A metal spherical body 30 is pinched by a thin plate 31 and a central projecting part 2 of a stainless steel board 1 like a sandwich, and the force applied to the spherical body 30 is transmitted to the board 1 to deform an annular diaphragm 3. In proportion to this deformation, a thin film semiconductor strain gauge, which is formed in the diaphragm 3 by plasma CVD, is changed finely to be caught as a voltage change by a wiring film. Electrical connection 34 is performed through the deflection gauge and a printed wiring board 18, and this voltage change is amplified by an amplifying circuit of a printed circuit board 33 to be output 22 as the output signal at some volts, which is easy to be controlled and displayed. The accurate measurement is thereby enabled. Since the stainless steel board 1 is formed with the deflection gauge, and each member is bonded by the welding method which gives it a little heat, a detector can be made compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマイクロロードセルに関
し、特に増幅回路内臓型マイクロロードセルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro load cell, and more particularly to a micro load cell with a built-in amplifier circuit.

【0002】[0002]

【従来の技術】従来より使用されているマイクロロード
セルに種々の型式がある。第1は、金属箔等の歪ゲージ
を採用しているもの、第2は薄膜半導体を採用している
もので、この種のマイクロロードセルは、特願平3−1
48037号に詳細に記載されている。以下この出願の
明細書に記載したマイクロロードセルの概要を図4を参
照して説明する。中央凸部bを中心として環状ダイアフ
ラムcに形成したステンレス基板aの前記環状ダイアフ
ラムcの下面にプラズマCVDにより形成した薄膜半導
体歪ゲージを配設し、支持部dの段部eに載置した前記
ステンレス基板を入熱の少ない溶接方法により、支持部
d内側に溶着し、支持部d内にプリント基板fをほぼ水
平に収納し、前記プリント基板fとステンレス基板aの
薄膜半導体歪ゲージとを金線ボンディングgにより電気
的に接続し、前記プリント基板fに接続したリード線j
を、支持部dとケースhとを入熱の少ない溶接方法によ
り溶着形成した空洞に収納して、ケースh側面に取り付
けたチューブiを通過させて、外部へ引き出してなるマ
イクロロードセルである。又シリコンウエハー等を採用
しているものも存在する。前記各種型式のマイクロロー
ドセルはいずれもホイストンブリッジ回路を構成したも
ので、通常出力は数mV〜数百mV程度で、別に設けた
増幅回路を接続して、数Vの処理しやすい出力となして
いる。
2. Description of the Related Art There are various types of conventionally used micro load cells. The first is the one using a strain gauge such as a metal foil, and the second is the one using a thin film semiconductor.
No. 48037. The outline of the micro load cell described in the specification of this application will be described below with reference to FIG. A thin film semiconductor strain gauge formed by plasma CVD is disposed on the lower surface of the annular diaphragm c of the stainless steel substrate a formed on the annular diaphragm c centered on the central convex portion b, and is placed on the step e of the support portion d. A stainless steel substrate is welded to the inside of the supporting part d by a welding method with little heat input, the printed circuit board f is housed substantially horizontally in the supporting part d, and the printed circuit board f and the thin film semiconductor strain gauge of the stainless steel substrate a are made of gold. A lead wire j electrically connected by a wire bonding g and connected to the printed circuit board f.
Is a micro load cell in which the support part d and the case h are housed in a cavity formed by welding by a welding method with less heat input, the tube i attached to the side surface of the case h is passed, and the micro load cell is drawn to the outside. There are also those that use silicon wafers and the like. Each of the various types of micro load cells described above constitutes a Hoiston bridge circuit, and a normal output is about several mV to several hundred mV, and an amplifier circuit provided separately is connected to provide an output that is easy to process several V. ing.

