JPH05114740A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device

Info

Publication number
JPH05114740A
JPH05114740A JP30272691A JP30272691A JPH05114740A JP H05114740 A JPH05114740 A JP H05114740A JP 30272691 A JP30272691 A JP 30272691A JP 30272691 A JP30272691 A JP 30272691A JP H05114740 A JPH05114740 A JP H05114740A
Authority
JP
Japan
Prior art keywords
gas
insulating film
tunnel insulating
film
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30272691A
Other languages
Japanese (ja)
Inventor
Seiichi Ishihara
整一 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30272691A priority Critical patent/JPH05114740A/en
Publication of JPH05114740A publication Critical patent/JPH05114740A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the storage holding characteristics of a semiconductor device by a method wherein when a tunnel insulating film, which is used for MNOS and MONOS nonvolatile memories, is formed, the mixed gas of N2O gas and H2O gas is fed in a furnace, in which a semiconductor substrate is loaded. CONSTITUTION:O2 gas and H2 gas are burned and turned into water vapor, and this water vapor is introduced into a furnace in which a semiconductor substrate is loaded, whereby the substrate is subjected to wet oxidation, the interface of an Si film with an SiO2 film becomes flat and a highly reliable tunnel insulating film is formed. N2O gas and H2O gas are introduced in the furnace. Here the ratio of the N2O gas to the H2O gas is maintained at a ratio of roughly 9:1. Thereby, the Si film is oxidized and a tunnel insulating film of a tapered band gap, which is small on the side of the Si substrate and is large on the side of an SiN film, is formed. Thereby, the program speed is increased and the storage holding characteristics of a semiconductor device can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
特に電荷がトンネル可能な膜厚の絶縁膜(以下トンネル
絶縁膜という)の形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming an insulating film having a film thickness capable of tunneling charges (hereinafter referred to as a tunnel insulating film).

【0002】[0002]

【従来の技術】従来、MNOS(Metal-Nitride-Oxide-
Semiconductor )型やMONOS(Metal-Oxide-Nitrid
e-Oxide-Semiconductor )型の不揮発性記憶素子に使用
するトンネル絶縁膜は、つぎの方法で形成されていた。
すなわちN2ガスで希釈した低濃度O2ガス雰囲気中での
ドライ酸化、N2またはNH3 ガスを直接Si基板に反応さ
せる直接熱窒化、一旦酸化膜を作って、その酸化膜を
高温中においてNH3ガスで窒化するNH3 熱窒化。
2. Description of the Related Art Conventionally, MNOS (Metal-Nitride-Oxide-
Semiconductor) type and MONOS (Metal-Oxide-Nitrid
The tunnel insulating film used for the e-Oxide-Semiconductor) type non-volatile memory element was formed by the following method.
That is, dry oxidation in a low-concentration O 2 gas atmosphere diluted with N 2 gas, direct thermal nitridation in which N 2 or NH 3 gas is directly reacted with a Si substrate, an oxide film is once formed, and the oxide film is heated at a high temperature. NH 3 thermal nitriding of nitriding in an NH 3 gas.

【0003】こゝでのドライ酸化法では、プログラム
スピードを早くするためにトンネル絶縁膜を薄くすると
記憶保持特性が悪くなり、またの直接熱窒化法でもプ
ログラムスピードを早くするためにバンドギャップを小
さくすると記憶保持特性が悪くなる。すなわち, の
方法ではプログラムスピードと記憶保持特性とが相反す
る結果となる。さらにのNH3 熱窒化法ではトンネル絶
縁膜中にNH3 から解離した水素が多量に入り、この水素
が電子をトラップし固定電荷が発生, 増加して消去がで
きなくなり書換え寿命が短かいという問題があった。
In this dry oxidation method, if the tunnel insulating film is thinned in order to increase the program speed, the memory retention characteristics deteriorate, and in the direct thermal nitriding method, the band gap is reduced in order to increase the program speed. Then, the memory retention characteristic deteriorates. That is, the method (2) results in a conflict between the program speed and the memory retention characteristic. Furthermore, in the NH 3 thermal nitriding method, a large amount of hydrogen dissociated from NH 3 enters the tunnel insulating film, and this hydrogen traps electrons and a fixed charge is generated, which increases and cannot be erased. was there.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前述のよう
な現状に鑑み、プログラムスピードが早く記憶保持特性
が良くかつ固定電荷の発生しないトンネル絶縁膜を形成
する技術を提供するためになされたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and provides a technique for forming a tunnel insulating film having a fast program speed, good memory retention characteristics, and fixed charges not generated. It is a thing.

