JPH05109704A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPH05109704A
JPH05109704A JP26982091A JP26982091A JPH05109704A JP H05109704 A JPH05109704 A JP H05109704A JP 26982091 A JP26982091 A JP 26982091A JP 26982091 A JP26982091 A JP 26982091A JP H05109704 A JPH05109704 A JP H05109704A
Authority
JP
Japan
Prior art keywords
film
metal film
integrated circuit
semiconductor integrated
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26982091A
Other languages
Japanese (ja)
Inventor
Atsushi Kuriyama
敦 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26982091A priority Critical patent/JPH05109704A/en
Publication of JPH05109704A publication Critical patent/JPH05109704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent the generation of large step-difference and the occurrence disconnection of wiring when multilayered wiring is formed. CONSTITUTION:A silicon oxide film 6 is selectively formed on the part where a metal film is not present, by using metal films 3, 4 formed on a silicon oxide film 2. The silicon oxide film 6 is formed by using a liquid growth method. Thereby it is prevented that a large step-difference part is generated in a chip.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路装置の製
造方法に関し、特に多層配線の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor integrated circuit device, and more particularly to a method for forming multi-layer wiring.

【0002】[0002]

【従来の技術】近年半導体集積回路装置の高機能化,高
集積化に伴い配線の多層化が図られてきており、3層ま
たは4層配線構造を有する半導体集積回路装置が製品化
されている。ところが配線の多層化が進むにつれて配線
に起因する不良が多発し、半導体集積回路装置の不良原
因の大半を占めるに至っている。これは段差部における
配線の被覆形状(いわゆるカバレッジ)の悪さに起因し
ていると共に配線材料そのものにも起因している。一般
には下層配線端および配線間における上層配線のカバレ
ッジ不足やスルーホール部における上層配線のカバレッ
ジ不足に起因したエレクトロマイグレーション(以下E
/Mと記す)による断線故障や配線材料と層間絶縁膜の
両者に起因したストレスマイグレーション(以下S/M
と記す)による断線故障が良く知られている。
2. Description of the Related Art In recent years, wiring has been multi-layered in accordance with higher functionality and higher integration of semiconductor integrated circuit devices, and semiconductor integrated circuit devices having a three-layer or four-layer wiring structure have been commercialized. .. However, as the number of wiring layers increases, defects due to wirings frequently occur, and most of the causes of defects in semiconductor integrated circuit devices are reached. This is due to the poor wiring covering shape (so-called coverage) in the step portion and also to the wiring material itself. Generally, electromigration due to insufficient coverage of the upper layer wiring between the lower layer wiring end and between the wiring and insufficient coverage of the upper layer wiring in the through hole portion (hereinafter referred to as E
/ M) due to disconnection failure and stress migration due to both wiring material and interlayer insulating film (hereinafter referred to as S / M).
Disconnection failure due to

【0003】図3は従来の多層配線を有する半導体集積
回路装置の製造方法の一例を説明するための断面図であ
る。まず素子が形成されたシリコン基板1の上の第1の
Si02 膜2上にアルミニウム膜を被着し、フォトリソ
グラフィ技術をRIE法(リアクティブイオンエッチン
グ法)により選択的に1層目アルミニウム配線12A,
12B,12Cを形成する。次にプラズマCVD法(以
下PCVD法と記す)によりSiON膜(Si−O−N
系絶縁膜)13を被着した後塗布焼成法によりSOG膜
(spin on glass膜)14を被着し、更に
PCVD法によりSiON膜15を被着する。その後フ
ォトリソグラフィ技術とプラズマによる等方的エッチン
グ技術とPIE法を用い1層目アルミニウム配線12B
上にスルーホール16を形成する。その後全面にアルミ
ニウム膜をスパッタ法により被着したのちフォトリソグ
ラフィ技術とRIE法を用いて2層目アルミニウム配線
17を形成することにより2層配線構造を実現してい
た。
FIG. 3 is a sectional view for explaining an example of a conventional method for manufacturing a semiconductor integrated circuit device having multi-layer wiring. First, an aluminum film is deposited on the first SiO 2 film 2 on the silicon substrate 1 on which the element is formed, and the first layer aluminum wiring is selectively formed by the photolithography technique by the RIE method (reactive ion etching method). 12A,
12B and 12C are formed. Next, a SiON film (Si-O-N) is formed by a plasma CVD method (hereinafter referred to as PCVD method).
After the system insulating film 13 is deposited, the SOG film (spin on glass film) 14 is deposited by the coating and firing method, and the SiON film 15 is further deposited by the PCVD method. After that, the first layer aluminum wiring 12B is formed by using the photolithography technique, the isotropic etching technique using plasma, and the PIE method.
A through hole 16 is formed above. After that, an aluminum film is deposited on the entire surface by a sputtering method, and then a second layer aluminum wiring 17 is formed by using a photolithography technique and an RIE method to realize a two-layer wiring structure.