【0003】[0003]

【発明の解決しようとする課題】前述のマイクロロード
セルには以下説明するような問題があった。第1に、マ
イクロロードセル単一ではその出力は弱く、従って得ら
れた信号をそのまま制御や表示等には使用できないか
ら、別に増幅回路を設けなければならないので、配線や
増幅回路の校正が繁雑でそのために余分の手数を要す
る。又マイクロロードセルと増幅回路の特性は別々に考
慮せねばならず、最終的には必要とする精度は計算値で
求めるけれども、計算値を確認するために実測を行わね
ばならず、従って特性の良好なマイクロロードセルを得
ようとすればコスト上昇を招く等の問題点があった。第
2に薄膜半導体を用いたロードセル(特願平3−148
037号)においては、ステンレス基板の中央凸部等よ
りなるロードボタンを採用しているが、このロードボタ
ンの取付け作業は容易でないのみならず、使用する際に
は周辺に設けた支持部に当らないように中央凸部を押圧
せねばならない等の操作上の問題点があった。第3にこ
のマイクロロードセルは零点、出力共にバラツキが存在
するので、増幅回路を用いて所定の値に調整しなければ
ならず、そのため調整トリマ等をプリント基板上に設け
る必要があり、又その調整のためにマイクロロードセル
に特別に孔を穿設しなければならない等の問題点があっ
た。
The above-mentioned micro load cell has the following problems. First, the output of a single micro load cell is weak, and therefore the obtained signal cannot be used for control or display as it is. Therefore, a separate amplifier circuit must be provided, and wiring and amplification circuit calibration is complicated. Therefore, extra work is required. In addition, the characteristics of the micro load cell and the amplifier circuit must be considered separately, and the required accuracy is finally obtained by the calculated value, but the actual measurement must be performed to confirm the calculated value, and therefore the characteristic is good. However, there is a problem that an increase in cost will occur if an attempt is made to obtain such a micro load cell. Secondly, a load cell using a thin film semiconductor (Japanese Patent Application No. 3-148
No. 037) adopts a load button composed of a central convex portion of a stainless steel substrate, etc., but the mounting work of this load button is not easy, and when it is used, it does not touch a supporting portion provided in the periphery. There was a problem in operation such that the central convex portion had to be pressed so that it would not occur. Thirdly, since there are variations in the zero point and the output of this micro load cell, it is necessary to adjust it to a predetermined value by using an amplifier circuit. Therefore, it is necessary to provide an adjustment trimmer or the like on the printed circuit board, and the adjustment Therefore, there is a problem that a hole must be specially formed in the micro load cell.

【0004】[0004]

【課題を解決するための手段】本発明は前述の問題を解
決すべくなされたもので、実施例の説明に用いた図面を
参照して説明すると、本発明に係るマイクロロードセル
は、中央凸部2を中心として環状ダイアフラム3に形成
したステンレス基板1の前記環状ダイアフラム3にプラ
ズマCVDにより形成した薄膜半導体歪ゲージ8を配設
し、支持部14の段部15に載置した前記ステンレス基
板1を入熱の少ない溶接方法により、支持部14内側に
溶着し、支持部14内にプリント基板18をほぼ水平に
収納し、前記プリント基板18とステンレス基板1の薄
膜半導体歪ゲージ8とを電気的に接続し、前記プリント
基板18の下方でケース26内側に増幅回路を具えた別
のプリント基板33を架設し、更に前記中央凸部2のく
ぼみ5に金属球体30を収納し、支持部14の開口端部
に、前記球体30をサンドウイッチするように孔31a
を具えた薄板31を、固着し更にケース26の底部に、
取付けねじ孔36を穿設し、増幅回路を具えたプリント
基板33に調整用トリマ35を配設したことを特徴とす
る。
The present invention has been made to solve the above-mentioned problems, and the micro load cell according to the present invention will be described with reference to the drawings used to explain the embodiments. The thin film semiconductor strain gauge 8 formed by plasma CVD is disposed on the annular diaphragm 3 of the stainless steel substrate 1 formed on the annular diaphragm 3 with the center 2 as the center, and the stainless steel substrate 1 placed on the step 15 of the support portion 14 is attached to the annular diaphragm 3. It is welded to the inside of the supporting portion 14 by a welding method with little heat input, the printed circuit board 18 is housed in the supporting portion 14 substantially horizontally, and the printed circuit board 18 and the thin film semiconductor strain gauge 8 of the stainless steel substrate 1 are electrically connected. Another printed circuit board 33 having an amplifier circuit is installed inside the case 26 below the printed circuit board 18 and a metal sphere is formed in the recess 5 of the central convex portion 2. 0 was housed, the open end of the supporting portion 14, the hole 31a of the spherical body 30 so as to sandwich
The thin plate 31 having the
A mounting screw hole 36 is provided, and an adjusting trimmer 35 is provided on a printed circuit board 33 having an amplifier circuit.

