JPH05109947A - Heat conducting material and its manufacture - Google Patents

Heat conducting material and its manufacture

Info

Publication number
JPH05109947A
JPH05109947A JP29249591A JP29249591A JPH05109947A JP H05109947 A JPH05109947 A JP H05109947A JP 29249591 A JP29249591 A JP 29249591A JP 29249591 A JP29249591 A JP 29249591A JP H05109947 A JPH05109947 A JP H05109947A
Authority
JP
Japan
Prior art keywords
thermal expansion
expansion metal
metal plate
plate
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29249591A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nakamura
恭之 中村
Makoto Kawakami
川上  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP29249591A priority Critical patent/JPH05109947A/en
Priority to EP92309275A priority patent/EP0537965B1/en
Priority to DE69217810T priority patent/DE69217810T2/en
Priority to US07/959,606 priority patent/US5358795A/en
Publication of JPH05109947A publication Critical patent/JPH05109947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a heat conducting material which has good coating properties of a thin film such as plating and a brazing material without a surface fine hole, good matching properties with thermal expansion coefficient of a bonding object material such as a chip and sealing resin, and good heat conducting properties and can set thermal expansion coefficient and heat conduc tion rate arbitrarily in accordance with use and purpose by realizing uniformity of heat receiving and thermal diffusion effect. CONSTITUTION:A copper plate 3 which is heated to a recrystallization temperature or higher is pressure-welded to a lower side of a kovar plate 1 wherein a number of small holes are shaped by a pressure welder and another copper plate 6 is pressure-welded to an upper side by a pressure welder; thereby, high junction strength is acquired at a small draft and specified thermal expansion coefficient and heat conduction rate can be acquired without changing a surface area ratio with a copper exposed surface 4 (through-hole) on a surface of the kovar plate 1 which is selected in advance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体チップ搭載用
放熱基板やリードフレーム用材料の如く、半導体チップ
による発熱を効率良く外部に放熱するため、金属、セラ
ミックス、Si等の半導体、プラスチックス等の被着相
手材との熱膨張係数の整合性と良好な熱伝導性を両立で
きるように、熱膨張係数及び熱伝導率を任意に変化さ
せ、かつ相手材との接合性並びに表面性状のすぐれた熱
伝導複合材料に係り、厚み方向に多数の貫通孔を設けた
低熱膨張金属板の片面に常温または再結晶温度以上に加
熱した高熱膨張金属板を圧接した2層材、あるいはさら
に低熱膨張金属板の他面に高熱膨張金属板を圧接した3
層材を直接あるいは適宜高熱膨張金属板を介在させて圧
接することにより、接合強度が高く、選定したこれら金
属板の厚さ比や貫通孔面積比を変化させることなく熱膨
張係数、熱伝導率を可変となし、受熱の均一化、熱拡散
効果の向上をはかり、表面微細孔がなくメッキやろう材
など薄膜の被着性にすぐれた熱伝導材料とその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention efficiently dissipates heat generated by a semiconductor chip to the outside, such as a heat dissipating substrate for mounting a semiconductor chip or a material for a lead frame. The thermal expansion coefficient and the thermal conductivity are changed arbitrarily so that the matching of the thermal expansion coefficient with the adherend mating material and the good thermal conductivity can both be achieved, and the bondability and surface quality with the mating material are excellent. The heat conduction composite material, a two-layer material in which a high thermal expansion metal plate heated to room temperature or a recrystallization temperature or more is pressure-welded to one surface of a low thermal expansion metal plate having a large number of through holes in the thickness direction, or a low thermal expansion metal A high thermal expansion metal plate was pressed against the other surface of the plate 3
The layered material is pressed directly or with a high thermal expansion metal plate interposed as appropriate, resulting in high bonding strength, and thermal expansion coefficient and thermal conductivity without changing the thickness ratio or through hole area ratio of these selected metal plates. The present invention relates to a heat-conducting material which is variable in temperature, uniforms heat reception, improves a heat diffusion effect, has no surface fine pores, and has excellent adherence to a thin film such as plating or brazing material, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】半導体パッケージの集積回路チップ(以
下チップ)、とりわけ大型コンピューター用のLSI
やULSIは、高集積度化、演算速度の高速化の方向に
進んでおり、作動中における消費電力の増加に伴う発熱
量が非常に大きくなっている。該チップは大容量化して
発熱量が大きくなっており、基板材料の熱膨張係数がチ
ップ材料であるシリコンやガリウムヒ素等と大きな差が
あると、チップが剥離あるいは割れを生ずる問題があ
る。
2. Description of the Related Art A semiconductor package integrated circuit chip (hereinafter referred to as a chip), especially an LSI for a large computer
2. Description of the Related Art ULSI and ULSI are advancing toward higher integration and higher calculation speed, and the amount of heat generated is extremely large due to the increase in power consumption during operation. The chip has a large capacity and a large amount of heat generation, and if the coefficient of thermal expansion of the substrate material is largely different from that of the chip material such as silicon or gallium arsenide, there is a problem that the chip peels or cracks.

【0003】これに伴ない半導体パッケージの設計も、
熱放散性を考慮したものとなり、チップを搭載する基板
にも放熱性が要求されるようになり、基板材料の熱伝導
率が大きいことが求められている。従って、基板にはチ
ップと熱膨張係数が近く、かつ熱伝導率が大きいことが
要求されている。
As a result, semiconductor package design
Since heat dissipation is taken into consideration, the heat dissipation is also required for the substrate on which the chip is mounted, and it is required that the substrate material has high thermal conductivity. Therefore, the substrate is required to have a thermal expansion coefficient close to that of the chip and a high thermal conductivity.

【0004】従来の半導体パッケージとしては種々の構
成が提案されており、例えば基板に放熱フィンを付設し
た構成があり、放熱性を確保するためにクラッド板やC
u−MoあるいはCu−W合金等の放熱基板用複合材料
(特開昭59−141247号公報、特開昭62−29
4147号公報)が提案されている。前記複合体は熱膨
張係数、熱伝導度とも実用上満足すべき条件にかなって
いるが、Mo、W等が高密度であるため重くかつ脆いた
め、所定の寸法を得るには研削等の非塑性加工により成
形加工しなければならず、加工費が高く、歩留りが悪く
なっていた。
Various structures have been proposed as conventional semiconductor packages, for example, there is a structure in which a radiation fin is attached to a substrate, and a clad plate or C is used to secure heat radiation.
Composite material for heat dissipation substrate such as u-Mo or Cu-W alloy (Japanese Patent Laid-Open Nos. 59-141247 and 62-29).
No. 4147) has been proposed. Although the thermal expansion coefficient and the thermal conductivity of the composite satisfy practical requirements, the composite is heavy and brittle because of high density of Mo, W, etc. Molding has to be performed by plastic working, resulting in high processing cost and poor yield.

【0005】樹脂封止の半導体パッケージにおいては、
リードフレームがチップの外部への電気的接続の経路と
なるだけでなく、チップで発生する熱の放散経路として
重要な役割を果しているため、銅合金からなるリードフ
レームが多用されている。
In a resin-sealed semiconductor package,
A lead frame made of a copper alloy is often used because the lead frame not only serves as a path for electrical connection to the outside of the chip but also plays an important role as a path for dissipating heat generated in the chip.

【0006】ところが、高信頼性を要求される用途に
は、銅合金は、機械的強度が低く、チップとの熱膨張係
数の整合性が悪く、チップとアイランドとの接着界面の
剥離等が懸念されるため、チップとの熱膨張係数の整合
性から42%Ni−Fe合金等の低熱膨張係数を有する
Ni−Fe系合金を採用した半導体パッケージも提案さ
れている。しかし、Ni−Fe系合金は熱伝導率が悪い
ため、現在の要求を満すだけの熱の放散性が得られてい
ない。また、チップと封止樹脂との熱膨張差は非常に大
きく、リードフレームとチップとの熱膨張係数の整合性
がよい場合でも、リードフレームと樹脂との間の整合性
が悪く、封止樹脂に発生するクラックを完全に防止する
ことは困難であった。
However, for applications requiring high reliability, the copper alloy has low mechanical strength, poor matching of thermal expansion coefficient with the chip, and peeling of the adhesive interface between the chip and the island. Therefore, a semiconductor package using a Ni—Fe alloy having a low coefficient of thermal expansion such as 42% Ni—Fe alloy has been proposed in view of the matching of the coefficient of thermal expansion with the chip. However, since the Ni—Fe based alloy has a poor thermal conductivity, it has not been able to obtain heat dissipation enough to meet the current requirements. In addition, the difference in thermal expansion between the chip and the sealing resin is very large, and even if the matching of the thermal expansion coefficient between the lead frame and the chip is good, the matching between the lead frame and the resin is poor and the sealing resin It was difficult to completely prevent the cracks generated in the.

