JPH05114665A - Heat radiative substrate - Google Patents

Heat radiative substrate

Info

Publication number
JPH05114665A
JPH05114665A JP30426091A JP30426091A JPH05114665A JP H05114665 A JPH05114665 A JP H05114665A JP 30426091 A JP30426091 A JP 30426091A JP 30426091 A JP30426091 A JP 30426091A JP H05114665 A JPH05114665 A JP H05114665A
Authority
JP
Japan
Prior art keywords
heat
substrate
heat dissipation
plate
chip resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30426091A
Other languages
Japanese (ja)
Inventor
Takahiro Yamakawa
孝宏 山川
Yasuhiro Uchiyama
康広 内山
Sadakatsu Okura
定勝 大倉
Kiyoto Shibata
清人 柴田
Shigeru Takahashi
繁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP30426091A priority Critical patent/JPH05114665A/en
Publication of JPH05114665A publication Critical patent/JPH05114665A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a substrate excellent in heat radiation. CONSTITUTION:A ceramic multilayer substrate 2 is so designed that a chip resistor (heating element) 3 is housed in a through hole therein. An aluminum nitride plate (heat spreader) 1 is connected to the upper face of the chip resistor 3 with a heat-transfer dowel in-between. Another aluminum nitride plate (heat spreader) 1 is connected directly to the bottom face of the chip resistor 3. This provides a substrate of a simple radiating structure which is excellent in heat radiation and is easily fabricated. Further, this substrate permits high-density mounting of ICs and a high-speed integrated circuit board.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放熱性に優れた放熱性
基板に関し、特に、IC等を高密度に実装することがで
きる放熱性基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-dissipating substrate having excellent heat-dissipating properties, and more particularly to a heat-dissipating substrate on which ICs and the like can be mounted at high density.

【0002】[0002]

【従来の技術】近年、導体配線やコンデンサ等を内層化
した低温焼成のセラミックス多層基板が実用化されつつ
ある。このような基板は、従来のガラス−エポキシ基板
に比べて微細配線が可能であり、しかも、多層化が容易
であるため、基板全体を小型化できるというメリットを
有している。
2. Description of the Related Art In recent years, low-temperature-fired ceramic multilayer substrates having conductor wiring, capacitors, etc. as inner layers have been put into practical use. Such a substrate allows fine wiring as compared with a conventional glass-epoxy substrate, and moreover has a merit that the whole substrate can be miniaturized because it is easy to form multiple layers.

【0003】一方、IC等を高密度に実装したり、ま
た、高速でICに信号処理させたりすると、ICチップ
自身が発熱し、その性能が劣化することが知られてい
る。従って、基板をセラミックス製とすることによって
微細配線ができるとしても、この場合、IC等の発する
熱を逃さなければ、高密度実装ができない。しかしなが
ら、基板として使用するセラミックスは、熱伝導性が低
いため、IC等の発生する熱を効率よく放熱させること
ができず、高密度実装の大きな障害となっていた。
On the other hand, it is known that when an IC or the like is mounted at a high density or when the IC performs signal processing at a high speed, the IC chip itself generates heat and its performance deteriorates. Therefore, even if fine wiring can be made by making the substrate ceramic, in this case, high-density mounting cannot be performed unless heat generated by the IC or the like is released. However, since the ceramics used as the substrate has a low thermal conductivity, the heat generated by the IC or the like cannot be efficiently dissipated, which has been a major obstacle to high-density mounting.

【0004】上記問題点を解決するため、従来、種々の
放熱手段や放熱構造のものが多数提案されている。その
うち、特開平2−23176号公報に記載されている放熱構造
のものは、最も放熱性が向上していると考えられる。同
公報に記載の発明は、放熱構造に係るものでなく、製造
方法に関するものであるが、この方法により得られる放
熱性基板について簡単に説明すると、セラミックス基板
に穿孔した半導体チップ搭載用穴(キャビティ)に半導
体チップを収納し、その半導体チップ及びセラミックス
基板を放熱用の窒化アルミニウム基板に接合されてなる
回路基板である。このような構造の回路基板では、発熱
部品である半導体チップが放熱性の高い窒化アルミニウ
ム基板に直接接合されているので、高い放熱性を期待す
ることができる。
In order to solve the above problems, various types of heat radiating means and heat radiating structures have been conventionally proposed. Among them, the heat dissipation structure described in Japanese Patent Laid-Open No. 2-23176 is considered to have the highest heat dissipation. Although the invention described in the publication does not relate to a heat dissipation structure but to a manufacturing method, a heat dissipation substrate obtained by this method will be briefly described. A semiconductor chip mounting hole (cavity) formed in a ceramic substrate is described below. ) In which a semiconductor chip is housed, and the semiconductor chip and a ceramics substrate are bonded to an aluminum nitride substrate for heat dissipation. In the circuit board having such a structure, since the semiconductor chip, which is a heat-generating component, is directly bonded to the aluminum nitride substrate having high heat dissipation, high heat dissipation can be expected.