【0005】[0005]

【作用】上述の様に構成してあるから、金属球体30に
力を加えるとステンレス基板1の中央凸部2に押圧力が
伝達される。金属球体30は薄板31とステンレス基板
1の中央凸部2とによってサンドウイッチ状に抑えられ
ているから、外部へ飛び出すことなくして定位値に保持
される。薄板31は環状ダイヤフラム3よりも薄形であ
り、更に薄板31の直径が大きいので、金属球体30の
押圧時の力の吸収は無視できる程小さい。金属球体30
を介してステンレス基板1に伝達した力は環状ダイヤフ
ラム3を変形する。環状ダイヤフラム3の裏面に配設し
た薄膜半導体歪ゲージ8は、前述の変位に伴って、その
抵抗値はほぼ変形に比例して微小変化をなし、その抵抗
値の変化をステンレス基板1上の配線膜10に形成した
ホイストンブリッジ回路により電圧変化としてとらえ、
プリント基板33の増幅回路により、制御、表示しやす
い数ボルトの出力信号を得る。更に、プリント基板33
の増幅回路の調整は取付けねじ孔36を通じて行うこと
ができるから、調整トリマを操作するための特別な孔を
マイクロロードセルに穿設する必要はなく、又トリマの
調整は製造時にのみ必要なだけであるから、完成品は取
付けねじ孔36にねじを螺着し、密閉することができ
る。
Since the structure is as described above, when a force is applied to the metallic sphere 30, the pressing force is transmitted to the central convex portion 2 of the stainless steel substrate 1. Since the metal sphere 30 is held in a sandwich shape by the thin plate 31 and the central convex portion 2 of the stainless steel substrate 1, the metal sphere 30 is held at the localization value without protruding to the outside. Since the thin plate 31 is thinner than the annular diaphragm 3 and the diameter of the thin plate 31 is larger, the absorption of force when the metal sphere 30 is pressed is negligibly small. Metal sphere 30
The force transmitted to the stainless steel substrate 1 via the deforms the annular diaphragm 3. The resistance value of the thin film semiconductor strain gauge 8 arranged on the back surface of the annular diaphragm 3 slightly changes in proportion to the deformation due to the above-mentioned displacement, and the change of the resistance value is changed on the stainless substrate 1. By the Hoiston bridge circuit formed on the film 10, it is recognized as a voltage change,
The amplifier circuit of the printed circuit board 33 provides an output signal of several volts which is easy to control and display. Furthermore, the printed circuit board 33
Since the adjustment of the amplifier circuit can be performed through the mounting screw hole 36, it is not necessary to make a special hole for operating the adjustment trimmer in the micro load cell, and the adjustment of the trimmer is only necessary at the time of manufacturing. Therefore, the finished product can be hermetically closed by screwing a screw into the mounting screw hole 36.

【0006】[0006]

【実施例】以下添付図面を参照して、本発明の一実施例
を説明する。第1に、薄膜半導体歪ゲージの製造方法に
ついて述べる。図3はその製造工程を図示するものであ
る。製造工程は矢印の方向へ進行するものとする。第1
に、ステンレス基板1のくぼみ5を有する中央凸部2を
残して環状ダイアフラム3を加工する。前記ダイアフラ
ム3の下面を研磨、洗浄を行った後、プラズマCVD装
置(図示せず)によって、絶縁膜4を成膜する。次に絶
縁膜4の面にプラズマCVDによりボロン等の不純物を
含有した多結晶シリコン膜6を形成して後、フォトリソ
グラフィ法により多結晶シリコン膜6をパターニング
し、薄膜半導体歪ゲージ8を形成する。次に金やアルミ
ニュームの配線膜を蒸着してブリッジ回路を組み込んだ
配線膜10を設ける。最後に保護膜12をプラズマCV
Dにより成膜する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. First, a method of manufacturing a thin film semiconductor strain gauge will be described. FIG. 3 illustrates the manufacturing process. The manufacturing process shall proceed in the direction of the arrow. First
Then, the annular diaphragm 3 is processed while leaving the central convex portion 2 having the recess 5 of the stainless steel substrate 1. After polishing and cleaning the lower surface of the diaphragm 3, an insulating film 4 is formed by a plasma CVD device (not shown). Next, a polycrystalline silicon film 6 containing impurities such as boron is formed on the surface of the insulating film 4 by plasma CVD, and then the polycrystalline silicon film 6 is patterned by a photolithography method to form a thin film semiconductor strain gauge 8. .. Next, a wiring film of gold or aluminum is vapor-deposited to provide a wiring film 10 incorporating a bridge circuit. Finally, the protective film 12 is plasma CV
The film is formed by D.