【0007】さらに、セラミックス半導体パッケージで
は、Alワイヤーボンディング及びガラス封着するため
に、リードフレームにはボンディングエリア及び封着位
置にAlを設けたNi−Fe系合金が多用されている。
しかし、Ni−Fe系合金は上述の如く、熱放散性が悪
く、セラミックスとの熱膨張係数の整合性に問題があっ
た。
Further, in the ceramics semiconductor package, in order to carry out Al wire bonding and glass sealing, the lead frame often uses a Ni--Fe alloy having Al in the bonding area and sealing position.
However, as described above, the Ni-Fe alloy has a poor heat dissipation property, and there is a problem in matching the coefficient of thermal expansion with ceramics.

【0008】そこで、出願人は半導体パッケージにおけ
る上述の熱膨張係数および / または熱伝導率の整合
性の問題を解決するため、高熱膨張金属板に厚み方向に
所要の貫通孔を有する低熱膨張金属板を一体化し、前記
貫通孔から高熱膨張金属を低熱膨張金属板表面に露出さ
せた芯材の両面に高熱膨張金属箔を圧接し、これら金属
板の厚さ比や貫通孔面積比を適宜選定することにより、
熱膨張係数、熱伝導率を可変となし、受熱の均一化、熱
拡散効果の向上をはかり、表面微細孔がなくめっきやろ
う材など薄膜の被着性にすぐれた特徴を有する熱伝導複
合材料を提案(特願平2−40550号)した。
[0008] Therefore, in order to solve the above-mentioned problem of the matching of the thermal expansion coefficient and / or the thermal conductivity in the semiconductor package, the applicant has a low thermal expansion metal plate having a required through hole in the thickness direction in the high thermal expansion metal plate. And the high thermal expansion metal foil is pressure-welded to both surfaces of the core material in which the high thermal expansion metal is exposed on the surface of the low thermal expansion metal plate from the through hole, and the thickness ratio and the through hole area ratio of these metal plates are appropriately selected. By
The thermal expansion coefficient and thermal conductivity are variable, uniform heat reception and improvement of thermal diffusion effect are achieved, and there are no surface micropores, and the heat conductive composite material has excellent characteristics such as plating and brazing material adhesion to thin films. Was proposed (Japanese Patent Application No. 2-40550).

【0009】[0009]

【発明が解決しようとする課題】上記の熱伝導複合材料
を得るには、まずプレスによる打ち抜き加工を行い小さ
な孔を多数個穿孔して網目状となし、焼鈍後に巻き取っ
たコバール板等の低熱膨張金属板コイルを、銅板などの
高熱膨張金属板コイルを巻き戻し時にその上方及び下方
より巻き戻して、冷間または温間で大径ロールにより圧
延接合し拡散焼鈍して芯材を得た後、さらにこの芯材の
上方及び下方より巻き戻したCu、Al等の高熱膨張金
属箔を重ねて、冷間または温間で圧延ロールにより圧接
接合し拡散焼鈍して製造する。
In order to obtain the above-mentioned heat-conductive composite material, first, a punching process by a press is performed to form a small number of small holes into a mesh shape, and low heat treatment such as Kovar plate wound after annealing is performed. After the expanded metal plate coil is rewound from the upper and lower sides of the high thermal expansion metal plate coil such as a copper plate, it is cold- or warm-rolled by a large-diameter roll and diffusion-annealed to obtain a core material. Further, a high thermal expansion metal foil of Cu, Al or the like unwound from the upper and lower sides of the core material is overlapped, cold- or warm-pressure-bonded by a rolling roll, and diffusion annealing is performed.

【0010】この熱伝導複合材料の製造に際して、上記
の芯材にCu、Al等の高熱膨張金属箔を重ねて冷間圧
接するが、接合強度を高めるために圧下力を大きくする
と、芯材表面のCu、Al等の高熱膨張金属の露出面の
形状が円形あるいは楕円から長い楕円形状となり、選定
した高熱膨張金属と低熱膨張金属との表面積比が変わっ
て熱膨張係数および / または熱伝導率が変動し、ま
た熱膨張係数に異方性が生じる問題がある。
In the production of this heat-conductive composite material, a high thermal expansion metal foil such as Cu or Al is superposed on the above core material and cold-pressed. However, if the pressing force is increased to increase the bonding strength, the surface of the core material is increased. The shape of the exposed surface of the high thermal expansion metal such as Cu or Al is changed from a circular shape or an elliptic shape to a long elliptical shape, and the surface area ratio between the selected high thermal expansion metal and low thermal expansion metal is changed to change the thermal expansion coefficient and / or the thermal conductivity. There is a problem that it fluctuates and the coefficient of thermal expansion becomes anisotropic.

【0011】そこで、芯材表面にCu、Al等の高熱膨
張金属箔を被覆するのに、上記の圧接法に代えてめっき
法にて行うことが考えられるが、めっき浴に浸漬した際
に芯材表面の高熱膨張金属と低熱膨張金属との境界にめ
っき液が残存し、これが後の拡散焼鈍時に気化してめっ
き膨れや剥がれを発生させる恐れがあり、まためっき工
程は概して煩雑で多大の製造時間を要する問題がある。
Therefore, it is conceivable that the surface of the core material is coated with a high thermal expansion metal foil such as Cu or Al by a plating method instead of the above pressure welding method. The plating solution remains at the boundary between the high thermal expansion metal and the low thermal expansion metal on the surface of the material, and this may vaporize during the subsequent diffusion annealing to cause plating swelling or peeling. There is a problem that takes time.

【0012】この発明は、受熱の均一化、熱拡散効果の
向上を図り、表面微細孔がなくめっきやろう材など薄膜
の被着性にすぐれ、チップや封止樹脂等の接着相手材の
熱膨張係数との整合性にすぐれかつ熱伝導性が良好で、
用途や目的に応じて熱膨張係数と熱伝導率を任意に選定
できる熱伝導材料の提供を目的とし、さらに、この熱伝
導材料の圧接による製造に際し、低熱膨張金属板に設け
た貫通孔形状を大きく変化させることなく、選定した熱
膨張係数および / または熱伝導率が得られ、また積
層される各高熱膨張金属と低熱膨張金属との接合強度を
向上させることが可能な熱伝導材料の製造方法の提供を
目的としている。
The present invention achieves uniform heat reception and improvement of the heat diffusion effect, has excellent surface adherence to thin films such as plating and brazing materials without surface micropores, and heats the bonding partner materials such as chips and sealing resins. Excellent compatibility with expansion coefficient and good thermal conductivity,
The purpose of the present invention is to provide a heat-conducting material in which the coefficient of thermal expansion and thermal conductivity can be arbitrarily selected according to the application and purpose.Furthermore, when manufacturing this heat-conducting material by pressure welding, the through-hole shape provided in the low thermal expansion metal plate A method for producing a heat-conducting material, which can obtain a selected coefficient of thermal expansion and / or thermal conductivity without making a large change, and can improve the bonding strength between each of the high-thermal-expansion metal and the low-thermal-expansion metal to be laminated. Is intended to be provided.

【0013】[0013]

【課題を解決するための手段】この発明は、厚み方向に
多数の貫通孔を設けた低熱膨張金属板の片面に常温また
は再結晶温度以上に加熱した高熱膨張金属板が圧接され
た後、他面にも高熱膨張金属板が圧接されたことを特徴
とする熱伝導材料である。
According to the present invention, a low thermal expansion metal plate having a large number of through holes formed in the thickness direction is pressed against a high thermal expansion metal plate heated at room temperature or at a recrystallization temperature or higher, and thereafter It is a heat conductive material characterized in that a high thermal expansion metal plate is also pressure-welded to the surface.

【0014】また、この発明は、厚み方向に多数の貫通
孔を設けた低熱膨張金属板の片面に常温または再結晶温
度以上に加熱した高熱膨張金属板を圧接して前記貫通孔
から高熱膨張金属を低熱膨張金属板表面に露出させて一
体化した後、低熱膨張金属板の他面に高熱膨張金属板を
圧接したことを特徴とする熱伝導材料の製造方法であ
る。
Further, according to the present invention, a high thermal expansion metal plate heated at room temperature or at a recrystallization temperature or higher is pressed against one surface of a low thermal expansion metal plate having a large number of through holes formed in the thickness direction, and the high thermal expansion metal is passed through the through holes. Is exposed on the surface of the low thermal expansion metal plate to be integrated, and then the high thermal expansion metal plate is pressure-welded to the other surface of the low thermal expansion metal plate.

