JPH05112635A - Totally fluorinated wholly aromatic polyester and optical part using the same polyester - Google Patents

Totally fluorinated wholly aromatic polyester and optical part using the same polyester

Info

Publication number
JPH05112635A
JPH05112635A JP3302753A JP30275391A JPH05112635A JP H05112635 A JPH05112635 A JP H05112635A JP 3302753 A JP3302753 A JP 3302753A JP 30275391 A JP30275391 A JP 30275391A JP H05112635 A JPH05112635 A JP H05112635A
Authority
JP
Japan
Prior art keywords
optical
polymer
polyester
optical component
wholly aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3302753A
Other languages
Japanese (ja)
Inventor
Yoshitaka Takezawa
由高 竹沢
Shuichi Ohara
周一 大原
Seikichi Tanno
清吉 丹野
Noriaki Takeya
則明 竹谷
Shinichi Akasaka
伸一 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3302753A priority Critical patent/JPH05112635A/en
Publication of JPH05112635A publication Critical patent/JPH05112635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain the subject polyester useful for light transmitting material using far infrared rays, optical fiber especially consisting of a core and a clad, wave guide type light circuit, etc., comprising a specific repeating structure. CONSTITUTION:The objective polyester comprising a repeating structure of the formula (COO and phenylene are at meta-position or para-position; X is F or CF3), having 100-2,500 degree of polymerization. The polyester is useful as a material for optical parts with far infrared light rays having >=850nm central light source wavelength. The polyester, for example, is obtained by adding tetrafluorohydroquinone and tetrafluoroisophthaloyl chloride to a mixture of equal amounts of meta- and terphenyls and heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規な高分子化合物に係
り、特に、近赤外光を用いる光伝送用の材料として有用
な全フッ素化全芳香族ポリエステルとその用途に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel polymer compound, and more particularly to a perfluorinated wholly aromatic polyester useful as a material for optical transmission using near infrared light and its use.

【0002】[0002]

【従来の技術】現在、光伝送システムとしては850n
m以上の近赤外光を用いた無機系光学部品が実用化され
ている。これに対して取扱いの容易なポリマーを光伝送
部に使用した光学部品は、850nm以上の近赤外領域
でのポリマー固有の吸収損失が大きいため、吸収損失の
小さな660nm帯を中心とする可視光でのシステムを
独立して構築していた。そこで850nm以上の近赤外
光でも使用可能なポリマー製光学部品が切望されてい
る。この目的で、ポリマー エンジニアリング アンド
サイエンス,29,1209(1989)に記載のよ
うに、フッ素化あるいは重水素化したポリメチルメタク
リレートあるいはポリスチレンをコアに用いた光ファイ
バ等が提案されている。
2. Description of the Related Art Currently, as an optical transmission system, 850n
Inorganic optical components using near-infrared light of m or more have been put into practical use. On the other hand, the optical parts that use a polymer that is easy to handle in the optical transmission section have a large absorption loss peculiar to the polymer in the near infrared region of 850 nm or more, so visible light centered on the 660 nm band where absorption loss is small. I was building the system independently. Therefore, a polymer optical component that can be used even in near infrared light of 850 nm or more has been earnestly desired. For this purpose, as described in Polymer Engineering and Science, 29 , 1209 (1989), an optical fiber using a fluorinated or deuterated polymethylmethacrylate or polystyrene as a core has been proposed.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、8
50nm以上の近赤外光での透明性は向上したが、ポリ
マーの耐熱性が不足しており、また水分の影響も大きく
受けるなど信頼性に欠けるため、長期信頼性を要求され
る光通信系に適用できない等の問題を有していた。そこ
で、本発明では、前記従来技術の問題点を解決し、既存
の無機系光伝送システムで用いられている850nm以
上の近赤外光を伝送可能な耐熱性を有する有機高分子化
合物を開発し、それを用いた光学部品を提供することを
目的とする。
In the above-mentioned prior art, 8
Transparency in near-infrared light of 50 nm or more is improved, but the heat resistance of the polymer is insufficient and it is also unreliable because it is greatly affected by moisture, so optical communication systems that require long-term reliability. There was a problem that it could not be applied to. Therefore, the present invention solves the above-mentioned problems of the prior art, and develops a heat-resistant organic polymer compound capable of transmitting near-infrared light of 850 nm or more, which is used in existing inorganic optical transmission systems. , And to provide an optical component using the same.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、全フッ素化全芳香族ポリエステルを得
たものであり、該ポリエステルは下記化1の繰り返し構
造を有する高分子化合物である。
In order to achieve the above object, in the present invention, a perfluorinated wholly aromatic polyester is obtained, which is a polymer compound having a repeating structure of the following chemical formula 1. is there.