【0004】[0004]

【発明が解決しようとする課題】この従来の多層配線を
有する半導体集積回路装置ではスルーホール部で上層配
線のカバレッジが悪いという問題がある。層間絶縁膜厚
が0.8μmの場合、1層2層間のスルーホールでのカ
バレッジは40%程度になるためこの部分に電流の集中
が生じ断線故障の原因になっていた。また、1層2層間
スルーホールの直上に2層3層間スルーホールを形成す
るとカバレッジは20%しか得られない。このため3層
以上の多層配線を行う際1層2層間のスルーホールの直
上に2層3層間のスルーホールを形成することはカバレ
ッジが悪くなりすぎ物理的な断線,電流の集中による断
線をひき起こすため事実上不可能である。これにより配
線のレイアウト設計に際してスルーホール直上に別層の
スルーホールを設けないよう制約を加えるようになり集
積度の向上を阻害していた。
However, this conventional semiconductor integrated circuit device having a multilayer wiring has a problem that the coverage of the upper wiring is poor in the through hole portion. When the interlayer insulating film thickness is 0.8 μm, the coverage in the through holes between the first and second layers is about 40%, so that current concentration occurs in this portion, which causes a disconnection failure. Further, if the two-layer, three-layer through-holes are formed immediately above the one-layer, two-layer through-holes, only 20% coverage is obtained. Therefore, when performing multi-layer wiring of three or more layers, forming a through hole between two layers and three layers directly above a through hole between one layer and two layers leads to poor coverage and physical disconnection and disconnection due to current concentration. It is virtually impossible because it happens. As a result, when designing the layout of the wiring, a constraint is imposed so as not to provide a through hole in a different layer immediately above the through hole, which hinders the improvement of the degree of integration.

【0005】さらに、従来の半導体集積回路装置では製
造においてPCVD法,RIE法を用いているが、これ
らは共に真空プロセスとなるためプロセス中でのパーテ
ィクル発生や搬送中でのパーティクル発生を低レベルに
抑えるためには高度の装置設計製造管理能力が要求され
る。このため装置に要するコストは増大と一途どってい
る。
Further, in the conventional semiconductor integrated circuit device, the PCVD method and the RIE method are used in manufacturing, but since both of them are vacuum processes, the generation of particles during the process and the generation of particles during the transportation are reduced to a low level. In order to suppress it, a high level of equipment design and manufacturing management capability is required. Therefore, the cost required for the device is increasing.

【0006】[0006]

【課題を解決するための手段】本発明の半導体集積回路
装置の製造方法は、(1).半導体基板上のシリコン酸
化膜上にパターニングした金属膜をマスクとして液相成
長法によりシリコン酸化膜を該金属膜を除く部分へ選択
的に形成する工程を有するという特徴を有する。ここで
(2).前記金属膜が第1の金属膜上に第2の金属膜を
順次形成して成ることができる。この場合(3).前記
第2の金属膜上に第3の金属膜を形成することにより前
記第1の金属膜と該第3の金属膜と前記第2の金属膜に
よって接続することができる。又、(4).前記第2の
金属膜を無電解メッキ法によりフォトレジストをマスク
にして選択的に形成することも好ましい。そして
(5).前記第1と第2の金属膜が金または銀または銅
であることが好ましい。
The method of manufacturing a semiconductor integrated circuit device according to the present invention comprises (1). It has a feature of having a step of selectively forming a silicon oxide film on a portion excluding the metal film by liquid phase epitaxy using a patterned metal film on the silicon oxide film on the semiconductor substrate as a mask. Here (2). The metal film may be formed by sequentially forming a second metal film on the first metal film. In this case (3). By forming a third metal film on the second metal film, the first metal film, the third metal film and the second metal film can be connected to each other. Also, (4). It is also preferable that the second metal film is selectively formed by an electroless plating method using a photoresist as a mask. And (5). The first and second metal films are preferably gold, silver or copper.