【0015】また、この発明は、厚み方向に多数の貫通
孔を設けた低熱膨張金属板の片面に常温または再結晶温
度以上に加熱した高熱膨張金属板を圧接して前記貫通孔
から高熱膨張金属を低熱膨張金属板表面に露出させて一
体化した2層材を、常温または再結晶温度以上に加熱し
た高熱膨張金属板の両面に低熱膨張金属板側を当接させ
て圧接したことを特徴とする熱伝導材料並びにその製造
方法である。
Further, according to the present invention, a high thermal expansion metal plate heated at room temperature or at a recrystallization temperature or higher is pressed against one surface of a low thermal expansion metal plate having a large number of through holes formed in the thickness direction, and the high thermal expansion metal is passed through the through holes. The two-layer material, which is exposed and integrated on the surface of the low-thermal-expansion metal plate, is pressure-welded by contacting the low-thermal-expansion metal plate side with both surfaces of the high-thermal-expansion metal plate heated to room temperature or above the recrystallization temperature. And a method for manufacturing the same.

【0016】また、この発明は、厚み方向に多数の貫通
孔を設けた低熱膨張金属板の片面に常温または再結晶温
度以上に加熱した高熱膨張金属板を圧接して前記貫通孔
から高熱膨張金属を低熱膨張金属板表面に露出させて一
体化した後、低熱膨張金属板の他面に高熱膨張金属板を
圧接した3層材同士を、冷間または高熱膨張金属板の再
結晶温度以上に加熱して、直接あるいは常温または再結
晶温度以上に加熱した高熱膨張金属板を介在させて圧接
したことを特徴とする熱伝導材料並びにその製造方法で
ある。
Further, according to the present invention, a high thermal expansion metal plate heated to room temperature or a recrystallization temperature or higher is pressed against one surface of a low thermal expansion metal plate having a large number of through holes formed in the thickness direction, and the high thermal expansion metal is introduced from the through holes. Is exposed on the surface of the low-thermal-expansion metal plate and integrated, and then the three-layer material in which the high-thermal-expansion metal plate is pressure-welded to the other surface of the low-thermal-expansion metal plate is heated cold or above the recrystallization temperature of the high-thermal-expansion metal plate. Then, the heat conductive material and the method for producing the same are characterized in that they are pressed against each other directly or through a high thermal expansion metal plate which is heated at room temperature or above the recrystallization temperature.

【0017】さらにこの発明は、前記構成の熱伝導材料
において、高熱膨張金属板が、Cu、Cu合金、Al、
Al合金のうちいずれか、低熱膨張金属板が、Mo、3
0〜50wt%Niを含有するNi−Fe系合金、25
〜35wt%Niと4〜20wt%Coを含有するNi
−Co−Fe系合金、Wのうちいずれか、高熱膨張金属
箔がCu、Cu合金、Al、Al合金のうちいずれかか
らなり、実質的に5層材を構成する熱伝導材料のうち、
高熱膨張金属板の厚みt1、低熱膨張金属板の厚みt
2 、及び高熱膨張金属箔層の厚みt3 が、 t1 =1t2 〜5t2 、t3 ≦1/10 t21+t2=0.1〜30mm、t3=2〜100μm を満足することが好ましい。
Further, according to the present invention, in the heat conducting material having the above-mentioned structure, the high thermal expansion metal plate is Cu, Cu alloy, Al,
Any of the Al alloys, the low thermal expansion metal plate is Mo, 3
Ni-Fe based alloy containing 0 to 50 wt% Ni, 25
Ni containing ~ 35 wt% Ni and 4-20 wt% Co
-Co-Fe based alloy, any one of W, and the high thermal expansion metal foil is made of any one of Cu, Cu alloy, Al, Al alloy, and among the heat conductive materials that substantially constitute the five-layer material,
Thickness t 1 of high thermal expansion metal plate, thickness t of low thermal expansion metal plate
2 , and the thickness t 3 of the high thermal expansion metal foil layer satisfies t 1 = 1t 2 to 5t 2 , t 3 ≦ 1/10 t 2 t 1 + t 2 = 0.1 to 30 mm, and t 3 = 2 to 100 μm. Preferably.

【0018】また、この発明は、前記構成の熱伝導材料
において、熱伝導材料の少なくとも一主面の所要位置
に、Cu、Al、Ni、Snのうちいずれかからなる金
属メッキを被着したことを特徴とする熱伝導材料であ
る。例えば、Cu、Al等の高熱膨張金属板の両主面
に、厚み方向に多数の貫通孔を設けて片面または両面に
高熱膨張金属箔を圧接したNi−Fe系合金、Ni−C
o−Fe系合金等の低熱膨張金属板を一体化して、さら
に最外層の高熱膨張金属箔の所要位置に上記の金属メッ
キやろう材の被着等の加工を施してプレス成形、積層な
どの加工を施すことにより、セラミックスパッケージ、
メタルパッケージなどのチップ搭載用放熱基板、リード
フレーム等、種々用途の熱伝導材料が得られる。
Further, according to the present invention, in the heat conducting material having the above-mentioned structure, a metal plating made of any one of Cu, Al, Ni and Sn is deposited on a required position of at least one main surface of the heat conducting material. Is a heat-conducting material. For example, Ni-Fe alloy, Ni-C, in which a large number of through holes are provided in the thickness direction on both main surfaces of a high thermal expansion metal plate such as Cu or Al, and a high thermal expansion metal foil is pressure-welded to one surface or both surfaces, Ni-C.
A low thermal expansion metal plate such as an o-Fe alloy is integrated, and further, the above-mentioned metal plating or brazing material is applied to a required position of the outermost high thermal expansion metal foil to perform press molding, lamination, etc. By processing, ceramics package,
It is possible to obtain heat conductive materials for various uses such as heat dissipation boards for mounting chips such as metal packages and lead frames.

【0019】[0019]

【作用】この発明による熱伝導材料は、厚み方向に多数
の貫通孔を設けた低熱膨張金属板の片面に常温または再
結晶温度以上に加熱した高熱膨張金属板を圧接した2層
材同士を高熱膨張金属板を介在させて圧接するか、ある
いは前記2層材の低熱膨張金属板面に高熱膨張金属板を
圧接した3層材をそのまま用いるか、さらに3層材同士
を直接あるいは適宜高熱膨張金属板を介在させて圧接し
た5層材構成であることを特徴とし、主に高熱膨張金属
板の厚さ比の選定により熱膨張係数を任意に変化させる
ことができ、芯材となる高熱膨張金属に高熱伝導性金属
を用い、貫通孔内に嵌入した高熱膨張金属と低熱膨張金
属板との同一平面上での露出面積比を適宜選定すること
により熱伝導率を任意に変化させ得るもので、高熱膨張
金属板と低熱膨張金属板の材質選定、組合せ、並びに前
記厚さ比と露出面積比の選定により、種々の用途、目的
に応じた熱膨張係数及び熱伝導率を設定でき、多種の熱
伝導材料を提供できる。
The heat-conducting material according to the present invention comprises a low-thermal-expansion metal plate having a large number of through-holes formed in the thickness direction, and a high-thermal-expansion metal plate heated at room temperature or at a temperature higher than the recrystallization temperature on one surface of the low-heat-expansion metal plate. Pressure contact with an expanded metal plate interposed, or a three-layer material in which the high thermal expansion metal plate is pressed against the low thermal expansion metal plate surface of the two-layer material is used as it is, or the three layer materials are directly or appropriately used as a high thermal expansion metal. It is characterized by a five-layer material structure in which plates are pressure-welded with each other, and the thermal expansion coefficient can be arbitrarily changed mainly by selecting the thickness ratio of the high thermal expansion metal plate. Using a high thermal conductivity metal, the thermal conductivity can be arbitrarily changed by appropriately selecting the exposed area ratio on the same plane of the high thermal expansion metal and the low thermal expansion metal plate fitted in the through hole. High thermal expansion metal plate and low thermal expansion Genus plate material selection of the combination, as well as the selection of the exposure area ratio and the thickness ratio, a variety of applications, can set the thermal expansion coefficient and thermal conductivity according to the purpose, can provide a variety of thermally conductive material.