【0007】第2に、前記の様に製作したステンレス基
板1を支持部14やケース26への組付けについて説明
する。前記の様に製作した歪ゲージ8等を具えたステン
レス基板1を図3に図示の位置を逆にして所定のはめ合
い公差に加工製作したステンレス支持部14に挿入し
て、支持部14の段部15に載置し、ステンレス基板1
と支持部14の接合部をレーザー溶接等の入熱の少ない
溶接法で溶着16する。更に前記支持部14の内側にプ
リント基板18を接着収納して、金線ボンディング配線
20により、ステンレス基板1の薄膜半導体歪ゲージ8
と支持部14に架設したプリント基板18とを電気的に
接続する。次に増幅回路(図示せず)を形成したプリン
ト基板33をケース底部26の段部27に載置接着し、
このプリント基板33と前記プリント基板18とをリー
ド線34により電気的に接続する。増幅回路を構成した
プリント基板33には、外部リード線22を接続し、外
部リード線22を、ケース26に嵌挿固着したパイプ2
3により外部へ取り出す。前記支持部14とケース26
を入熱の少ないレーザ溶接等により溶着24する。又ス
テンレス等よりなる金属球30を、支持部14の開口部
を覆うように配設し、前記金属球30の径よりも小さい
孔31aを設けた薄板31とステンレス基板1の中央凸
部2のくぼみ5との間でサンドウイッチし、薄板31を
支持部14開口端部に溶着32する。又プリント基板3
3に形成した増幅回路の校正は、ケース26の底面に設
けた取付けねじ孔36を通して、調整具によりプリント
基板33に配置した調整トリマ35を通して行うもので
ある。この調整は製作時にのみ実施し、完成品として
は、前記取付けねじ孔36にねじ(図示せず)を螺着
し、密閉する。前述の様に組み立てた増幅回路内臓マイ
クロロードセル全体の斜視図を図2で示す。私共の行っ
た実験によれば、ステンレス基板1の中央凸部2のくぼ
み5でステンレス球30の押圧により、本発明に係るマ
イクロロードセルに加えた所定の圧力に対して、1−5
Vの出力が得られ、非直線性±0.5%以内、温度特性
は零点、出力共に±0.05%/℃以内の結果が得られ
た。尚本発明に係るマイクロロードセルの形状は直径φ
30mm、高さ20mmの小型である。
Secondly, the assembling of the stainless steel substrate 1 manufactured as described above to the supporting portion 14 and the case 26 will be described. The stainless steel substrate 1 having the strain gauges 8 and the like manufactured as described above is inserted into the stainless steel supporting portion 14 which is processed and manufactured to have a predetermined fitting tolerance by reversing the position shown in FIG. Placed on the part 15 and the stainless steel substrate 1
The joint between the support portion 14 and the support portion 14 is welded 16 by a welding method such as laser welding with a small heat input. Further, a printed circuit board 18 is adhesively housed inside the supporting portion 14, and the thin film semiconductor strain gauge 8 of the stainless steel substrate 1 is connected by a gold wire bonding wiring 20.
And the printed circuit board 18 installed on the support portion 14 are electrically connected. Next, the printed circuit board 33 on which an amplifier circuit (not shown) is formed is placed and adhered to the step portion 27 of the case bottom portion 26,
The printed circuit board 33 and the printed circuit board 18 are electrically connected by a lead wire 34. The external lead wire 22 is connected to the printed circuit board 33 that constitutes an amplifier circuit, and the external lead wire 22 is fitted and fixed to the case 26.
Take out to outside by 3. The support portion 14 and the case 26
Is welded 24 by laser welding or the like with little heat input. Further, a metal sphere 30 made of stainless steel or the like is arranged so as to cover the opening of the support portion 14, and a thin plate 31 having a hole 31a smaller than the diameter of the metal sphere 30 and the central convex portion 2 of the stainless steel substrate 1 are provided. The thin plate 31 is welded 32 to the opening end of the support portion 14 by sandwiching the thin plate 31 with the recess 5. Printed circuit board 3
The calibration of the amplifier circuit formed in No. 3 is performed through the mounting screw hole 36 provided on the bottom surface of the case 26 and through the adjustment trimmer 35 arranged on the printed circuit board 33 by the adjusting tool. This adjustment is performed only at the time of manufacture, and as a finished product, a screw (not shown) is screwed into the mounting screw hole 36 to seal the product. FIG. 2 shows a perspective view of the entire microload cell with the built-in amplifier circuit assembled as described above. According to an experiment conducted by us, the depression 5 of the central convex portion 2 of the stainless steel substrate 1 presses the stainless steel ball 30 against a predetermined pressure applied to the micro load cell according to the present invention, and the pressure is 1-5.
The output of V was obtained, the nonlinearity was within ± 0.5%, the temperature characteristic was zero, and the output was within ± 0.05% / ° C. The shape of the micro load cell according to the present invention has a diameter φ.
It is small with a size of 30 mm and a height of 20 mm.