【0005】[0005]

【課題を解決するための手段】本発明は、MNOS型,
MONOS型不揮発性記憶素子に使用するトンネル絶縁
膜を形成するに際し、N2O ガスとH2O とがほヾ9:1の
割合で混合されたガスを、半導体基板が装入されている
800 ℃〜900 ℃のファーネスに供給し、トンネル絶縁膜
を形成することを特徴とする半導体装置の製造方法であ
る。
SUMMARY OF THE INVENTION The present invention is a MNOS type,
When forming a tunnel insulating film used for a MONOS type nonvolatile memory element, a semiconductor substrate is charged with a gas in which N 2 O gas and H 2 O are mixed at a ratio of about 9: 1.
This is a method for manufacturing a semiconductor device, which comprises supplying a furnace at 800 ° C. to 900 ° C. to form a tunnel insulating film.

【0006】[0006]

【作用】本発明の構成,作用を以下に説明する。先ずO
2, H2ガスとを外部燃焼装置に入れて燃焼させ水蒸気に
して、これを半導体基板が装入されているファーネスに
導入する。したがってウェット酸化となり、SiとSiO2
の界面がドライ酸化に比べてよりフラットとなり高信頼
性のトンネル絶縁膜が形成される。一方、N2O がファー
ネスに同時に導入される。こゝでN2O ガスとH2O との比
は、ほゞ9:1の割合に維持される。N2O が導入される
ことによってSiが酸化され、SiO2よりむしろ SiON に近
いトンネル酸化膜が形成される。ここで、所望の酸化速
度が得られるように、N2ガスあるいはArガスで希釈して
よい。
The structure and operation of the present invention will be described below. First O
2, H 2 gas and an external combustion device are put into an external combustion apparatus to burn the water vapor, which is then introduced into the furnace in which the semiconductor substrate is placed. Therefore, wet oxidation is performed, and the interface between Si and SiO 2 is flatter than in dry oxidation, and a highly reliable tunnel insulating film is formed. On the other hand, N 2 O is simultaneously introduced into the furnace. Here, the ratio of N 2 O gas to H 2 O is maintained at a ratio of about 9: 1. The introduction of N 2 O oxidizes Si, forming a tunnel oxide film closer to SiO N rather than SiO 2 . Here, it may be diluted with N 2 gas or Ar gas so as to obtain a desired oxidation rate.

【0007】したがって、Si基板側でバンドギャップが
小さくSiN 膜側でバンドギャップが大きいテーパーバン
ドギャップのトンネル絶縁膜が形成される。さらに従来
のNH3 熱窒化の場合のように解離した水素がないので固
定電荷が発生, 増加することはない。以上のように、本
発明によるとSi基板側でバンドギャップが小さく、SiN
膜側でバンドギャップが大きいテーパーバンドギャップ
のトンネル絶縁膜が形成されプログラムスピードが早
く、記憶保持性が良く、かつそのトンネル絶縁膜中に水
素が少ないため固定電荷の発生がなく書換え寿命が長く
なる。
Therefore, a tunnel insulating film having a tapered bandgap having a small bandgap on the Si substrate side and a large bandgap on the SiN film side is formed. Furthermore, unlike the case of conventional NH 3 thermal nitriding, there is no dissociated hydrogen, so fixed charges are not generated or increased. As described above, according to the present invention, the band gap on the Si substrate side is small, and the SiN
A tunnel insulating film with a taper band gap with a large band gap is formed on the film side, and the programming speed is fast, memory retention is good, and since there is little hydrogen in the tunnel insulating film, fixed charges are not generated and the rewriting life is long. ..