【化1】 (式中、−COO−基とフェニル基の結合はメタ位かパ
ラ位であり、XはF又はCF3 で、同一又は異っていて
もよい。) 上記高分子化合物の重合度は特に制限されないが、成形
性に影響する。特に好適には重合度100〜2500で
ある。重合度が100より小さい場合、成形品の寸法安
定性が低下し、また重合度が2500より大きい場合、
成形時の流動性が低下する等のデメリットが生ずる。
[Chemical 1] (In the formula, the bond between the -COO- group and the phenyl group is at the meta position or the para position, X is F or CF 3 , and may be the same or different.) The degree of polymerization of the polymer compound is not particularly limited. Not affected, but it affects formability. Particularly preferably, the degree of polymerization is 100 to 2500. If the degree of polymerization is less than 100, the dimensional stability of the molded article is reduced, and if the degree of polymerization is more than 2500,
There are disadvantages such as a decrease in fluidity during molding.

【0005】上記本発明の全フッ素化全芳香族ポリエス
テルは、伝送波長850nm以上で低損失かつ耐熱性に
優れている。特に、従来は有機系ポリマーでは使用でき
なかった1.3ミクロン以上の長波長領域で、本発明の
ポリマーを用いれば光を数十メートル伝送することが可
能となった。このポリマーは製膜あるいは成形材料とし
ても有効であり、光ファイバから薄膜光導波路まで適用
できる。光伝送部にクラッドを必要とする場合でも、ク
ラッド用ポリマーの材料としては特に制限されず、光伝
送部(コア)よりも屈折率の低い従来公知の材料を使用
することができる。本発明のポリマーにより製造した光
学部品は、例えば受光器内蔵車載コンピュータと光源内
蔵操作スイッチとを有し、これらを光ファイバで接続し
た自動車内光LANにおいて、該光ファイバとして用い
ることができる。
The above-mentioned perfluorinated wholly aromatic polyester of the present invention has low loss and excellent heat resistance at a transmission wavelength of 850 nm or more. In particular, in the long wavelength region of 1.3 μm or more, which could not be used in the conventional organic polymers, it became possible to transmit light of several tens of meters by using the polymer of the present invention. This polymer is also effective as a film-forming or molding material, and can be applied from optical fibers to thin-film optical waveguides. Even when a clad is required in the optical transmission part, the material of the polymer for the clad is not particularly limited, and a conventionally known material having a lower refractive index than that of the optical transmission part (core) can be used. The optical component manufactured from the polymer of the present invention has, for example, an in-vehicle computer with a built-in light receiver and an operation switch with a built-in light source, and can be used as the optical fiber in an in-vehicle optical LAN in which these are connected by an optical fiber.

【0006】[0006]