【0020】また、この発明は製造法的には厚み方向に
多数の貫通孔を設けた低熱膨張金属板の片面に高熱膨張
金属板を圧接して2層材を出発素材として、高熱膨張金
属板や前記3層材を組み合せて圧接積層するため、得ら
れた熱伝導材料の外表面層の高熱膨張金属表面が均質で
すぐれた性状を有し、かつ低熱膨張金属との密着強度に
すぐれている。さらにこの発明による熱伝導材料は、基
本的に3層で構成されるため、欠陥発生率が少なく、ま
た製造工程が簡単で生産性よく安価に提供できる。
Further, according to the present invention, the high thermal expansion metal plate is produced by press-contacting the high thermal expansion metal plate on one surface of the low thermal expansion metal plate having a large number of through holes in the thickness direction, and using the two-layer material as a starting material. Since the above three-layer materials are combined and pressed and laminated, the high thermal expansion metal surface of the outer surface layer of the obtained heat conductive material has a uniform and excellent property and has excellent adhesion strength with the low thermal expansion metal. .. Further, since the heat conductive material according to the present invention is basically composed of three layers, it has a low defect occurrence rate, a simple manufacturing process, and high productivity and can be provided at a low cost.

【0021】この発明による熱伝導材料は、厚み方向に
多数の貫通孔を設けた低熱膨張金属板の一方面に、高熱
膨張金属板を圧接する際に、特に高熱膨張金属板を再結
晶温度以上に加熱することにより、またさらに前記2層
材、3層材同士の圧接に際して低熱膨張金属板に圧接し
た高熱膨張金属材料同士あるいは貫通孔から露出した高
熱膨張金属と介在させる高熱膨張金属板とで圧接される
ため、小さな圧下力でも高い圧接強度が得られ、低熱膨
張金属板に設けた貫通孔形状の変形が少なく、予め選定
した貫通孔内に嵌入した高熱膨張金属と低熱膨張金属板
との同一平面上での露出面積比(貫通孔面積比)を変動
させることなく、所定の熱膨張係数及び熱伝導率が得ら
れる。詳述すると、貫通孔を設けた低熱膨張金属板との
圧接に際して高熱膨張金属板を再結晶温度以上に加熱す
ることにより、小さな圧下力で高熱膨張金属が低熱膨張
金属板の貫通孔内に嵌入して低熱膨張金属他方表面に露
出して貫通孔内に空気溜まりなどの隙間を発生させるこ
となく、後に低熱膨張金属板の他面に圧接する高熱膨張
金属板と上記の加熱高熱膨張金属板の同材質の圧接効果
とあいまって、より小さな圧下力で高い圧接強度が得ら
れて圧延率を小さくでき、上記の露出面積比の変動が少
なくなる。また、厚み方向に多数の貫通孔を設けた低熱
膨張金属板に加熱高熱膨張金属板を圧接した2層材同士
の圧接、または2層材の低熱膨張金属板に高熱膨張金属
板を圧接する際、さらに得られた3層材同士の直接また
は高熱膨張金属板を介在させての圧接の際、高熱膨張金
属板を再結晶温度以上に加熱することにより、高熱膨張
金属同士の拡散一体化が可能で圧接強度が極めてすぐれ
ている。さらに、高熱膨張金属の流動性がよく貫通孔へ
の回り込みが良好となり、後に圧接する最外層の高熱膨
張金属板厚みを高熱膨張金属材料をめっきした場合と同
程度まで薄くすることができる。
The heat-conducting material according to the present invention, when the high thermal expansion metal plate is pressed against one surface of the low thermal expansion metal plate having a large number of through holes formed in the thickness direction, the high thermal expansion metal plate is heated to a temperature not lower than the recrystallization temperature. By heating the two-layer material and the three-layer material to each other, the high thermal expansion metal material pressed against the low thermal expansion metal plate or the high thermal expansion metal plate interposed with the high thermal expansion metal exposed from the through hole. Due to the pressure contact, high pressure contact strength can be obtained even with a small pressing force, the deformation of the through hole shape provided in the low thermal expansion metal plate is small, and the high thermal expansion metal and the low thermal expansion metal plate fitted in the preselected through hole are The predetermined thermal expansion coefficient and thermal conductivity can be obtained without changing the exposed area ratio (through hole area ratio) on the same plane. More specifically, when the high thermal expansion metal plate is heated above the recrystallization temperature during pressure contact with the low thermal expansion metal plate provided with the through holes, the high thermal expansion metal is inserted into the through holes of the low thermal expansion metal plate with a small rolling force. Then, the high thermal expansion metal plate exposed to the other surface of the low thermal expansion metal and generating a gap such as an air pool in the through hole, and the high thermal expansion metal plate and the above-mentioned heating high thermal expansion metal plate that are pressed against the other surface of the low thermal expansion metal plate later. Combined with the pressure welding effect of the same material, a higher rolling contact strength can be obtained with a smaller rolling force, the rolling ratio can be reduced, and the above variation of the exposed area ratio can be reduced. In addition, when two layers of low-thermal-expansion metal plates having a large number of through-holes formed in the thickness direction are pressure-welded with a high-thermal-expansion metal plate, or when two-layer low-thermal-expansion metal plates are pressed against each other. In addition, when pressing the obtained three-layer materials directly or with a high thermal expansion metal plate interposed, by heating the high thermal expansion metal plate above the recrystallization temperature, diffusion integration of the high thermal expansion metals is possible. The pressure contact strength is extremely good. Further, the high thermal expansion metal has a good fluidity and can easily flow into the through hole, and the thickness of the outermost layer of the high thermal expansion metal plate to be pressed later can be reduced to the same level as when the high thermal expansion metal material is plated.

【0022】この発明による熱伝導材料は、低熱膨張金
属板の全面あるいは部分的に厚み方向の貫通孔を所要間
隔、パターンで配置し、例えば貫通孔の孔寸法、形状、
配置パターン等を種々変えたり、圧延時の変形を考慮し
て厚み方向に貫通あるいは貫通しない切り目を設けるな
ど、芯材の金属板の厚さ比および / または低熱膨張
金属板表面に露出した高熱膨張金属と低熱膨張金属との
表面積比を選定するなどの手段を選定組み合せることに
より、材料の全体あるいは部分的に、用途、目的に応じ
た熱膨張係数及び熱伝導率を設定でき、例えば、所要の
金属、セラミックス、Si等の半導体、プラスチックス
等の相手材の熱膨張係数との整合性を図り、かつ所要の
熱伝導性を有する材料が得られる。
In the heat conductive material according to the present invention, through-holes in the thickness direction are arranged in the entire surface or a part of the low thermal expansion metal plate in a required interval and pattern.
The thickness ratio of the core metal plate and / or the low thermal expansion exposed on the surface of the metal plate By selecting and combining means such as selecting the surface area ratio of metal and low thermal expansion metal, it is possible to set the thermal expansion coefficient and the thermal conductivity according to the application and purpose, in whole or in part, of the material. The metal, the ceramics, the semiconductor such as Si, the compatibility with the thermal expansion coefficient of the mating material such as plastics, and the material having the required thermal conductivity can be obtained.

【0023】好ましい実施態様 この発明において、高熱膨張金属板は圧接にて低熱膨張
金属板の貫通孔内に圧入充填されることから、Cu、C
u合金、Al、Al合金等の展延伸性に富み、かつ高い
熱伝導性を有する材料を用いることが好ましい。また、
低熱膨張金属板には、展延性のあるMo、30〜50w
t% Niを含有するNi−Fe系合金、25〜35w
t% Ni、4〜20wt% Coを含有するNi−C
o−Fe系合金、Wなどを用いることができる。最外層
の高熱膨張金属板には、Cu、Cu合金、Al、Al合
金などの材料が選定でき、用途やさらに被着する薄膜層
材質を考慮して、芯材の高熱膨張金属板と同材質あるい
は異材質を適宜選定するとよい。
Preferred Embodiment In the present invention, since the high thermal expansion metal plate is press-fitted into the through hole of the low thermal expansion metal plate by pressure welding, Cu, C
It is preferable to use a material that is rich in extensibility and has high thermal conductivity, such as u alloy, Al, and Al alloy. Also,
The low thermal expansion metal plate has Mo, 30 to 50w with ductility.
Ni-Fe based alloy containing t% Ni, 25-35w
Ni-C containing t% Ni, 4 to 20 wt% Co
An o-Fe based alloy, W or the like can be used. Materials such as Cu, Cu alloys, Al, and Al alloys can be selected for the outermost high-thermal-expansion metal plate, and the same material as the high-thermal-expansion metal plate of the core material can be selected in consideration of the application and the material of the thin film layer to be adhered. Alternatively, a different material may be appropriately selected.