【0008】[0008]

【実施例】O2ガス0.05l/min とH2ガス0.1l/minとを外部
燃焼装置に導入し、水蒸気0.1l/minを発生させ、Si基板
を装入しているファーネスに導入した。一方、0.9l/min
のN2O ガスと 9l/min のN2ガスを同時にファーネス温度
800 ℃〜900 ℃のファーネスに導入しSi基板を酸化し
た。この結果、酸化時間15〜30分で膜厚 20A°程度のト
ンネル絶縁膜が形成された。従来のドライ、酸化法、
直接熱窒化法、NH3 熱窒化法で作成したトンネル絶
縁膜に比べると、このトンネル絶縁膜はプログラムスピ
ードが5倍(同じ記憶保持特性の場合)早く、記憶保持
特性が3倍(同じプログラムスピードの場合)良く、か
つ書換え寿命が2倍長くなった。
[Examples] O 2 gas of 0.05 l / min and H 2 gas of 0.1 l / min were introduced into an external combustion apparatus to generate water vapor of 0.1 l / min, and introduced into a furnace containing a Si substrate. On the other hand, 0.9l / min
N 2 O gas and 9 l / min N 2 gas at the same furnace temperature
The Si substrate was oxidized by introducing it into a furnace at 800 ℃ to 900 ℃. As a result, a tunnel insulating film having a film thickness of about 20 A ° was formed in an oxidation time of 15 to 30 minutes. Conventional dry, oxidation method,
Compared to the tunnel insulating film formed by the direct thermal nitriding method or the NH 3 thermal nitriding method, this tunnel insulating film has a program speed 5 times faster (in the case of the same memory retention characteristic) and a memory retention characteristic 3 times (same program speed). In the case of), the rewriting life was doubled.

【0009】[0009]

【発明の効果】本発明によると、前述のとおり従来のト
ンネル絶縁膜に比べプログラムスピードが早く記憶保持
特性が良く、かつ書換え寿命の長いトンネル絶縁膜を形
成することができる。
As described above, according to the present invention, it is possible to form a tunnel insulating film having a faster programming speed, better memory retention characteristics and a longer rewriting life than the conventional tunnel insulating film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 MNOS型,MONOS型構造不揮発性
記憶素子に使用する電荷がトンネル可能な膜厚の絶縁膜
を半導体基板上に形成するに際し、 N2O ガスとH2O とがほゞ9:1の割合で混合されたガス
を、半導体基板が装入されている800 ℃〜900 ℃のファ
ーネスに供給し、トンネル絶縁膜を形成することを特徴
とする半導体装置の製造方法。
1. When forming an insulating film having a film thickness capable of tunneling charges used in a MNOS type and MONOS type non-volatile memory element on a semiconductor substrate, N 2 O gas and H 2 O are mixed. A method of manufacturing a semiconductor device, characterized in that the tunnel insulating film is formed by supplying a gas mixed at a ratio of 1 to a furnace of 800 ° C. to 900 ° C. in which a semiconductor substrate is charged.
JP30272691A 1991-10-23 1991-10-23 Method of manufacturing semiconductor device Pending JPH05114740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30272691A JPH05114740A (en) 1991-10-23 1991-10-23 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30272691A JPH05114740A (en) 1991-10-23 1991-10-23 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH05114740A true JPH05114740A (en) 1993-05-07

Family

ID=17912425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30272691A Pending JPH05114740A (en) 1991-10-23 1991-10-23 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH05114740A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239041B1 (en) 1997-03-05 2001-05-29 Hitachi, Ltd. Method for fabricating semiconductor integrated circuit device
US6800502B2 (en) 1998-10-07 2004-10-05 Lg Philips Lcd Co., Ltd. Thin film transistor, method of producing the same, liquid crystal display, and thin film forming apparatus
US6891744B2 (en) 1999-03-29 2005-05-10 Hewlett-Packard Development Company, L.P. Configurable nanoscale crossbar electronic circuits made by electrochemical reaction