【作用】近赤外領域におけるポリマーの吸収損失は、水
素原子を含む化学結合の分子振動吸収の高調波に起因す
る。そこでこの水素原子をフッ素で置換すると、この高
調波吸収強度は大幅に低減する。しかしながら主鎖中に
メチレン結合が存在するとフッ素化してもポリマーの耐
熱性はメチレン結合の無いものに比べ低いため、全芳香
族系ポリマーであることが望ましい。そこで主鎖に含ま
れる化学結合としては、全フッ素化フェニレンの他は最
低限のエーテル結合及びエステル結合に限定される。さ
らに全フッ素化フェニレンの全てがパラ位で結合してい
ると、ミクロな領域でのポリマーの結晶化あるいは光学
異方性の増大による光散乱損失の増加が顕著となるた
め、メタ置換の全フッ素化フェニレンを含む必要があ
る。
The absorption loss of the polymer in the near-infrared region is due to the harmonic of the molecular vibration absorption of the chemical bond containing the hydrogen atom. Therefore, if this hydrogen atom is replaced with fluorine, this harmonic absorption intensity is significantly reduced. However, if a methylene bond is present in the main chain, the heat resistance of the polymer is lower than that without a methylene bond even if it is fluorinated. Therefore, a wholly aromatic polymer is preferable. Therefore, the chemical bond contained in the main chain is limited to the minimum ether bond and ester bond other than perfluorinated phenylene. Furthermore, if all of the perfluorinated phenylenes are bound in the para position, the meta-substitution of all-fluorinated fluorescein will be remarkable because the light scattering loss will increase remarkably due to the crystallization of the polymer in the microscopic region or the increase of the optical anisotropy. Must contain phenylene chloride.

【0007】[0007]

【実施例】以下、実施例を用いて本発明を詳細に説明す
る。 実施例1 テトラフルオロハイドロキノン5.5g、テトラフルオ
ロイソフタロイルクロライド8.3gをメタ及びターフ
ェニル等重量混合体70g中に加え、攪拌しながら18
0℃で加熱した。反応中は塩酸ガスが発生する。約20
分間反応後塩酸ガスの発生はかなり減少した。340℃
でさらに50分間加熱還流すると、粘稠な淡黄色溶液が
得られた。混合物を室温にまで冷却後、反応混合物より
繰返し単位の化学構造が化2の構造を有するポリマーを
分離し、熱アセトンで精製、ろ過し、減圧乾燥した(収
量9g)。
The present invention will be described in detail below with reference to examples. Example 1 Tetrafluorohydroquinone (5.5 g) and tetrafluoroisophthaloyl chloride (8.3 g) were added to a mixture of meta and terphenyl (70 g) by weight, and the mixture was stirred while stirring.
Heated at 0 ° C. Hydrochloric acid gas is generated during the reaction. About 20
After the reaction for a minute, the generation of hydrochloric acid gas was considerably reduced. 340 ° C
When heated at reflux for another 50 minutes, a viscous pale yellow solution was obtained. After cooling the mixture to room temperature, a polymer having a chemical structure of a repeating unit represented by Chemical Formula 2 was separated from the reaction mixture, purified with hot acetone, filtered, and dried under reduced pressure (yield 9 g).

【化2】 このポリマーの分子量は数平均分子量で126,00
0、重量平均分子量で486,000であった。
[Chemical 2] The number average molecular weight of this polymer is 126,00.
It was 0 and the weight average molecular weight was 486,000.

【0008】次に、このポリマーをコア用ポリマーとし
て用い、クラッド用ポリマーとして4フッ化エチレン−
6フッ化プロピレン共重合体(FEP)を用いて、図1
に示すような直径0.5mmのコア1及び外形1.0m
mのクラッド2からなる構造の光ファイバを二重ノズル
構造を有する溶融押出紡糸装置により380℃で作製し
た。この光ファイバの伝送損失スペクトルを図2に示
す。図2に示すように波長850、1300、1550
nmにおける伝送損失値はそれぞれ0.85、0.7
0、0.81dB/mであり、波長850nm以上では
短距離光通信には十分な光伝送性能を有していた。さら
に、180℃で2日間加熱後も伝送損失はほとんど変化
しておらず、耐熱特性が優れていた。
Next, this polymer was used as a core polymer, and as a clad polymer, tetrafluoroethylene-
Using a hexafluoropropylene copolymer (FEP), FIG.
Core 1 with a diameter of 0.5 mm and outer diameter of 1.0 m
An optical fiber having a structure composed of m of clad 2 was produced at 380 ° C. by a melt extrusion spinning device having a double nozzle structure. The transmission loss spectrum of this optical fiber is shown in FIG. As shown in FIG. 2, wavelengths 850, 1300, 1550
The transmission loss values in nm are 0.85 and 0.7, respectively.
It was 0, 0.81 dB / m, and had a sufficient optical transmission performance for short-distance optical communication at a wavelength of 850 nm or more. Furthermore, the transmission loss was hardly changed even after heating at 180 ° C. for 2 days, and the heat resistance was excellent.