【0024】さらに用途などに応じて、ろう付け性や耐
食性を向上させるため、あるいはAu、Agメッキの被
着性を向上させるため、Cu、Al、Ni、Snなどを
メッキ、蒸着、イオンプレーティング、CVD(che
mical vapor deposition)等の
公知のコーティング技術によって被着する他、はんだ、
Agろう材、セラミックス、ガラス層などを被覆、ある
いは所要位置に被着することができる。
Further, in order to improve brazing property and corrosion resistance, or to improve adherence of Au or Ag plating, Cu, Al, Ni, Sn or the like is plated, vapor-deposited or ion-plated depending on the application. , CVD (che
In addition to depositing by a known coating technique such as medical vapor deposition), solder,
It can be coated with Ag brazing material, ceramics, a glass layer, or the like, or can be applied at a required position.

【0025】また、低熱膨張金属板の板厚み方向の貫通
孔は、プレス打ち抜き等の機械加工のほか、エッチング
等の化学的加工も採用でき、貫通孔間隔が狭いほうが製
品のばらつきを低減する上で有利であり、通常3mm以
下、好ましくは1mm以下、さらに好ましくは0.5m
m以下であり、貫通孔形状も横断面が円、多角形状等、
縦断面がストレート、テーパー等種々形状が採用でき、
テーパー状の場合、貫通孔内への圧入を容易にしかつ接
合強度を高めることができる。さらに、当該低熱膨張金
属板の板厚み方向の貫通孔は、圧接、圧延後に高熱膨張
金属板が充填される所要の貫通孔になればよく、例え
ば、圧延前の低熱膨張金属板に、板厚みの所要方向に貫
通するかあるいは貫通直前の切り目を入れたり、該金属
板の両面から切り目方向や種々の切り目の形状を変えて
入れたりして、上述の貫通孔配置となるよう種々選定で
き、切り目の形状も、− + < など種々の形状が採
用でき、また、板厚みの所要方向に例えば、三角錐の如
き楔状の切り目を入れることもできる。またこの発明に
おいて、圧延率は全て冷間の場合は60%程度必要であ
り、高熱膨張金属板を加熱する場合は高熱膨張金属同士
の結合が結晶学的にも極めて好ましい状態となり20%
程度まで少なくできるが、30〜50%の圧延率が好ま
しい。
The through-holes in the plate thickness direction of the low thermal expansion metal plate can be subjected to mechanical processing such as press punching, as well as chemical processing such as etching. Is advantageous, and is usually 3 mm or less, preferably 1 mm or less, more preferably 0.5 m.
m or less, and the through-hole shape has a circular cross section, a polygonal shape, etc.
Various shapes such as straight vertical section and taper can be adopted.
In the case of a taper shape, it is possible to facilitate press fitting into the through hole and increase the bonding strength. Furthermore, the through-holes in the plate thickness direction of the low thermal expansion metal plate may be pressure-contacted and may be the required through-holes to be filled with the high thermal expansion metal plate after rolling, for example, the low thermal expansion metal plate before rolling, the plate thickness Through the required direction or make a cut immediately before the penetration, or by changing the cut direction or the shape of various cuts from both sides of the metal plate, various selections can be made to have the above-mentioned through hole arrangement, Various shapes such as − + <may be adopted for the cuts, and wedge-shaped cuts such as triangular pyramids may be formed in the required direction of the plate thickness. Further, in the present invention, the rolling rate is required to be about 60% in the case of all cold rolling, and in the case of heating the high thermal expansion metal plate, the bond between the high thermal expansion metals becomes extremely preferable in terms of crystallography and is 20%.
Although it can be reduced to some extent, a rolling ratio of 30 to 50% is preferable.

【0026】図面に基づく発明の開示 以下に図面に基づいてこの発明による熱伝導材料とその
製造方法を詳述する。図1に示すこの発明の熱伝導材料
は、高熱膨張金属板として銅板を、低熱膨張金属板とし
てコバール(Fe−Co−Ni合金)板を用いた3層材
の例であり、厚み方向に多数の貫通孔2を有するコバー
ル板1の両面に銅板3が圧接された構成からなる。
Disclosure of the Invention Based on the Drawings The heat conductive material according to the present invention and the manufacturing method thereof will be described in detail below with reference to the drawings. The heat conductive material of the present invention shown in FIG. 1 is an example of a three-layer material using a copper plate as a high thermal expansion metal plate and a Kovar (Fe-Co-Ni alloy) plate as a low thermal expansion metal plate, and has a large number in the thickness direction. The copper plate 3 is pressed against both surfaces of the Kovar plate 1 having the through holes 2.

【0027】低熱膨張金属のコバール板1には板厚み方
向に同一寸法の貫通孔2が形成されて、コバール板1の
一方面に圧接した高熱膨張金属の銅板3の銅材が貫通孔
2を嵌入してコバール板1の他面に銅露出面4を形成
し、同面に圧接した銅板6と拡散一体化している。ま
た、ここでは板厚み方向に同一寸法の貫通孔2が形成さ
れているが、孔寸法が表裏で異なるようにテーパー状と
しかつ隣接孔が孔寸法の大小の組合せとなるように配置
することもできる。
Through holes 2 of the same size are formed in the Kovar plate 1 of low thermal expansion metal in the plate thickness direction, and the copper material of the copper plate 3 of high thermal expansion metal pressed against one surface of the Kovar plate 1 forms the through holes 2. A copper exposed surface 4 is formed on the other surface of the Kovar plate 1 by being fitted therein, and the copper exposed surface 4 is diffused and integrated with the copper plate 6 pressed against the same surface. Further, here, the through holes 2 having the same size are formed in the plate thickness direction, but the holes may be tapered so that the hole sizes are different between the front and back, and the adjacent holes may be arranged so as to be a combination of large and small hole sizes. it can.

【0028】この3層材において、コバール板1の両面
に圧接される銅板3,6の各々の厚み及び銅露出面4の
比率や分散状態等を選定することにより、各主面の熱的
特性を要求される特性に近似させることができる。さら
に、この3層材をそのまま利用する場合に銅板3の最外
層に、用途やさらに被着する薄膜層材質を考慮してC
u、Cu合金、Al、Al合金などを選定でき、受熱の
均一化、熱拡散効果、相手材との接合性、薄膜の被着性
の向上効果が得られる。
In this three-layer material, by selecting the thickness of each of the copper plates 3 and 6 pressed against both sides of the Kovar plate 1, the ratio of the copper exposed surface 4, the dispersion state, etc., the thermal characteristics of each main surface are selected. Can be approximated to the required characteristics. Furthermore, in the case where the three-layer material is used as it is, C is added to the outermost layer of the copper plate 3 in consideration of the use and the material of the thin film layer to be adhered.
u, Cu alloy, Al, Al alloy, etc. can be selected, and uniform heat reception, thermal diffusion effect, bondability with a mating material, and improvement of thin film adherence can be obtained.

【0029】上述の銅板とコバール板の3層材熱伝導材
料を製造するには、図2に示すように、まず所要寸法、
厚みのコバール板1をコイルから巻き戻して、プレス機
10による打ち抜き加工を行い、例えば小さな孔を多数
個穿孔して網目状となしたのち、ルーパー装置にて所要
長さがストックされ、さらにコバール板1の下面にコイ
ルから巻き戻されて再結晶温度以上に加熱炉11にて加
熱した銅板3を圧接機12で圧接して2層材5を得る。
さらに、2層材5のコバール板1の上面にコイルから巻
き戻された別の銅板6を圧接機13で圧接することによ
り、コバール板1の両面に銅板3,6を圧接した3層材
7を得る。なお、コバール板1は先にプレス機10によ
る打ち抜き加工を行い、例えば、小さな孔を多数個穿孔
して網目状となした後焼鈍し、さらに表面処理を施して
コイルに巻き取っておくことができる。また、2層材5
への別の銅板6の圧接に際して、銅板6を再結晶温度以
上に加熱しておくことにより、銅材の拡散一体化が得ら
れる。
In order to manufacture the above-mentioned three-layer heat conductive material of copper plate and Kovar plate, as shown in FIG.
The thick Kovar plate 1 is unwound from the coil and punched by the press machine 10. For example, a small number of small holes are punched to form a mesh, and then the required length is stocked by the looper device. The copper plate 3 rewound from the coil on the lower surface of the plate 1 and heated in the heating furnace 11 to a temperature equal to or higher than the recrystallization temperature is pressed by the pressing machine 12 to obtain the two-layer material 5.
Further, another copper plate 6 unwound from the coil is pressed onto the upper surface of the Kovar plate 1 of the two-layer material 5 by the pressure welding machine 13, so that the copper plates 3 and 6 are pressure-welded to both surfaces of the Kovar plate 1. To get The Kovar plate 1 may be punched by the press machine 10 first, for example, a number of small holes may be punched to form a mesh, which is then annealed, and then surface-treated to be wound into a coil. it can. Also, two-layer material 5
When another copper plate 6 is pressed against the copper plate 6, the copper plate 6 is heated to a temperature equal to or higher than the recrystallization temperature, whereby diffusion integration of the copper material can be obtained.