【0005】[0005]

【発明が解決しようとする課題】ところで、最近、半導
体素子の容量が増大し、それに伴って発熱量も増大して
おり、また、配線技術の向上により更に微細配線が達成
され、その結果、半導体素子間の間隔が挟まり、回路基
板の単位面積当りの発熱量も増加している。そのため、
前記したような構造を持つ回路基板であっても、放熱が
追いつかず、その結果、半導体素子の温度が上昇する問
題点が生じ、誤動作する等の事故が多発するようになっ
てきた。
By the way, recently, the capacity of a semiconductor element has been increased, and the amount of heat generated has been increased accordingly, and further finer wiring has been achieved by improving the wiring technique. The space between the elements is narrowed, and the amount of heat generated per unit area of the circuit board is also increasing. for that reason,
Even with the circuit board having the above-mentioned structure, the heat radiation cannot catch up, resulting in a problem that the temperature of the semiconductor element rises, resulting in frequent occurrence of accidents such as malfunction.

【0006】本発明者等は、上記問題点を解決するため
実験を繰り返し、本発明を完成したものであって、本発
明の目的は、より放熱性に優れ、IC等のより一層の高
密度実装や高速信号処理をすることができる放熱性基板
を提供するにある。
The inventors of the present invention have completed the present invention by repeating experiments to solve the above-mentioned problems. The object of the present invention is to have a better heat dissipation property and a higher density of ICs and the like. An object is to provide a heat dissipation board that can be mounted and can perform high-speed signal processing.

【0007】[0007]

【課題を解決するための手段】そして、本発明は、発熱
素子の片面でなく、その上下両面に放熱用板体を接続す
る点及び発熱素子面と放熱用板体とを接続する際、必要
に応じ伝熱用コマを介在させる点を特徴とし、これによ
って、上記目的とする放熱性に優れた基板を提供するも
のである。即ち、本発明は、基板に設けた貫通孔に発熱
素子を収納し、該発熱素子の上下両面に直接及び/又は
伝熱用コマを介して放熱用板体を接続してなることを特
徴とする放熱性基板を要旨とするものである。
The present invention is necessary when connecting a heat dissipation plate to the upper and lower surfaces of a heating element, not to one surface, and when connecting the heating element surface and the heat dissipation plate. According to the above, a heat transfer piece is interposed, which provides a substrate excellent in heat dissipation as the above object. That is, the present invention is characterized in that the heat generating element is housed in the through hole provided in the substrate, and the heat radiating plate body is connected to the upper and lower surfaces of the heat generating element directly and / or through the heat transfer piece. The purpose is to dissipate the heat dissipation substrate.

【0008】以下本発明を詳細に説明すると、本発明
は、発熱素子の上下両面に放熱用板体を接続した構造の
放熱性基板であり、具体的には、発熱素子の上下両面に
放熱用板体を直接接合することもできるが、好ましく
は、その片面又は両面に伝熱用コマを介して放熱用板体
を接続するのが好ましい。発熱素子の放熱経路として、
従来では片面からのみであったのに対し、本発明では、
その放熱経路を両面とするものであり、これによって、
放熱経路の断面積が約2倍となり、熱抵抗が下がり、放
熱性が増大する作用が生ずる。
The present invention will be described in detail below. The present invention is a heat-dissipating substrate having a structure in which heat-dissipating plate members are connected to the upper and lower surfaces of a heat-generating element. Although it is possible to directly join the plate bodies, it is preferable to connect a heat-dissipating plate body to one or both surfaces of the plate body via a heat transfer piece. As a heat dissipation path for the heating element,
Conventionally, it was only from one side, in the present invention,
The heat dissipation path is on both sides.
The cross-sectional area of the heat radiation path is approximately doubled, the thermal resistance is lowered, and the heat radiation performance is increased.