【0009】実施例2 実施例1と同様にして繰返し単位の化学構造が化3の構
造を有するポリマーを得た。
Example 2 In the same manner as in Example 1, a polymer having the chemical structure of the repeating unit of the formula 3 was obtained.

【化3】 このポリマーをコア用ポリマーとして用い、クラッド用
ポリマーとして4フッ化エチレン−6フッ化プロピレン
共重合体(FEP)を用いて、図1に示すような直径
0.5mmのコア1及び外形1.0mmのクラッド2か
らなる構造の光ファイバを得た。この光ファイバの波長
850、1300、1550nmにおける伝送損失値は
それぞれ0.69、0.60、0.70dB/mであ
り、短距離光通信には十分な光伝送性能を有していた。
さらに、180℃で2日間加熱後も伝送損失はほとんど
変化しておらず、耐熱特性が優れていた。
[Chemical 3] Using this polymer as a core polymer and a tetrafluoroethylene-6-fluoropropylene copolymer (FEP) as a clad polymer, a core 1 having a diameter of 0.5 mm and an outer diameter of 1.0 mm as shown in FIG. An optical fiber having a structure including the clad 2 was obtained. The transmission loss values at wavelengths of 850, 1300, and 1550 nm of this optical fiber were 0.69, 0.60, and 0.70 dB / m, respectively, and had sufficient optical transmission performance for short-distance optical communication.
Furthermore, the transmission loss was hardly changed even after heating at 180 ° C. for 2 days, and the heat resistance was excellent.

【0010】実施例3 コア用ポリマーとして化2に示す繰返し単位のポリマー
を用いて、クラッド用ポリマーとして2,2,2−トリ
フルオロエチルメタクリレートポリマーを用いて図3に
示すような直径0.5mmのコア1及び全長30mmの
クラッド2からなる構造の光分岐器(6分岐路:最大分
岐角10度)を得た。まずコアを射出温度380℃で射
出成形法により作製し、クラッドの原料となるモノマー
をベンゾイルパーオキシド0.5重量パーセントを重合
開始剤として約80℃で注型法にて重合した。この6分
岐路の波長850nmにおける過剰損失は2dBと小さ
く、また分岐光強度も全ての出射光でほぼ等しかった。
Example 3 A polymer having a repeating unit shown in Chemical formula 2 was used as a core polymer, and 2,2,2-trifluoroethylmethacrylate polymer was used as a clad polymer, and the diameter was 0.5 mm as shown in FIG. An optical branching device (6 branching paths: maximum branching angle of 10 degrees) having a structure including the core 1 and the clad 2 having a total length of 30 mm was obtained. First, a core was prepared by an injection molding method at an injection temperature of 380 ° C., and a monomer as a raw material for a clad was polymerized by a casting method at about 80 ° C. using 0.5% by weight of benzoyl peroxide as a polymerization initiator. The excess loss at the wavelength of 850 nm in the 6-branch path was as small as 2 dB, and the branched light intensity was almost the same for all the emitted lights.

【0011】実施例4 石英ガラス基板上に膜厚10ミクロンの実施例1で得た
ポリマー膜をプレス成形にて420℃で作製した。この
膜をエッチングして、図4に示したような導波回路層3
(導波路幅7ミクロン)を形成した。波長1.3ミクロ
ンのシングルモード石英光ファイバ出射光を入射したと
ころ、良好に伝送した。
Example 4 A polymer film having a thickness of 10 μm obtained in Example 1 was formed on a quartz glass substrate by press molding at 420 ° C. This film is etched to form the waveguide circuit layer 3 as shown in FIG.
(Waveguide width 7 microns) was formed. When the light emitted from the single-mode quartz optical fiber with a wavelength of 1.3 microns was incident, it was transmitted satisfactorily.