【0008】[0008]

【効果】本発明に係るマイクロロードセルは増幅回路を
形成したプリント基板を内蔵しているから、増幅回路の
特性を有し、この特性を利用して、高精度の測定が可能
であり、増幅回路の校正等はケースの取付けねじ孔等を
介して容易に実施できる。又ステンレス基板に薄膜半導
体歪ゲージを形成したものであり、入熱の少ない溶接法
を採用して各部材の接着を行っているから、マイクロロ
ードセルの小型化、増幅回路の簡素化、高性能化が実現
できる。更に増幅回路のHIC化、集積化等を計れば、
更に小型のアンプ内臓のマイクロロードセルを得るもの
である。
[Effect] The micro load cell according to the present invention has a built-in printed circuit board on which an amplifier circuit is formed, and thus has the characteristics of the amplifier circuit. By utilizing this characteristic, highly accurate measurement is possible, and the amplifier circuit Can be easily calibrated through the mounting screw holes of the case. In addition, a thin film semiconductor strain gauge is formed on a stainless steel substrate, and each member is adhered using a welding method with less heat input, so the micro load cell is downsized, the amplifier circuit is simplified, and the performance is improved. Can be realized. Further, if the amplification circuit is integrated into HIC and integrated,
In addition, a micro load cell with a smaller built-in amplifier is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るマイクロロードセルの一実施例の
断面図。
FIG. 1 is a cross-sectional view of an embodiment of a micro load cell according to the present invention.

【図2】図1の斜視図。FIG. 2 is a perspective view of FIG.

【図3】本発明に係る基板の製作工程を示す工程図。FIG. 3 is a process drawing showing a manufacturing process of a substrate according to the present invention.

【図4】従来例のマイクロロードセルの断面図。FIG. 4 is a cross-sectional view of a conventional micro load cell.

【符号の説明】[Explanation of symbols]