【0009】本発明における基板としては、ガラス−エ
ポキシ複合基板の他、アルミナやシリカ、コーディエラ
イト等の結晶性セラミックスからなる基板を使用するこ
とができ、また、ガラスやガラス−結晶質複合セラミッ
クスにより絶縁層を形成し、その層間にAg、Ag−P
d、Mo、Pt、Au、Cu、Ni等の導体回路を形成
してなるセラミックス多層基板等、特にその種類や質に
限定されずに用いることができる。即ち、本発明では、
上記基板への熱の拡散(放散)を意図するものでないの
で(僅かに配線を通して伝熱する程度であるので)、特
に限定されるものでなく、種々の基板を任意に使用する
ことができる。
As the substrate in the present invention, in addition to the glass-epoxy composite substrate, substrates made of crystalline ceramics such as alumina, silica and cordierite can be used, and glass and glass-crystalline composite ceramics can be used. To form an insulating layer between the layers, and Ag, Ag-P
It is possible to use a ceramics multilayer substrate or the like formed with a conductor circuit of d, Mo, Pt, Au, Cu, Ni or the like, without being particularly limited to its type and quality. That is, in the present invention,
Since it is not intended to diffuse (dissipate) heat to the substrate (because the heat is only slightly transferred through the wiring), it is not particularly limited and various substrates can be arbitrarily used.

【0010】本発明における伝熱用コマとしては、熱伝
導性の高い材料、例えば金属又は高熱伝導性セラミック
スからなるものを使用する必要があり、具体的に例示す
れば、アルミニウム、銅、窒化アルミニウム、炭化珪
素、ベリリア等を挙げることができる。また、放熱用板
体も熱伝導性の高い材料、例えば金属又は高熱伝導性セ
ラミックスからなるものを使用することができ、上記伝
熱用コマにおける使用材料と同一である。
As the heat transfer piece in the present invention, it is necessary to use a material having high heat conductivity, for example, a material made of metal or high heat conductive ceramics. Specific examples thereof include aluminum, copper and aluminum nitride. , Silicon carbide, beryllia and the like. Further, the heat dissipation plate may be made of a material having a high thermal conductivity, for example, a metal or a ceramic having a high thermal conductivity, and is the same as the material used in the heat transfer piece.

【0011】また、各素子間の絶縁性が特に要求される
場合、伝熱用コマ又は放熱用板体のどちらか一方を高熱
伝導性であって、しかも、絶縁性が高いセラミックス
(窒化アルミニウム、炭化珪素、ベリリア等)を用いる
ことが好ましい。更に、素子端子とセラミックス基板上
の回路とをワイヤーボンディングにより接続するような
時には、少なくとも伝熱用コマを上記セラミックス製の
ものとしたほうが、絶縁不良などを防止することができ
るため、特に好ましい。
When insulation between the respective elements is particularly required, either one of the heat transfer piece or the heat dissipation plate has a high thermal conductivity and a ceramic having a high insulation property (aluminum nitride, Silicon carbide, beryllia, etc.) are preferably used. Further, when the element terminals and the circuit on the ceramics substrate are connected by wire bonding, it is particularly preferable that at least the heat transfer piece is made of the above-mentioned ceramics because the insulation failure can be prevented.

【0012】本発明において、発熱素子と伝熱用コマ
(又は放熱用板体)との接続手段及び伝熱用コマと放熱
用板体との接続手段としては、特に限定するものでない
が、できる限り熱抵抗の少ない方法を採用することが好
ましい。具体的には、市販されているハンダや金属ロウ
材を用いたロウ付けや同じく市販の高熱伝導性の有機接
着剤を用いることができる。
In the present invention, the connecting means for connecting the heat generating element and the heat transfer piece (or the heat radiating plate) and the connecting means for connecting the heat transfer piece and the heat radiating plate are not particularly limited. As far as possible, it is preferable to use a method having a small thermal resistance. Specifically, brazing using a commercially available solder or metal brazing material, or a commercially available organic adhesive having high thermal conductivity can be used.