【0012】実施例5 実施例1で得た光ファイバ4を用い、図4に示す自動車
内光LANを行った。受光器内蔵車載コンピュータ5は
運転席下部に設置されており、850nmの光源内蔵操
作スイッチ6はそれぞれ4個所のドアに取付けられてい
る。車載コンピュータ5と操作スイッチ6とは光ファイ
バ4により接続されている。操作スイッチ6により車載
コンピュータ5を介してオーディオ、空調機構等の制御
を行った結果、良好に動作することを確認した。
Example 5 Using the optical fiber 4 obtained in Example 1, an in-vehicle optical LAN shown in FIG. 4 was performed. The on-vehicle computer 5 with a built-in light receiver is installed in the lower part of the driver's seat, and the operation switch 6 with a built-in light source of 850 nm is installed on each of the four doors. The vehicle-mounted computer 5 and the operation switch 6 are connected by the optical fiber 4. As a result of controlling the audio system, the air-conditioning system, etc. through the vehicle-mounted computer 5 by the operation switch 6, it was confirmed that the operation was good.

【0013】比較例1 ハイドロキノン5g、イソフタロイルクロライド9gを
メタ及びターフェニル等重量混合体80g中に加え、攪
拌しながら160℃で加熱した。約12分間反応後塩酸
ガスの発生はかなり減少した。310℃でさらに30分
間加熱還流すると、粘稠な濃黄色溶液が得られた。混合
物を室温にまで冷却後、反応混合物より繰返し単位の化
学構造が化4の構造を有するポリマーを分離し、熱アセ
トンで精製、ろ過し、減圧乾燥した。
Comparative Example 1 5 g of hydroquinone and 9 g of isophthaloyl chloride were added to 80 g of a weight mixture of meta and terphenyl and heated at 160 ° C. with stirring. After reacting for about 12 minutes, generation of hydrochloric acid gas was considerably reduced. Heating at reflux at 310 ° C. for a further 30 minutes gave a viscous dark yellow solution. After cooling the mixture to room temperature, a polymer having a repeating unit with a chemical structure of chemical formula 4 was separated from the reaction mixture, purified with hot acetone, filtered, and dried under reduced pressure.

【化4】 [Chemical 4]

【0014】このポリマーをコア用ポリマーとして用
い、クラッド用ポリマーとして4フッ化エチレン−6フ
ッ化プロピレン共重合体(FEP)を用いて図1に示す
ような直径0.5mmのコア1及び外形1.0mmのク
ラッド2からなる構造の光ファイバを二重ノズル構造を
有する溶融押出紡糸装置により作製した。しかしなが
ら、この光ファイバは波長850nm以上での近赤外光
を全く伝送しなかった。
Using this polymer as a core polymer and a tetrafluoroethylene-6-fluoropropylene copolymer (FEP) as a clad polymer, a core 1 having a diameter of 0.5 mm and an outer shape 1 as shown in FIG. An optical fiber having a structure of 0.0 mm clad 2 was produced by a melt extrusion spinning device having a double nozzle structure. However, this optical fiber did not transmit near infrared light at a wavelength of 850 nm or more.

【0015】[0015]

【発明の効果】本発明によれば、伝送波長850nm以
上での近赤外領域において、取扱性及び信頼性に優れた
ポリマー製光学部品を得ることができ、無機系光伝送シ
ステムに適用することが可能となる。
According to the present invention, it is possible to obtain a polymer optical component having excellent handleability and reliability in the near infrared region at a transmission wavelength of 850 nm or more, and to apply it to an inorganic optical transmission system. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のポリマー製光学部品である光ファイバ
の構造図を示す。
FIG. 1 shows a structural diagram of an optical fiber which is a polymer optical component of the present invention.

【図2】実施例1で得た光ファイバの伝送損失スペクト
ル図を示す。
2 shows a transmission loss spectrum diagram of the optical fiber obtained in Example 1. FIG.

【図3】本発明のポリマー製光学部品である光分岐器
(6分岐路)の模式図を示す。
FIG. 3 is a schematic diagram of an optical branching device (six branching paths) which is a polymer optical component of the present invention.