【0030】銅板とコバール板の3層材熱伝導材料は、
貫通孔を有するコバール板1への銅板3の圧接に際し
て、銅板3を再結晶温度以上に加熱すれば、小さな圧下
力で銅板3がコバール板1の貫通孔2内に嵌入してコバ
ール板1の他表面に露出し、高い圧接強度が得られ、コ
バール板1に設けた貫通孔形状の変形が少なく、予め選
定したコバール板1表面における銅露出面4とコバール
板1との露出面積比を変動させることなく、熱膨張に異
方性を生じることなく、所定の熱膨張係数及び熱伝導率
が得られる。
The three-layer heat conductive material of copper plate and Kovar plate is
When the copper plate 3 is pressed against the Kovar plate 1 having a through hole, if the copper plate 3 is heated to a temperature higher than the recrystallization temperature, the copper plate 3 is fitted into the through hole 2 of the Kovar plate 1 with a small reduction force, and Exposed to other surface, high pressure contact strength is obtained, deformation of through-hole shape provided in Kovar plate 1 is small, and the exposed area ratio between copper exposed surface 4 and Kovar plate 1 on the surface of Kovar plate 1 selected in advance varies. The desired thermal expansion coefficient and thermal conductivity can be obtained without causing anisotropy in thermal expansion.

【0031】また、この3層材7は、上述の如く製造工
程が簡単で、欠陥発生率が極めて少なく、このまま基板
やリードフレームなどに利用するほか、図3のBに示す
如く、3層材7同士をそのままあるいは銅板3,6を再
結晶温度以上に加熱して圧接することにより、銅板とコ
バール板の5層材熱伝導材料を得ることができる。ま
た、3層材7同士の間に銅板などの常温または再結晶温
度以上に加熱した高熱膨張金属板を介在させて圧接する
ことにより5層材熱伝導材料を得ることができる。
The three-layer material 7 has a simple manufacturing process as described above and has a very low defect occurrence rate, and is used as it is for a substrate, a lead frame and the like, and as shown in FIG. A 5-layer heat conductive material of a copper plate and a Kovar plate can be obtained by pressing 7 as they are or by heating the copper plates 3 and 6 to a recrystallization temperature or higher and press-contacting each other. Further, a five-layer heat conductive material can be obtained by interposing between the three-layer materials 7 with a high thermal expansion metal plate such as a copper plate heated at room temperature or a recrystallization temperature or higher and press-contacting each other.

【0032】さらに、コバール板1の一方面に銅板3を
圧接して、他面に銅露出面4を有する図1の工程で最初
に得た2層材5を用いて、図3のAに示す如く、コバー
ル板1の銅露出面4同士を常温または再結晶温度以上に
加熱した高熱膨張金属板8を介在させて圧接することに
より、銅板とコバール板の5層材熱伝導材料を得ること
ができる。なお、上記の2層材5を得るのに、圧接時に
銅板3を再結晶温度以上に加熱したが、常温で圧接して
得た後に低温焼鈍を施し、さらに常温または再結晶温度
以上に加熱した高熱膨張金属板8を介在させて圧接する
こともできる。
Further, by using the two-layer material 5 first obtained in the step of FIG. 1 in which the copper plate 3 is pressure-contacted to one surface of the Kovar plate 1 and the copper exposed surface 4 is on the other surface, the A-layer of FIG. As shown in the figure, the exposed copper surfaces 4 of the Kovar plate 1 are pressed against each other with a high thermal expansion metal plate 8 heated at room temperature or higher than the recrystallization temperature interposed therebetween to obtain a five-layer heat conductive material of the copper plate and the Kovar plate. You can In order to obtain the above-mentioned two-layer material 5, the copper plate 3 was heated to a recrystallization temperature or higher at the time of pressure welding, but after being pressure-bonded at room temperature, it was subjected to low temperature annealing and further heated to a room temperature or a recrystallization temperature or higher. It is also possible to press-contact with the high thermal expansion metal plate 8 interposed.

【0033】前述の3層材7と同様のように、得られた
多層材熱伝導材料は、2層材5または3層材7のコバー
ル板1、銅板3,6、介在させる高熱膨張金属板8の各
々の厚み及び銅露出面4の比率や分散状態等を選定する
ことにより、各主面の熱的特性を要求される特性に近似
させることできる。
As in the case of the above-mentioned three-layer material 7, the obtained multilayer material heat-conducting material includes the Kovar plate 1, the copper plates 3 and 6 of the two-layer material 5 or the three-layer material 7, and the high thermal expansion metal plate to be interposed. By selecting the respective thicknesses of No. 8 and the ratio of copper exposed surface 4, the dispersion state, etc., the thermal characteristics of each main surface can be approximated to the required characteristics.

【0034】上述の圧接に際して、高熱膨張金属材の加
熱雰囲気並びに圧接雰囲気は、非酸化性雰囲気が好まし
く、N2中、Ar中、H2中あるいはこれらの混合ガス雰
囲気やアンモニア分解ガス、プロパン燃焼ガス(DX)
ガス等を用いることができる。また、加熱装置は使用す
る高熱膨張金属材材質に応じて適宜選定するが、管状
炉、光ビーム加熱装置、レーザー加熱装置、高周波加熱
装置、プラズマ加熱装置等を採用することができる。高
熱膨張金属材の加熱温度は、選定した材料の再結晶温度
以上で融点未満の温度範囲から適宜選定するが、融点よ
り100℃程度低い温度から融点未満が好ましく、銅、
銅合金材の場合は、950〜1050℃、Al、Al合
金材の場合は、550〜650℃、Ag、Ag合金材の
場合は、800〜900℃である。
In the above pressure welding, the heating atmosphere and the pressure welding atmosphere of the high thermal expansion metal material are preferably non-oxidizing atmospheres, such as N 2 , Ar, H 2 or a mixed gas atmosphere thereof, ammonia decomposition gas, propane combustion. Gas (DX)
Gas or the like can be used. Further, the heating device is appropriately selected according to the material of the high thermal expansion metal material used, but a tubular furnace, a light beam heating device, a laser heating device, a high frequency heating device, a plasma heating device or the like can be adopted. The heating temperature of the high thermal expansion metal material is appropriately selected from the temperature range above the recrystallization temperature of the selected material and below the melting point, but a temperature lower than the melting point by about 100 ° C. and below the melting point is preferable, copper,
The temperature is 950 to 1050 ° C. in the case of copper alloy material, 550 to 650 ° C. in the case of Al and Al alloy materials, and 800 to 900 ° C. in the case of Ag and Ag alloy materials.

【0035】[0035]

【実施例】板厚0.25 mm、板幅50mmのコバー
ル板(29Ni−16Co−Fe合金)に、孔径1.0
mm、圧延方向孔間隔2.0mm、幅方向孔間隔2.0
mmで多数の穿孔を施し、 900℃で焼鈍してワイヤ
ーブラッシングした後コイルに巻き取った。なお、コバ
ール板の30〜200°Cにおける平均熱膨張係数は
5.2×10-6/°Cであった。
[Example] A Kovar plate (29Ni-16Co-Fe alloy) having a plate thickness of 0.25 mm and a plate width of 50 mm was used, and the hole diameter was 1.0.
mm, rolling direction hole spacing 2.0 mm, width direction hole spacing 2.0
A large number of holes were drilled in mm, annealed at 900 ° C., wire brushed, and then wound into a coil. The average thermal expansion coefficient of the Kovar plate at 30 to 200 ° C is
It was 5.2 × 10 −6 / ° C.