【0013】本発明の放熱性基板において、特に注意を
要する点は、発熱素子が複数個内在する場合であるが、
この場合においても、発熱量が多く、単板では放熱し切
れないような素子については、該発熱素子の上下両面か
ら熱が流れるようにしなければならず、このため、該発
熱素子の上下両面に放熱用板体を配設することが特に必
要である。上記した複数個の発熱素子が内在する場合、
各素子毎に放熱用板体を配設することができ、また、各
素子の上下にそれぞれ1枚の放熱用板体を配置し、この
放熱用板体に各素子を接続することもできる。なお、本
明細書で記載する発熱素子とは、一般に集積回路素子を
指すが、抵抗体やコイル等も使用条件によっては発熱す
る場合があり、このような抵抗体やコイル等を内在する
基板に対しても有効であり、これも本発明に包含される
ものである。
In the heat dissipating substrate of the present invention, a point to be especially noted is that a plurality of heat generating elements are included.
Even in this case, for an element that generates a large amount of heat and cannot be completely radiated by a single plate, heat must flow from the upper and lower surfaces of the heating element. It is especially necessary to provide a heat dissipation plate. When a plurality of heating elements described above are present,
A heat dissipation plate may be provided for each element, or one heat dissipation plate may be disposed above and below each element, and each element may be connected to this heat dissipation plate. Note that the heating element described in this specification generally refers to an integrated circuit element; however, a resistor, a coil, or the like may generate heat depending on usage conditions, and a resistor or a coil or the like is included in a substrate provided in the substrate. It is also effective, which is also included in the present invention.

【0014】[0014]

【実施例】次に、本発明の実施例を比較例と共に挙げ、
本発明をより詳細に説明する。 (実施例1)図1は、本発明の一実施例を示す放熱性基
板の断面図であって、セラミックス多層基板2の貫通孔
にチップ抵抗(発熱素子)3を収納し、このチップ抵抗
3の上面に伝熱用コマ4を介して窒化アルミニウム板
(放熱用板体)1を接続し、一方、その下面に窒化アル
ミニウム板(放熱用板体)1を直接接続した構造の放熱
性基板である。
EXAMPLES Next, examples of the present invention will be given together with comparative examples.
The present invention will be described in more detail. (Embodiment 1) FIG. 1 is a cross-sectional view of a heat dissipation substrate showing an embodiment of the present invention, in which a chip resistor (heating element) 3 is housed in a through hole of a ceramic multilayer substrate 2 and the chip resistor 3 A heat-radiating substrate having a structure in which an aluminum nitride plate (heat-dissipating plate) 1 is connected to the upper surface of the aluminum via a heat-transfer piece 4 while an aluminum nitride plate (heat-dissipating plate) 1 is directly connected to the lower surface thereof. is there.

【0015】この放熱性基板を詳細に説明すると、基板
として、日本セメント社製の2インチ角、厚さ約2.8mm
の低温焼成多層セラミックス基板2を用い、その中央部
に5mm角の貫通孔(キャビティ)を設けた。また、放
熱用板体として、徳山曹達社製の2インチ角、厚さ約0.6
25mmの窒化アルミニウム板1を使用し、まず、この窒
化アルミニウム板1と上記セラミックス多層基板2の下
部とをエポキシ樹脂接着剤にて接着した。
This heat dissipating substrate will be described in detail. As the substrate, a 2-inch square product made by Nippon Cement Co., and a thickness of about 2.8 mm are used.
The low-temperature fired multilayer ceramic substrate 2 was used and a 5 mm square through hole (cavity) was provided in the center thereof. Also, as a heat dissipation plate, 2 inch square made by Tokuyama Soda Co., Ltd., thickness about 0.6
A 25 mm aluminum nitride plate 1 was used. First, the aluminum nitride plate 1 and the lower part of the ceramic multilayer substrate 2 were bonded with an epoxy resin adhesive.

【0016】次に、セラミックス多層基板2のキャビテ
ィから露出した窒化アルミニウム板1上に3216タイプ・
51Ωのチップ抵抗(発熱素子)3を接着し、その電極に
リード線を接続してセラミックス多層基板2の外へ電極
を延長した(図示せず)。更に、チップ抵抗3の側面に
極細の熱電対を接着し、これもセラミックス多層基板2
の外へ延長した(図示せず)。
Next, on the aluminum nitride plate 1 exposed from the cavity of the ceramic multilayer substrate 2, 3216 type
A 51 Ω chip resistor (heating element) 3 was adhered, a lead wire was connected to the electrode, and the electrode was extended outside the ceramic multilayer substrate 2 (not shown). Further, an extremely fine thermocouple is attached to the side surface of the chip resistor 3, which also serves as the ceramic multilayer substrate 2.
Extended out of (not shown).