【0007】かかる本発明は、金属膜をマスクにして絶
縁膜を液相中で選択的に成長させることにより平坦性の
極めて優れた多層配線を有する半導体集積回路装置を実
現することができる。
According to the present invention, a semiconductor integrated circuit device having a multi-layered wiring having an extremely flatness can be realized by selectively growing an insulating film in a liquid phase using a metal film as a mask.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。図1(a)〜(h)は本発明の第1の実施例を説明
するため工程順に示した半導体チップの断面図である。
The present invention will be described below with reference to the drawings. 1A to 1H are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the first embodiment of the present invention.

【0009】まず、図1(a)に示すように素子が形成
されたシリコン基板1上に第1のSiO2 膜2を被着
し、次にスパッタ法を用いチタンタングステン膜3を約
30nm被着し、さらにスパッタ法により第1のAu膜
4を約0.8μm被着する。次に図1(b)に示すよう
にフォトレジスト5をパターニングした後このフォトレ
ジスト5をマスクにイオンミリング法により第1のAu
膜4およびチタンタングステン膜3を異法的にエッチン
グする。次に図1(c)に示すように第1のAu膜4お
よびチタンタングステン膜3をマスクに液相成長法によ
り第2のSiO2 膜6を選択的に約0.8μm成長させ
る。次に図1(d)に示すようにフォトレジスト5を剥
離する。次に図1(e)に示すように第3のSiO2
7をPCVD法により形成し、フォトレジスト8を塗布
しパターニングを行う。次に図1(f)に示すようにフ
ォトレジスト8をマスクに第3のSiO2 膜7をRIE
法により異法的にエッチングした後、無電解メッキ法に
よりAuメッキ膜9を形成する。次に図1(g)に示す
ようにフォトレジスト8を剥離した後Auメッキ膜9を
マスクにして液相成長法により第4のSiO2 膜10を
選択的に形成する。次に図1(h)に示すようにスパッ
タ法により第2のAu膜11を被着しフォトリソグラフ
ィ技術によりパターニングを行う。
First, as shown in FIG. 1A, a first SiO 2 film 2 is deposited on a silicon substrate 1 on which elements are formed, and then a titanium tungsten film 3 is deposited to a thickness of about 30 nm by a sputtering method. Then, the first Au film 4 is deposited by about 0.8 μm by the sputtering method. Next, as shown in FIG. 1B, the photoresist 5 is patterned, and then the first Au is formed by ion milling using the photoresist 5 as a mask.
The film 4 and the titanium tungsten film 3 are illegally etched. Next, as shown in FIG. 1C, a second SiO 2 film 6 is selectively grown by about 0.8 μm by a liquid phase growth method using the first Au film 4 and the titanium tungsten film 3 as a mask. Next, the photoresist 5 is peeled off as shown in FIG. Next, as shown in FIG. 1E, a third SiO 2 film 7 is formed by PCVD, a photoresist 8 is applied and patterning is performed. Next, as shown in FIG. 1F, the third SiO 2 film 7 is RIEed using the photoresist 8 as a mask.
After the etching is performed by the method described above, the Au plating film 9 is formed by the electroless plating method. Next, as shown in FIG. 1G, the photoresist 8 is peeled off, and then the fourth SiO 2 film 10 is selectively formed by the liquid phase growth method using the Au plating film 9 as a mask. Next, as shown in FIG. 1H, the second Au film 11 is deposited by the sputtering method and patterned by the photolithography technique.