【0036】ワイヤーブラッシングした後、N2雰囲気
で950℃に加熱した板厚0.5mm、板幅50mmの
Cu板を、前記コイルから巻き戻したコバール板に重ね
て、N2雰囲気中の圧接機により圧接して、コバール板
の貫通孔中に銅が侵入し、銅箔表面の所要位置に銅板が
部分的に露出して一体化した板厚0.3mm の2層材
を得た。得られた熱伝導材の主面におけるCu露出面は
圧延方向に略円形となり、孔間隔は圧延方向に2.0m
mであり、コバール板に対するCu露出面の比率は35
%であった。
After wire brushing, a Cu plate having a plate thickness of 0.5 mm and a plate width of 50 mm heated to 950 ° C. in an N 2 atmosphere was placed on a Kovar plate unwound from the coil, and a pressure welding machine in an N 2 atmosphere was used. Then, copper was infiltrated into the through hole of the Kovar plate, and the copper plate was partially exposed at a required position on the surface of the copper foil to obtain an integrated two-layer material having a plate thickness of 0.3 mm 2. The exposed Cu surface on the main surface of the obtained heat conductive material was substantially circular in the rolling direction, and the hole spacing was 2.0 m in the rolling direction.
m, and the ratio of the exposed Cu surface to the Kovar plate is 35.
%Met.

【0037】さらに、Cu露出面側に板厚0.05m
m、板幅50mmのCu箔を圧接して、表層に20μm
のCu層を有し、板厚み0.3mmの3層材を得た。圧
延率は15%であった。Cu板の30〜200°Cにお
ける平均熱膨張係数は17.2×10-6/°Cであっ
た。得られた材料の厚み方向の熱伝導率は230w/m
・K、及び各主面における熱膨張係数は8×10-6/℃
であった。
Further, a plate thickness of 0.05 m on the Cu exposed surface side
20 μm on the surface layer by pressing a Cu foil with a width of 50 m and a plate width of 50 mm
A Cu layer having a thickness of 0.3 mm was obtained. The rolling rate was 15% . The average thermal expansion coefficient of the Cu plate at 30 to 200 ° C was 17.2 x 10 -6 / ° C. The thermal conductivity of the obtained material in the thickness direction is 230 w / m.
・ K and the coefficient of thermal expansion on each main surface are 8 × 10 -6 / ℃
Met.

【0038】得られた3層の熱伝導材料を1000℃、
5分間、水素雰囲気焼鈍後、公知の方法にてリードフレ
ームに加工し、半導体パッケージを作製したところ、チ
ップとアイランドとの接着界面の剥離や封止樹脂のクラ
ック等が発生することなく、また、従来の銅合金を用い
たリードフレームに近似する良好な熱放散性が得られ
た。
The obtained three layers of heat conductive material were heated at 1000 ° C.
After annealing for 5 minutes in a hydrogen atmosphere, it was processed into a lead frame by a known method to manufacture a semiconductor package. As a result, peeling of an adhesive interface between a chip and an island or cracks in a sealing resin did not occur, and A good heat dissipation property similar to that of a lead frame using a conventional copper alloy was obtained.

【0039】前記3層の熱伝導材料の2枚の間にN2
囲気で950℃に加熱した板厚0.25 mm、板幅5
0mmのCu板を介在させて、同雰囲気中で圧接積層し
て全体厚み0.8mmの放熱基板となした。上記放熱基
板を用いて、セラミックスパッケージを作製したとこ
ろ、良好な熱放散性が得られ、熱的整合性も優れている
ことを確認できた。
A plate having a thickness of 0.25 mm and a plate width of 5 heated to 950 ° C. in an N 2 atmosphere between two sheets of the three layers of heat conductive material.
A Cu plate of 0 mm was interposed and pressure-bonded and laminated in the same atmosphere to form a heat dissipation substrate having an overall thickness of 0.8 mm. When a ceramic package was manufactured using the heat dissipation substrate, it was confirmed that good heat dissipation was obtained and thermal compatibility was also excellent.

【0040】[0040]

【発明の効果】この発明による熱伝導材料は、厚み方向
に多数の貫通孔を設けた低熱膨張金属板の片面に常温ま
たは再結晶温度以上に加熱した高熱膨張金属板を圧接し
た2層材同士を高熱膨張金属板を介在させて圧接する
か、あるいは前記2層材の低熱膨張金属板面に高熱膨張
金属板を圧接した3層材をそのまま用いるか、さらに3
層材同士を直接あるいは適宜高熱膨張金属板を介在させ
て圧接することにより、接合強度を高くでき、選定した
これら金属板の厚さ比や貫通孔面積比を変化させること
なく、熱膨張係数、熱伝導率を任意に変化させることが
でき、金属、セラミックス、Si等の半導体、プラスチ
ックス等の被着相手材との熱膨張係数の整合性と良好な
熱伝導性を両立でき、さらに受熱の均一化、熱拡散効果
の向上をはかり、表面微細孔がなくめっきやろう材など
薄膜の被着性にすぐれており、半導体チップ搭載用放熱
基板やリードフレーム用材料に最適な熱伝導材料であ
る。
The heat conducting material according to the present invention is a two-layer material in which a high thermal expansion metal plate heated at room temperature or at a recrystallization temperature or higher is pressed against one surface of a low thermal expansion metal plate having a large number of through holes formed in the thickness direction. Is pressed with a high thermal expansion metal plate interposed, or a three-layer material in which the high thermal expansion metal plate is pressed against the low thermal expansion metal plate surface of the two-layer material is used as it is, or further 3
By joining the layered materials directly or by appropriately interposing a high thermal expansion metal plate therebetween, the joining strength can be increased, and the thermal expansion coefficient, without changing the thickness ratio or through hole area ratio of these selected metal plates, The thermal conductivity can be changed arbitrarily, and the matching of the thermal expansion coefficient with the adherend material such as metal, ceramics, semiconductor such as Si, plastics and the like and good thermal conductivity can both be achieved. With uniformization and improved heat diffusion effect, it has excellent surface adhesion to thin films such as plating and brazing materials without surface micropores, and it is the most suitable heat conduction material for semiconductor chip mounting heat dissipation board and lead frame material. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による熱伝導材料の一部破断斜視説明
図である。
FIG. 1 is a partially cutaway perspective view of a heat conductive material according to the present invention.

【図2】この発明による熱伝導材料素材を製造するため
の設備例を示す斜視説明図である。
FIG. 2 is a perspective explanatory view showing an example of equipment for manufacturing a heat conductive material according to the present invention.

【図3】A,Bともにこの発明による多層熱伝導材料の
構成と工程を示す縦断説明図である。
3A and 3B are longitudinal explanatory views showing the structure and process of the multilayer heat conductive material according to the present invention in both A and B.

【符号の説明】[Explanation of symbols]

1 コバール板 2 貫通孔 3,6 銅板 4 銅露出面 5 2層材 7 3層材 8 高熱膨張金属板 10 プレス 機 11 加熱装置 12,13 圧接ロール 1 Kovar Plate 2 Through Hole 3,6 Copper Plate 4 Copper Exposed Surface 5 2 Layer Material 7 3 Layer Material 8 High Thermal Expansion Metal Plate 10 Press Machine 11 Heating Device 12,13 Pressure Roll