【0017】その後、チップ抵抗3の上面に3mm角、
高さ3mmの窒化アルミニウム製伝熱用コマ4を接着
し、更に、その上に30mm角、厚さ1.0mmの窒化アル
ミニウム板1を接着した。この状態でチップ抵抗3に1
ワットの電力を供給し、発熱させ、その際のチップ抵抗
3の温度変化を測定したところ、電流を流す前に比べて
11.3℃温度が上昇したところで平衡状態となった。
After that, a 3 mm square on the upper surface of the chip resistor 3,
A heat transfer piece 4 made of aluminum nitride having a height of 3 mm was adhered, and further, an aluminum nitride plate 1 having a side of 30 mm and a thickness of 1.0 mm was adhered thereon. In this state, 1 for chip resistor 3
When the temperature change of the chip resistor 3 at that time was supplied by supplying electric power of watts to generate heat, it was compared with that before the current was applied.
Equilibrium was reached when the temperature rose 11.3 ° C.

【0018】(実施例2)図2は、本発明の他の実施例
を示す放熱性基板の断面図であって、セラミックス多層
基板2の貫通孔にチップ抵抗(発熱素子)3を収納し、
このチップ抵抗3の上下両面に伝熱用コマ4を介して窒
化アルミニウム板(放熱用板体)1を接続した構造の放
熱性基板である。この実施例2では、チップ抵抗3の上
面だけでなく、その下面においても伝熱用コマ4を介し
て窒化アルミニウム板(放熱用板体)1と接続した点
で、実施例1と異なり、この点を除いて実施例1と同じ
構造の放熱性基板である。
(Embodiment 2) FIG. 2 is a cross-sectional view of a heat dissipation substrate showing another embodiment of the present invention, in which a chip resistor (heating element) 3 is housed in a through hole of a ceramic multilayer substrate 2.
This is a heat dissipation board having a structure in which an aluminum nitride plate (heat dissipation plate) 1 is connected to the upper and lower surfaces of the chip resistor 3 via heat transfer pieces 4. The second embodiment differs from the first embodiment in that not only the upper surface of the chip resistor 3 but also the lower surface thereof is connected to the aluminum nitride plate (heat dissipation plate body) 1 via the heat transfer piece 4. The heat dissipation substrate has the same structure as in Example 1 except for the points.

【0019】(比較例)比較のため、チップ抵抗上面の
伝熱用コマ及びアルミニウム板のない状態で、実施例1
と同一試験を行なったところ、21.2℃上昇して平衡とな
った。この比較例の温度上昇と前記実施例1のそれとを
比較すると、本発明による放熱性基板では、放熱性が大
幅に改善されていることが理解できる。
(Comparative Example) For comparison, Example 1 was performed without the heat transfer piece on the upper surface of the chip resistor and the aluminum plate.
When the same test as above was conducted, the temperature increased by 21.2 ° C to reach equilibrium. Comparing the temperature rise of this comparative example with that of the first embodiment, it can be understood that the heat dissipation substrate according to the present invention has a significantly improved heat dissipation property.

【0020】[0020]

【発明の効果】本発明は、以上詳記したとおり、発熱素
子の片面でなく、その上下両面に放熱用板体を接続する
点及び発熱素子面と放熱用板体とを接続する際、必要に
応じ伝熱用コマを介在させる点を特徴とする放熱性基板
であり、その放熱性構造が極めて簡単であって、容易に
作製することができ、しかも、放熱性に優れた基板を得
ることができる効果を有する。そして、本発明により、
より高度な、例えばIC等の高密度実装や高速信号処理
をすることができる集積回路用基板を提供することがで
きる。
As described above in detail, the present invention is necessary not only on one side of the heating element but on the upper and lower surfaces of the heating element where the heat radiation plate is connected and when the heating element surface and the heat radiation plate are connected. A heat-dissipating substrate characterized by interposing a heat transfer piece according to the above, and a heat-dissipating structure thereof is extremely simple and can be easily manufactured, and a substrate having excellent heat-dissipating property is obtained. It has the effect that And according to the present invention,
It is possible to provide a more advanced integrated circuit substrate capable of high-density mounting of, for example, an IC or the like and high-speed signal processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す放熱性基板の断面図で
ある。
FIG. 1 is a cross-sectional view of a heat dissipation board showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す放熱性基板の断面図
である。
FIG. 2 is a cross-sectional view of a heat dissipation board showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 窒化アルミニウム板(放熱用板体) 2 セラミックス多層基板 3 チップ抵抗(発熱素子) 4 伝熱用コマ 1 Aluminum nitride plate (heat dissipation plate) 2 Ceramics multilayer substrate 3 Chip resistor (heating element) 4 Heat transfer piece