【0010】図2(a)〜(g)は本発明の第2の実施
例を説明するため工程順に示した半導体チップの断面図
である。図2(a),(b)は第1の実施例の図1
(a),(b)と同じ工程である。本実施例では図2
(c)に示すようにパターニングされた第1のAu膜4
上にフォトレジスト8を塗布する。次に図2(d)に示
すようにフォトレジスト8をパターニングした後無電解
メッキ法によりAuメッキ膜9を形成する。次に図2
(e)に示すようにフォトレジスト8を剥離する。次に
図2(f)に示すように液相成長法により第2のSiO
2 膜6を形成する。次に図2(g)に示すようにスパッ
タ法により第2のAu膜11を被着しフォトリソグラフ
ィ技術によりパターニングを行う。この実施例では液相
成長によるSiO2 膜形成が一度で済むため工期の短縮
に効果がある。
FIGS. 2A to 2G are sectional views of a semiconductor chip shown in the order of steps for explaining the second embodiment of the present invention. 2 (a) and 2 (b) are the same as FIG. 1 of the first embodiment.
This is the same process as (a) and (b). In this embodiment, FIG.
First Au film 4 patterned as shown in FIG.
A photoresist 8 is applied on top. Next, as shown in FIG. 2D, after patterning the photoresist 8, an Au plating film 9 is formed by electroless plating. Next in FIG.
The photoresist 8 is peeled off as shown in FIG. Next, as shown in FIG. 2 (f), a second SiO 2 is formed by a liquid phase epitaxy method.
2 The film 6 is formed. Next, as shown in FIG. 2G, the second Au film 11 is deposited by the sputtering method and patterned by the photolithography technique. In this embodiment, the SiO 2 film can be formed only once by liquid phase growth, which is effective in shortening the construction period.

【0011】本実施例で形成する液相成長法によるSi
2 膜は平坦性にすぐれている。このため配線Auと同
じ厚さまでSiO2 膜を形成することでチップ全面の平
坦性を飛躍的に同上させることができる。
Si by the liquid phase growth method formed in this embodiment
The O 2 film has excellent flatness. Therefore, the flatness of the entire surface of the chip can be dramatically improved by forming the SiO 2 film to the same thickness as the wiring Au.

【0012】本実施例では金属配線にAuに用いたがA
gやCuでも同様の方法で製造できる。
In the present embodiment, Au was used for the metal wiring.
g and Cu can be manufactured by the same method.

【0013】[0013]

【発明の効果】以上説明したように本発明は半導体基板
上に形成パターニングした金属膜をマスクに液相成長に
よりSiO2 膜を金属膜と同程度の厚さまで選択的に形
成したことにより、チップ全面の段差を0.3μm以下
におさえることができ、平坦性を飛躍的に向上させるこ
とができる。これによりカバレッジの悪い箇所がなくな
り配線の寿命が大きく延びるため、半導体集積回路装置
の信頼性が飛躍的に向上する。また配線材にAu,A
g,Cuを用いることによりE/M,S/M耐性が向上
する。そのほかスルーホールを重ね合わせて配置するこ
とが可能となるため集積度の向上を図ることができる。
さらに絶縁膜形成に真空プロセスを用いないため、設備
に要するコストが低減できるという効果も有する。
As described above, according to the present invention, the SiO 2 film is selectively formed by liquid phase epitaxy to the same thickness as the metal film by using the patterned metal film formed on the semiconductor substrate as a mask. The step difference on the entire surface can be suppressed to 0.3 μm or less, and the flatness can be dramatically improved. As a result, a portion with poor coverage is eliminated and the life of the wiring is greatly extended, so that the reliability of the semiconductor integrated circuit device is dramatically improved. In addition, the wiring material is Au, A
The use of g and Cu improves the E / M and S / M resistance. In addition, since the through holes can be arranged so as to overlap each other, the degree of integration can be improved.
Further, since the vacuum process is not used for forming the insulating film, there is an effect that the cost required for equipment can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明するための半導体
チップの断面図。
FIG. 1 is a cross-sectional view of a semiconductor chip for explaining a first embodiment of the present invention.

【図2】本発明の第2の実施例を説明するための半導体
チップの断面図。
FIG. 2 is a sectional view of a semiconductor chip for explaining a second embodiment of the present invention.

【図3】従来の半導体集積回路装置の製造方法を説明す
るための断面図。
FIG. 3 is a sectional view for explaining a conventional method for manufacturing a semiconductor integrated circuit device.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 第1のSiO2 膜 3 チタンタングステン膜 4 第1のAu膜 5,8 フォトレジスト膜 6 第2のSiO2 膜 7 第3のSiO2 膜 9 Auメッキ膜 10 第4のSiO2 膜 11 第2のAu膜 12A,12B,12C 1層目アルミニウム配線 13,15 SiON膜 14 SOG膜 16 スルーホール 17 2層目アルミニウム配線1 Silicon Substrate 2 First SiO 2 Film 3 Titanium Tungsten Film 4 First Au Film 5, 8 Photoresist Film 6 Second SiO 2 Film 7 Third SiO 2 Film 9 Au Plating Film 10 Fourth SiO 2 Film 11 Second Au film 12A, 12B, 12C First layer aluminum wiring 13,15 SiON film 14 SOG film 16 Through hole 17 Second layer aluminum wiring