1 ステンレス基板 2 中央凸部 3 環状ダイアフラム 5 くぼみ 8 薄膜半導体歪ゲージ 10 配線膜 14 支持部 15 段部 16 溶着部 18 プリント基板 20 金線 26 ケース 27 段部 30 金属球 31 薄板 31a 薄板の孔 33 増幅回路プリント基板 34 リード線 35 調整用トリマ 36 取付けねじ孔 1 Stainless Steel Substrate 2 Center Protrusion 3 Ring Diaphragm 5 Recess 8 Thin Film Semiconductor Strain Gauge 10 Wiring Film 14 Supporting Part 15 Step 16 Welding 18 Printed Circuit Board 20 Gold Wire 26 Case 27 Step 30 Metal Ball 31 Thin Plate 31a Thin Plate Hole 33 Amplifier circuit Printed circuit board 34 Lead wire 35 Adjustment trimmer 36 Mounting screw hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中央凸部を中心として環状ダイアフラム
に形成したステンレス基板の前記環状ダイアフラムの上
面にプラズマCVDにより形成した薄膜半導体歪ゲージ
を配設し、支持部の段部に載置した前記ステンレス基板
を入熱の少ない溶接方法により、支持部内側に溶着し、
支持部内にプリント基板をほぼ水平に収納し、前記プリ
ント基板とステンレス基板の薄膜半導体歪ゲージとを電
気的に接続し、前記プリント基板の下方でケース内側に
増幅回路を具えた別のプリント基板を架設し、更に前記
中央凸部のくぼみに金属球体を収納し、支持部の開口端
部に、前記球体をサンドウイッチするように孔を具えた
薄板を、固着したことを特徴とするマイクロロードセ
ル。
1. A thin film semiconductor strain gauge formed by plasma CVD is provided on the upper surface of the annular diaphragm of a stainless steel substrate formed on an annular diaphragm centering on a central convex portion, and the stainless steel placed on a stepped portion of a supporting portion. Weld the substrate to the inside of the support by a welding method with little heat input,
The printed circuit board is housed substantially horizontally in the support part, the printed circuit board and the thin film semiconductor strain gauge of the stainless steel substrate are electrically connected, and another printed circuit board having an amplifier circuit inside the case is provided below the printed circuit board. A micro load cell, which is constructed by erection, further stores a metal sphere in a recess of the central convex portion, and fixes a thin plate having a hole for sandwiching the sphere to an opening end of a supporting portion.
【請求項2】 ケースの底部に取付けねじ孔を穿設し、
この孔を通過せしめる調整具により増幅回路を具えたプ
リント基板に設けた調整用トリマを調整することを特徴
とする請求項1記載のマイクロロードセル。
2. A mounting screw hole is formed in the bottom of the case,
2. The micro load cell according to claim 1, wherein an adjusting trimmer provided on a printed circuit board having an amplifier circuit is adjusted by an adjusting tool that allows the holes to pass through.
【請求項3】 中央凸部のくぼみに収納した球体よりも
小さい径の孔を具えた薄板を有する請求項1記載のマイ
クロロードセル。
3. The micro load cell according to claim 1, further comprising a thin plate having a hole having a diameter smaller than that of the sphere housed in the recess of the central convex portion.
JP30413491A 1991-10-23 1991-10-23 Micro load cell Withdrawn JPH05118935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30413491A JPH05118935A (en) 1991-10-23 1991-10-23 Micro load cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30413491A JPH05118935A (en) 1991-10-23 1991-10-23 Micro load cell

Publications (1)

Publication Number Publication Date
JPH05118935A true JPH05118935A (en) 1993-05-14

Family

ID=17929454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30413491A Withdrawn JPH05118935A (en) 1991-10-23 1991-10-23 Micro load cell

Country Status (1)

Country Link
JP (1) JPH05118935A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20216822U1 (en) * 2002-10-31 2003-08-14 Keller Ag Fuer Druckmestechnik Pressure transducer for indirect measurement of the liquid level in a tank, whereby the tank weight is transferred to the transducer via a pressure transfer medium, thus enabling precise measurements with an inexpensive device
WO2003087747A1 (en) 2002-04-12 2003-10-23 Hokuriku Electric Industry Co.,Ltd. Semiconductor force sensor
JP2004004069A (en) * 2002-04-12 2004-01-08 Hokuriku Electric Ind Co Ltd Semiconductor force sensor
WO2004072597A1 (en) * 2003-02-13 2004-08-26 Hokuriku Electric Industry Co., Ltd. Semiconductor force sensor
JP2005106800A (en) * 2003-09-09 2005-04-21 Matsushita Electric Ind Co Ltd Strain detector
JP2006194710A (en) * 2005-01-13 2006-07-27 Honda Motor Co Ltd Pressing force detector mounting structure
JP2006194709A (en) * 2005-01-13 2006-07-27 Honda Motor Co Ltd Load sensor
WO2011102336A1 (en) * 2010-02-18 2011-08-25 北陸電気工業株式会社 Force detector
EP2713148A1 (en) * 2012-09-27 2014-04-02 Honeywell International Inc. Mechanically coupled force sensor on flexible platform assembly structure
JPWO2021125014A1 (en) * 2019-12-20 2021-06-24