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板に設けた貫通孔に発熱素子を収納
し、該発熱素子の上下両面に直接又は伝熱用コマを介し
て放熱用板体を接続してなることを特徴とする放熱性基
板。
1. A heat dissipation device characterized in that a heat generating element is housed in a through hole provided in a substrate, and a heat radiating plate body is connected to both upper and lower surfaces of the heat generating element directly or through a heat transfer piece. substrate.
【請求項2】 基板に設けた貫通孔に発熱素子を収納
し、該発熱素子の片面に伝熱用コマを介して放熱用板体
を接続し、他面に直接放熱用板体を接続してなることを
特徴とする放熱性基板。
2. A heat generating element is housed in a through hole provided in a substrate, a heat radiating plate is connected to one surface of the heat generating element via a heat transfer piece, and a heat radiating plate is directly connected to the other surface. A heat-radiating substrate characterized by the following.
【請求項3】 基板に設けた貫通孔に発熱素子を収納
し、該発熱素子の上下両面に伝熱用コマを介して放熱用
板体を接続してなることを特徴とする放熱性基板。
3. A heat-radiating substrate, characterized in that a heat-generating element is housed in a through-hole provided in the substrate, and heat-radiating plate bodies are connected to the upper and lower surfaces of the heat-generating element via heat transfer pieces.
JP30426091A 1991-10-23 1991-10-23 Heat radiative substrate Pending JPH05114665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30426091A JPH05114665A (en) 1991-10-23 1991-10-23 Heat radiative substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30426091A JPH05114665A (en) 1991-10-23 1991-10-23 Heat radiative substrate

Publications (1)

Publication Number Publication Date
JPH05114665A true JPH05114665A (en) 1993-05-07

Family

ID=17930916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30426091A Pending JPH05114665A (en) 1991-10-23 1991-10-23 Heat radiative substrate

Country Status (1)

Country Link
JP (1) JPH05114665A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119446B2 (en) * 2001-12-31 2012-02-21 Megica Corporation Integrated chip package structure using metal substrate and method of manufacturing the same
US8330049B2 (en) 2009-04-01 2012-12-11 Samsung Electro-Mechanics Co., Ltd. Circuit board module and method of manufacturing the same
KR101331724B1 (en) * 2012-04-13 2013-11-20 삼성전기주식회사 Double side cooling power semiconductor moduleand multi-stacked power semiconductor module package using the same
US9136246B2 (en) 2001-12-31 2015-09-15 Qualcomm Incorporated Integrated chip package structure using silicon substrate and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119446B2 (en) * 2001-12-31 2012-02-21 Megica Corporation Integrated chip package structure using metal substrate and method of manufacturing the same
US9136246B2 (en) 2001-12-31 2015-09-15 Qualcomm Incorporated Integrated chip package structure using silicon substrate and method of manufacturing the same
US8330049B2 (en) 2009-04-01 2012-12-11 Samsung Electro-Mechanics Co., Ltd. Circuit board module and method of manufacturing the same
KR101331724B1 (en) * 2012-04-13 2013-11-20 삼성전기주식회사 Double side cooling power semiconductor moduleand multi-stacked power semiconductor module package using the same

Similar Documents

Publication Publication Date Title
US5650662A (en) Direct bonded heat spreader
JP2592308B2 (en) Semiconductor package and computer using the same
CA1257010A (en) Heat dissipation for electronic components on a ceramic substrate
JPH06252285A (en) Circuit board
KR102429675B1 (en) Monolithic Microwave Integrated Circuit (MMIC) Cooling Architecture
US20200075455A1 (en) Circuit Cooled on Two Sides
JPH06104350A (en) Multilayered wiring board
JPH05114665A (en) Heat radiative substrate
JPS6250981B2 (en)
JP3193142B2 (en) Board
JPH06334286A (en) Circuit board
KR101418008B1 (en) Substrate for LED and LED heat-sink structure
JP2965223B2 (en) Composite board for heat dissipation
JPH0320067A (en) Semiconductor device fitted with ceramic heat-radiating fins
JPH0513610A (en) Board for mounting semiconductor integrated circuit device
JPH0878616A (en) Multi-chip module
JPH10256413A (en) Semiconductor package
JP3036236B2 (en) Circuit board
JP2521624Y2 (en) Semiconductor device
JPH10135405A (en) Wiring board module
JP2005277381A (en) Package for storing electronic component and electronic device
JPH10275879A (en) Semiconductor package
TWM625419U (en) Power module with stepped pads formed on ceramic substrate
JPH1117047A (en) Substrate for mounting electronic component
JPS60250655A (en) Integrated circuit package