【図4】本発明のポリマー製光学部品である導波型光回
路の模式図を示す。
FIG. 4 is a schematic view of a waveguide type optical circuit which is a polymer optical component of the present invention.

【図5】本発明のポリマー製光学部品を用いた自動車内
光LANの構成図を示す。
FIG. 5 is a configuration diagram of an in-vehicle optical LAN using the polymer optical component of the present invention.

【符号の説明】[Explanation of symbols]

1:コア、2:クラッド、3:基板、4:光ファイバ、
5:車載コンピュータ、6:操作スイッチ
1: core, 2: clad, 3: substrate, 4: optical fiber,
5: In-vehicle computer, 6: Operation switch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹谷 則明 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 赤坂 伸一 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noriaki Takeya 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture, Hitachi Research Institute, Ltd. (72) Shinichi Akasaka 4026 Kuji Town, Hitachi City, Ibaraki, Hitachi Corporation Hitachi Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下記化1の繰り返し構造を有する全フッ
素化全芳香族ポリエステル。 【化1】 (式中、−COO−基とフェニレン基の結合はメタ位か
パラ位であり、XはF又はCF3 で、同一又は異ってい
てもよい。)
1. A perfluorinated wholly aromatic polyester having a repeating structure of the following chemical formula 1. [Chemical 1] (Wherein, -COO- bond group and a phenylene group is meta- or para-position, X is may be in F or CF 3, the same or different.)
【請求項2】 前記ポリエステルの重合度が100〜2
500である請求項1記載の全フッ素化全芳香族ポリエ
ステル。
2. The degree of polymerization of the polyester is 100 to 2
The fully fluorinated wholly aromatic polyester according to claim 1, which is 500.
【請求項3】 請求項1又は2記載の全フッ素化全芳香
族ポリエステルを、中心光源波長850nm以上の近赤
外光による光学部品用の材料として用いることを特徴と
するポリマー製光学部品。
3. A polymer optical component, wherein the perfluorinated wholly aromatic polyester according to claim 1 or 2 is used as a material for an optical component by near infrared light having a central light source wavelength of 850 nm or more.
【請求項4】 前記光学部品用の材料が、少なくともコ
アとクラッドからなる光ファイバであることを特徴とす
る請求項3記載のポリマー製光学部品。
4. The polymer optical component according to claim 3, wherein the material for the optical component is an optical fiber including at least a core and a clad.
【請求項5】 前記光学部品用の材料が、導波型光回路
であることを特徴とする請求項3記載のポリマー製光学
部品。
5. The polymer optical component according to claim 3, wherein the material for the optical component is a waveguide type optical circuit.
【請求項6】 受光器内蔵車載コンピュータと光源内蔵
操作スイッチとを有し、これらを光ファイバで接続した
自動車内光LANにおいて、該光ファイバが請求項3記
載のポリマー製光学部品であることを特徴とする自動車
内光LAN。
6. An optical LAN in a vehicle, comprising an on-vehicle computer with a built-in light receiver and an operation switch with a built-in light source, which are connected by an optical fiber, wherein the optical fiber is the polymer optical component according to claim 3. Characteristic optical LAN in a car.
JP3302753A 1991-10-23 1991-10-23 Totally fluorinated wholly aromatic polyester and optical part using the same polyester Pending JPH05112635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3302753A JPH05112635A (en) 1991-10-23 1991-10-23 Totally fluorinated wholly aromatic polyester and optical part using the same polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3302753A JPH05112635A (en) 1991-10-23 1991-10-23 Totally fluorinated wholly aromatic polyester and optical part using the same polyester

Publications (1)

Publication Number Publication Date
JPH05112635A true JPH05112635A (en) 1993-05-07

Family

ID=17912738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3302753A Pending JPH05112635A (en) 1991-10-23 1991-10-23 Totally fluorinated wholly aromatic polyester and optical part using the same polyester

Country Status (1)