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855642B2 (en) 1997-03-05 2005-02-15 Renesas Technology Corp. Method for fabricating semiconductor integrated circuit device
US6596650B2 (en) 1997-03-05 2003-07-22 Hitachi, Ltd. Method for fabricating semiconductor integrated circuit device
US6518201B1 (en) 1997-03-05 2003-02-11 Hitachi, Ltd. Method for fabricating semiconductor integrated circuit device
US6518202B2 (en) 1997-03-05 2003-02-11 Hitachi, Ltd. Method for fabricating semiconductor integrated circuit device
US6239041B1 (en) 1997-03-05 2001-05-29 Hitachi, Ltd. Method for fabricating semiconductor integrated circuit device
US6569780B2 (en) 1997-03-05 2003-05-27 Hitachi, Ltd. Method for fabricating semiconductor integrated circuit device
US6417114B2 (en) 1997-03-05 2002-07-09 Hitachi, Ltd. Method for fabricating semiconductor integrated circuit device
US7799690B2 (en) 1997-03-05 2010-09-21 Renesas Electronics Corporation Method for fabricating semiconductor integrated circuit device
US6528431B2 (en) 1997-03-05 2003-03-04 Hitachi, Ltd. Method for fabricating semiconductor integrated circuit drive using an oxygen and hydrogen catalyst
US7250376B2 (en) 1997-03-05 2007-07-31 Renesas Technology Corp. Method for fabricating semiconductor integrated circuit device
US6962880B2 (en) 1997-03-05 2005-11-08 Renesas Technology Corp. Method for fabricating semiconductor integrated circuit device
US6962881B2 (en) 1997-03-05 2005-11-08 Renesas Technology Corp. Method for fabricating semiconductor integrated circuit device
US7008880B2 (en) 1997-03-05 2006-03-07 Renesas Technology Corp. Method for fabricating semiconductor integrated circuit device
US7053007B2 (en) 1997-03-05 2006-05-30 Renesas Technology Corp. Method for fabricating semiconductor integrated circuit device
US6800502B2 (en) 1998-10-07 2004-10-05 Lg Philips Lcd Co., Ltd. Thin film transistor, method of producing the same, liquid crystal display, and thin film forming apparatus
US6891744B2 (en) 1999-03-29 2005-05-10 Hewlett-Packard Development Company, L.P. Configurable nanoscale crossbar electronic circuits made by electrochemical reaction

Similar Documents

Publication Publication Date Title
US11222965B2 (en) Oxide-nitride-oxide stack having multiple oxynitride layers
US9349824B2 (en) Oxide-nitride-oxide stack having multiple oxynitride layers
US7060594B2 (en) Memory device and method of manufacturing including deuterated oxynitride charge trapping structure
US6248628B1 (en) Method of fabricating an ONO dielectric by nitridation for MNOS memory cells
JP4477422B2 (en) Method for manufacturing nonvolatile semiconductor memory device
US6297092B1 (en) Method and structure for an oxide layer overlaying an oxidation-resistant layer
JPS6486562A (en) Nonvolatile semiconductor memory
JPS58502126A (en) Non-volatile semiconductor memory device and its manufacturing method
JPH05114740A (en) Method of manufacturing semiconductor device
JP2004214608A (en) Method of manufacturing semiconductor device
US20020168869A1 (en) Method for fabricating an ONO layer
JPH09148325A (en) Method for manufacturing semiconductor device
JPS5867072A (en) Manufacture of semiconductor device
US20050064109A1 (en) Method of forming an ultrathin nitride/oxide stack as a gate dielectric
KR100685742B1 (en) Non-volatile memory device and Method of manufacturing the same
JP2004146665A (en) Manufacturing method of semiconductor device
JP3310988B2 (en) Method for forming silicon oxynitride film and method for manufacturing semiconductor device using the same
JPH05198821A (en) Method of manufacturing semiconductor nonvolatile storage device
TW200534489A (en) Method of manufacturing flash memory device
JPH06296029A (en) Semiconductor nonvolatile storage element and manufacture thereof
US6017786A (en) Method for forming a low barrier height oxide layer on a silicon substrate
JPH10125813A (en) Nonvolatile semiconductor storage device and manufacture thereof
JPH10154761A (en) Manufacture of non-volatile semiconductor storage device
JPH0529309A (en) Method and apparatus for manufacture of semiconductor integrated circuit device
JPH0665232B2 (en) Method of manufacturing semiconductor memory device