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7234359B2 (en) 2002-04-12 2007-06-26 Hokuriku Electric Industry Co., Ltd. Semiconductor force sensor
WO2003087747A1 (en) 2002-04-12 2003-10-23 Hokuriku Electric Industry Co.,Ltd. Semiconductor force sensor
JP2004004069A (en) * 2002-04-12 2004-01-08 Hokuriku Electric Ind Co Ltd Semiconductor force sensor
JP2004003934A (en) * 2002-04-12 2004-01-08 Hokuriku Electric Ind Co Ltd Semiconductor force sensor
EP1519173A1 (en) * 2002-04-12 2005-03-30 Hokuriku Electric Industry Co., Ltd. Semiconductor force sensor
EP1519173A4 (en) * 2002-04-12 2006-07-26 Hokuriku Elect Ind Semiconductor force sensor
US7360440B2 (en) 2002-04-12 2008-04-22 Hokuriku Electric Industry Co., Ltd. Semiconductor force sensor
DE20216822U1 (en) * 2002-10-31 2003-08-14 Keller Ag Fuer Druckmestechnik Pressure transducer for indirect measurement of the liquid level in a tank, whereby the tank weight is transferred to the transducer via a pressure transfer medium, thus enabling precise measurements with an inexpensive device
WO2004072597A1 (en) * 2003-02-13 2004-08-26 Hokuriku Electric Industry Co., Ltd. Semiconductor force sensor
JP2005106800A (en) * 2003-09-09 2005-04-21 Matsushita Electric Ind Co Ltd Strain detector
JP2006194710A (en) * 2005-01-13 2006-07-27 Honda Motor Co Ltd Pressing force detector mounting structure
JP2006194709A (en) * 2005-01-13 2006-07-27 Honda Motor Co Ltd Load sensor
JP4580243B2 (en) * 2005-01-13 2010-11-10 本田技研工業株式会社 Pressure detector mounting structure
WO2011102336A1 (en) * 2010-02-18 2011-08-25 北陸電気工業株式会社 Force detector
JP2011169717A (en) * 2010-02-18 2011-09-01 Hokuriku Electric Ind Co Ltd Force detector
EP2713148A1 (en) * 2012-09-27 2014-04-02 Honeywell International Inc. Mechanically coupled force sensor on flexible platform assembly structure
JPWO2021125014A1 (en) * 2019-12-20 2021-06-24

Similar Documents

Publication Publication Date Title
US6062088A (en) Pressure sensor
EP0890830B1 (en) Pressure sensor
KR101953455B1 (en) Pressure sensor
US3970982A (en) Beam type transducers employing accurate, integral force limiting
JP3114006B2 (en) Semiconductor device and manufacturing method thereof
JPH05118935A (en) Micro load cell
US5279164A (en) Semiconductor pressure sensor with improved temperature compensation
JPH11304612A (en) Semiconductor pressure detector
JPH0850142A (en) Semiconductor acceleration sensor and its manufacture
JPH10148593A (en) Pressure sensor and capacitance-type pressure sensor chip
JPH02196938A (en) Pressure sensor
JPH1194673A (en) Sensor and its manufacture
JPS63228038A (en) Semiconductor pressure transducer
JPH0419495B2 (en)
JPH08105806A (en) Piezoelectric sensor system
JPS59217374A (en) Semiconductor strain converter
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH07280679A (en) Pressure sensor
JP3220346B2 (en) Pressure sensor and method of manufacturing the same
JP3307268B2 (en) Semiconductor pressure sensor
JPH06109570A (en) Semiconductor pressure sensor
EP0793103A2 (en) Semiconductor acceleration sensor
JP3307281B2 (en) Semiconductor pressure sensor
JPH09138173A (en) Semiconductor pressure sensor
JPH0196523A (en) Pressure sensor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107