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上のシリコン酸化膜上にパタ
ーニング形成した金属膜をマスクとして液相成長法によ
りシリコン酸化膜を該金属膜を除く部分へ選択的に形成
する工程を有することを特徴とする半導体集積回路装置
の製造方法。
1. A method of selectively forming a silicon oxide film on a portion excluding the metal film by liquid phase epitaxy using a metal film patterned on a silicon oxide film on a semiconductor substrate as a mask. Method for manufacturing semiconductor integrated circuit device.
【請求項2】 前記金属膜が第1の金属膜上に第2の金
属膜を順次形成して成ることを特徴とする請求項1に記
載の半導体集積回路装置の製造方法。
2. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the metal film is formed by sequentially forming a second metal film on the first metal film.
【請求項3】 前記第2の金属膜上に第3の金属膜を形
成することにより前記第1の金属膜と該第3の金属膜を
前記第2の金属膜によって接続したことを特徴とする請
求項2に記載の半導体集積回路装置の製造方法。
3. A third metal film is formed on the second metal film, whereby the first metal film and the third metal film are connected by the second metal film. The method for manufacturing a semiconductor integrated circuit device according to claim 2.
【請求項4】 前記第2の金属膜を無電解メッキ法によ
りフォトレジストをマスクにして選択的に形成すること
を特徴とする請求項2に記載の半導体集積回路装置の製
造方法。
4. The method of manufacturing a semiconductor integrated circuit device according to claim 2, wherein the second metal film is selectively formed by a non-electrolytic plating method using a photoresist as a mask.
【請求項5】 前記第1及び第3の金属膜が金または銀
または銅であることを特徴とする請求項1に記載の半導
体集積回路装置の製造方法。
5. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the first and third metal films are gold, silver, or copper.
【請求項6】 前記第2の金属膜が金または銀または銅
であることを特徴とする請求項2に記載の半導体集積回
路装置の製造方法。
6. The method of manufacturing a semiconductor integrated circuit device according to claim 2, wherein the second metal film is gold, silver or copper.
JP26982091A 1991-10-18 1991-10-18 Manufacture of semiconductor integrated circuit device Pending JPH05109704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26982091A JPH05109704A (en) 1991-10-18 1991-10-18 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26982091A JPH05109704A (en) 1991-10-18 1991-10-18 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH05109704A true JPH05109704A (en) 1993-04-30

Family

ID=17477632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26982091A Pending JPH05109704A (en) 1991-10-18 1991-10-18 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH05109704A (en)

Similar Documents

Publication Publication Date Title
JP3074713B2 (en) Method for manufacturing semiconductor device
US5380679A (en) Process for forming a multilayer wiring conductor structure in semiconductor device
JPH05109704A (en) Manufacture of semiconductor integrated circuit device
KR940002757B1 (en) Bipolar type semiconductor device
KR20040061817A (en) A method for forming a metal line of a semiconductor device
JP2008124070A (en) Semiconductor device
JPH11251433A (en) Semiconductor device and manufacture thereof
JP2001024056A (en) Multi-layered wiring device for semiconductor device, and manufacture thereof
JPH0621234A (en) Thin film multilayer interconnection and manufacture thereof
JPH0669154A (en) Through hole structure and its manufacture
JPH10321623A (en) Semiconductor device and its manufacture
JPS60124950A (en) Semiconductor device having multilayer interconnection structure
KR100458588B1 (en) Fabrication method of semiconductor device
JPS62136857A (en) Manufacture of semiconductor device
JPH07283306A (en) Semiconductor device and its manufacture
JPS61256742A (en) Multilayer wiring structure and manufacture thereof
KR100450238B1 (en) Fabrication method of semiconductor device
JPH0415926A (en) Manufacture of semiconductor device
KR100440475B1 (en) Method for fabricating semiconductor device
JPH03296219A (en) Semiconductor device
JPS6043845A (en) Manufacture of multilayer interconnection member
JPH04307939A (en) Manufacture of semiconductor device
JPH05267468A (en) Manufacture of semiconductor device
JPH1041299A (en) Manufacturing semiconductor device
JP2002083867A (en) Semiconductor device and production method therefor