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 厚み方向に多数の貫通孔を設けた低熱膨
張金属板の片面に常温または再結晶温度以上に加熱した
高熱膨張金属板が圧接された後、他面にも高熱膨張金属
板が圧接されたことを特徴とする熱伝導材料。
1. A low thermal expansion metal plate having a large number of through holes formed in the thickness direction is pressed against a high thermal expansion metal plate heated to room temperature or a recrystallization temperature or higher, and then the high thermal expansion metal plate is also attached to the other surface. A heat conductive material characterized by being pressed.
【請求項2】 厚み方向に多数の貫通孔を設けた低熱膨
張金属板の片面に常温または再結晶温度以上に加熱した
高熱膨張金属板を圧接した2層材同士の低熱膨張金属板
側が、常温または再結晶温度以上に加熱した高熱膨張金
属板を介在させて圧接一体化されたことを特徴とする熱
伝導材料。
2. The low-thermal-expansion metal plate side of the two-layer material in which one surface of the low-thermal-expansion metal plate provided with a large number of through holes in the thickness direction is pressed against a high-thermal-expansion metal plate heated to room temperature or a recrystallization temperature or higher is the normal temperature. Alternatively, a heat-conducting material is characterized in that it is integrated by pressure welding with a high thermal expansion metal plate heated above the recrystallization temperature interposed.
【請求項3】 厚み方向に多数の貫通孔を設けた低熱膨
張金属板の片面に常温または再結晶温度以上に加熱した
高熱膨張金属板を圧接し他面に高熱膨張金属板を圧接し
た3層材同士が、直接あるいは常温または再結晶温度以
上に加熱した高熱膨張金属板を介在させて圧接一体化さ
れたことを特徴とする熱伝導材料。
3. A three-layer structure in which a high-thermal-expansion metal plate heated to room temperature or a recrystallization temperature or higher is pressure-contacted to one surface of a low-thermal-expansion metal plate provided with a large number of through holes in the thickness direction, and a high-thermal-expansion metal plate is pressure-contacted to the other surface. A heat-conducting material, characterized in that the materials are pressure-welded and integrated directly or through a high-thermal expansion metal plate heated to room temperature or above a recrystallization temperature.
【請求項4】 厚み方向に多数の貫通孔を設けた低熱膨
張金属板の片面に常温または再結晶温度以上に加熱した
高熱膨張金属板を圧接して前記貫通孔から高熱膨張金属
を低熱膨張金属板表面に露出させて一体化した後、低熱
膨張金属板の他面に高熱膨張金属板を圧接したことを特
徴とする熱伝導材料の製造方法。
4. A low-thermal-expansion metal which is a low-thermal-expansion metal plate having a large number of through-holes formed in its thickness direction A method for producing a heat-conducting material, which comprises exposing the surface of the plate and integrating it, and then pressing a high-thermal expansion metal plate against the other surface of the low-thermal expansion metal plate.
【請求項5】 厚み方向に多数の貫通孔を設けた低熱膨
張金属板の片面に常温または再結晶温度以上に加熱した
高熱膨張金属板を圧接して前記貫通孔から高熱膨張金属
を低熱膨張金属板表面に露出させて一体化した2層材
を、常温または再結晶温度以上に加熱した高熱膨張金属
板の両面に低熱膨張金属板側を当接させて圧接したこと
を特徴とする熱伝導材料の製造方法。
5. A low thermal expansion metal plate is formed by pressing a high thermal expansion metal plate heated at room temperature or at a recrystallization temperature or higher onto one surface of a low thermal expansion metal plate having a large number of through holes formed in the thickness direction. A two-layer material exposed and integrated on the surface of the plate is pressed against the both sides of a high thermal expansion metal plate heated at room temperature or at a recrystallization temperature or higher by contacting the low thermal expansion metal plate side. Manufacturing method.
【請求項6】 厚み方向に多数の貫通孔を設けた低熱膨
張金属板の片面に常温または再結晶温度以上に加熱した
高熱膨張金属板を圧接して前記貫通孔から高熱膨張金属
を低熱膨張金属板表面に露出させて一体化した後、低熱
膨張金属板の他面に高熱膨張金属板を圧接した3層材同
士を、冷間または高熱膨張金属板の再結晶温度以上に加
熱して、直接あるいは常温または再結晶温度以上に加熱
した高熱膨張金属板を介在させて圧接したことを特徴と
する熱伝導材料の製造方法。
6. A high thermal expansion metal plate heated at room temperature or at a recrystallization temperature or higher is pressed onto one surface of a low thermal expansion metal plate having a large number of through holes formed in the thickness direction, and the high thermal expansion metal is transferred from the through holes to the low thermal expansion metal. After exposed and integrated on the plate surface, the three-layer material in which the high thermal expansion metal plate is pressure-welded to the other surface of the low thermal expansion metal plate is heated cold or higher than the recrystallization temperature of the high thermal expansion metal plate to directly Alternatively, a method for producing a heat-conducting material is characterized in that a high thermal expansion metal plate heated to room temperature or a recrystallization temperature or higher is interposed and pressed.
JP29249591A 1991-10-12 1991-10-12 Heat conducting material and its manufacture Pending JPH05109947A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29249591A JPH05109947A (en) 1991-10-12 1991-10-12 Heat conducting material and its manufacture
EP92309275A EP0537965B1 (en) 1991-10-12 1992-10-12 Process of manufacturing a heat-conductive material
DE69217810T DE69217810T2 (en) 1991-10-12 1992-10-12 Process for the production of a thermally conductive material
US07/959,606 US5358795A (en) 1991-10-12 1992-10-13 Heat-conductive material and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29249591A JPH05109947A (en) 1991-10-12 1991-10-12 Heat conducting material and its manufacture

Publications (1)

Publication Number Publication Date
JPH05109947A true JPH05109947A (en) 1993-04-30

Family

ID=17782564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29249591A Pending JPH05109947A (en) 1991-10-12 1991-10-12 Heat conducting material and its manufacture

Country Status (1)

Country Link
JP (1) JPH05109947A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134984A (en) * 2004-11-04 2006-05-25 Neomax Material:Kk Metal composite material and heat dissipation member containing the same
US7097914B2 (en) 2001-08-28 2006-08-29 Kabushiki Kaisha Toyota Jidoshokki Composite structural material, and method of producing the same
WO2007105580A1 (en) * 2006-03-13 2007-09-20 Kabushiki Kaisha Toyota Jidoshokki Base for power module
JP2010245496A (en) * 2009-03-17 2010-10-28 Welcon:Kk Heat conduction composite material and method of manufacturing the same
JP2015015274A (en) * 2013-07-03 2015-01-22 三菱電機株式会社 Semiconductor device for electric power
WO2015055899A1 (en) * 2013-10-18 2015-04-23 Griset Support for electronic power components, power module provided with such a support, and corresponding production method
CN115073793A (en) * 2022-08-05 2022-09-20 常州富烯科技股份有限公司 Graphene heat-conducting film, preparation method thereof and heat-conducting gasket

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7097914B2 (en) 2001-08-28 2006-08-29 Kabushiki Kaisha Toyota Jidoshokki Composite structural material, and method of producing the same
JP2006134984A (en) * 2004-11-04 2006-05-25 Neomax Material:Kk Metal composite material and heat dissipation member containing the same
WO2007105580A1 (en) * 2006-03-13 2007-09-20 Kabushiki Kaisha Toyota Jidoshokki Base for power module
US8102652B2 (en) 2006-03-13 2012-01-24 Kabushiki Kaisha Toyota Jidoshokki Base for power module
JP5007296B2 (en) * 2006-03-13 2012-08-22 株式会社豊田自動織機 Power module base
US8824144B2 (en) 2006-03-13 2014-09-02 Kabushiki Kaisha Toyota Jidoshokki Base for power module
JP2010245496A (en) * 2009-03-17 2010-10-28 Welcon:Kk Heat conduction composite material and method of manufacturing the same
JP2015015274A (en) * 2013-07-03 2015-01-22 三菱電機株式会社 Semiconductor device for electric power
WO2015055899A1 (en) * 2013-10-18 2015-04-23 Griset Support for electronic power components, power module provided with such a support, and corresponding production method
CN115073793A (en) * 2022-08-05 2022-09-20 常州富烯科技股份有限公司 Graphene heat-conducting film, preparation method thereof and heat-conducting gasket

Similar Documents

Publication Publication Date Title
US5358795A (en) Heat-conductive material and method of producing the same
US5106433A (en) Heat-conductive composite material
JPH0313331A (en) Composite material variable in coefficient of thermal expansion and heat conductivity
JPH0837257A (en) Laminated body and manufacture thereof
JPH03216909A (en) Reinforced directly coupled copper structure
US5300809A (en) Heat-conductive composite material
JP3462308B2 (en) Manufacturing method of heat conductive composite material
JP2860037B2 (en) Method of manufacturing heat dissipation board for semiconductor device
US7830001B2 (en) Cu-Mo substrate and method for producing same
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JPH05109947A (en) Heat conducting material and its manufacture
JP3670381B2 (en) Thermally conductive composite material and manufacturing method thereof
JPH0780272B2 (en) Thermal conductive composite material
JP3037485B2 (en) Thermal conductive material and method of manufacturing the same
JPH0924500A (en) Production of thermally conductive composite material
JP4623622B2 (en) Manufacturing method of clad material for semiconductor package and manufacturing method of semiconductor package
JP2602161B2 (en) High heat dissipation integrated circuit package
JPH0575008A (en) Thermally conductive material and manufacture thereof
JPH04230063A (en) Multilayer heat sink
JPS61121489A (en) Cu wiring sheet for manufacture of substrate
WO2024014532A1 (en) Multilayer assembly, semiconductor device using same, and method for manufacturing same
JPH0786444A (en) Manufacture of compound heat dissipating substrate for semiconductor
JPS6334963A (en) Method of manufacturing ceramic substrate for semiconductor device and clad material therefor
JP3850090B2 (en) Composite materials for electronic parts
JP3089856B2 (en) Cooling fin