Country Link
JP (1) JPH05112635A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028660A1 (en) * 1994-04-18 1995-10-26 Yasuhiro Koike Refractive index distribution type optical resin and production method thereof
WO2001099323A1 (en) * 2000-06-21 2001-12-27 Mitsubishi Denki Kabushiki Kaisha Data transmission system
US6470131B1 (en) 2000-11-03 2002-10-22 Corning Incorporated Highly-halogenated low optical loss polymer
US7352967B1 (en) 2000-06-21 2008-04-01 Mitsubishi Denki Kabushiki Kaisha Data transmission system
WO2010095678A1 (en) 2009-02-20 2010-08-26 セントラル硝子株式会社 Fluorinated dicarboxylic acid derivative and polymer obtained therefrom
WO2020175671A1 (en) * 2019-02-28 2020-09-03 富士フイルム株式会社 Polymer, method for producing same, gas separation membrane using this polymer, gas separation module, gas separation device and m-phenylenediamine compound

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028660A1 (en) * 1994-04-18 1995-10-26 Yasuhiro Koike Refractive index distribution type optical resin and production method thereof
WO2001099323A1 (en) * 2000-06-21 2001-12-27 Mitsubishi Denki Kabushiki Kaisha Data transmission system
US7352967B1 (en) 2000-06-21 2008-04-01 Mitsubishi Denki Kabushiki Kaisha Data transmission system
US6470131B1 (en) 2000-11-03 2002-10-22 Corning Incorporated Highly-halogenated low optical loss polymer
WO2002036659A3 (en) * 2000-11-03 2003-02-13 Corning Inc Highly-halogenated low optical loss polyester
US6610813B2 (en) 2000-11-03 2003-08-26 Corning Incorporated Highly-halogenated low optical loss polymer
WO2010095678A1 (en) 2009-02-20 2010-08-26 セントラル硝子株式会社 Fluorinated dicarboxylic acid derivative and polymer obtained therefrom
JP2010215904A (en) * 2009-02-20 2010-09-30 Central Glass Co Ltd Fluorinated dicarboxylic acid derivative and high-molecular compound obtained by using the same
US8809451B2 (en) 2009-02-20 2014-08-19 Central Glass Company, Limited Fluorinated dicarboxylic acid derivative and polymer obtained therefrom
WO2020175671A1 (en) * 2019-02-28 2020-09-03 富士フイルム株式会社 Polymer, method for producing same, gas separation membrane using this polymer, gas separation module, gas separation device and m-phenylenediamine compound
US11806661B2 (en) 2019-02-28 2023-11-07 Fujifilm Corporation Polymer and method for producing the same, gas separation membrane, gas separation module, and gas separation apparatus using the polymer, and m-phenylenediamine compound

Similar Documents

Publication Publication Date Title
KR100542784B1 (en) Refraction index distribution type optical resin materials
JP3132729B2 (en) Broadband high NA optical fiber
JPH0251483B2 (en)
JP3719733B2 (en) Gradient index type optical resin material and manufacturing method thereof
JPH05112635A (en) Totally fluorinated wholly aromatic polyester and optical part using the same polyester
JPS61190304A (en) Light transmitting fiber
JP3479573B2 (en) Plastic optical fiber
JP4132282B2 (en) Gradient index type optical resin material
JP3530630B2 (en) Method of manufacturing refractive index distribution type optical fiber and base material thereof
Kaino Linear Optical Properties of Organic Solids
JPS6043613A (en) Light-transmittable fiber
KR100226442B1 (en) Fluorinated poly(arylene ether) containing thermally curable ethynyl group, preparation method thereof, and optical devices using the same
JPH09235322A (en) Optical material and optical waveguide
JP3559423B2 (en) Plastic optical fiber
JP3576224B2 (en) Plastic optical fiber
JPS59216104A (en) Optical transmission fiber
JPH0345908A (en) Plastic optical fiber having heat resistance
JPS59216105A (en) Optical transmission fiber
JP3486483B2 (en) Plastic optical fiber
JPS62269906A (en) Optical transmission fiber
JPH06186442A (en) Distributed refractive index type plastic optical transmission body
JPH0227305A (en) Heat resistant optical fiber
JPS6380205A (en) Optical transmission type fiber
JPS6042712A (en) Light transmitting fiber
JPS62118307A (en) Optical fiber