JPH0510800B2 - - Google Patents

Info

Publication number
JPH0510800B2
JPH0510800B2 JP10442084A JP10442084A JPH0510800B2 JP H0510800 B2 JPH0510800 B2 JP H0510800B2 JP 10442084 A JP10442084 A JP 10442084A JP 10442084 A JP10442084 A JP 10442084A JP H0510800 B2 JPH0510800 B2 JP H0510800B2
Authority
JP
Japan
Prior art keywords
tube
end surface
open end
lid member
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10442084A
Other languages
Japanese (ja)
Other versions
JPS6168900A (en
Inventor
Tadashi Koizumi
Takashi Iwata
Seiji Yokota
Yoshiaki Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koshuha Netsuren KK
Original Assignee
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koshuha Netsuren KK filed Critical Koshuha Netsuren KK
Priority to JP10442084A priority Critical patent/JPS6168900A/en
Publication of JPS6168900A publication Critical patent/JPS6168900A/en
Publication of JPH0510800B2 publication Critical patent/JPH0510800B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はプラズマトーチの着火方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method of igniting a plasma torch.

(従来技術) チヤンバーに一方端面が開口する管体の他方端
面側から管内に所定のコアガスを注入し、チヤン
バーに近接する管体の外周に巻回した誘導コイル
に高周波電源からの電流を通電して高周波エネル
ギーを発生させ、当該高周波エネルギーによつて
管内のコアガスを高温度の電離ガス、即ちプラズ
マフアイヤとし、当該プラズマフアイヤをチヤン
バー内に導いて各種の作用を行わせるようにした
プラズマトーチは公知である。
(Prior art) A predetermined core gas is injected into the tube from the other end of the tube whose one end is open in the chamber, and a current from a high-frequency power source is applied to an induction coil wound around the outer circumference of the tube close to the chamber. A plasma torch that generates high-frequency energy using the high-frequency energy, converts the core gas in the tube into a high-temperature ionized gas, that is, a plasma fire, and guides the plasma fire into the chamber to perform various actions. is publicly known.

上記プラズマトーチの1例とその着火方法とし
て従来から広く行われている接地炭素棒方式を第
3図に従つて説明する。
An example of the above-mentioned plasma torch and its ignition method using a grounded carbon rod, which has been widely used in the past, will be described with reference to FIG.

第3図において、1′はプラズマトーチであつ
て、例えば耐熱性のある石英管等を用いた大径の
外管101と小径の内管102とからなる二重管
および高周波誘導コイルC(以下コイルと称す)
で構成されている。上記外管101は一方端面を
閉端面に、他方端面を開端面に形成されていて、
開端面が例えばチヤンバーch内に開口する。上
記内管102は一方端面を閉端面に、他方端面を
開端面に形成されていて、上記外管101の閉端
面を貫通して閉端面方向一部が外管101外にあ
り、開端面方向所定長さが外管101内にあつ
て、管内の所定中間位置に開口する如く同心状に
配設されている。上記コイルCは上記内管102
が外管101内で開口する位置に近接した外管1
01外周に巻回されていて、図示しない高周波電
源に接続されている。外管101および内管10
2それぞれの閉端面近傍には導管が開口してお
り、内管102へは所定のコアガスG1を、また
外管101へは例えば上記コアガスG1と同質の
管壁冷却用ガスG2を注入可能に設定されている。
In FIG. 3, reference numeral 1' denotes a plasma torch, which includes a double tube made of a large-diameter outer tube 101 and a small-diameter inner tube 102 made of, for example, a heat-resistant quartz tube, and a high-frequency induction coil C (hereinafter referred to as (referred to as a coil)
It consists of The outer tube 101 has one end surface formed as a closed end surface and the other end surface formed as an open end surface,
The open end surface opens, for example, into the chamber ch. The inner tube 102 has one end surface as a closed end surface and the other end surface as an open end surface, and passes through the closed end surface of the outer tube 101 so that a part of the closed end surface is outside the outer tube 101 and the open end surface is outside the outer tube 101. The tubes have a predetermined length inside the outer tube 101 and are arranged concentrically so as to open at a predetermined intermediate position within the tube. The coil C is connected to the inner tube 102.
The outer tube 1 is close to the position where it opens in the outer tube 101.
01, and is connected to a high frequency power source (not shown). Outer tube 101 and inner tube 10
2. A conduit is opened near each closed end surface, and a predetermined core gas G 1 is injected into the inner pipe 102, and a pipe wall cooling gas G 2, which is the same as the core gas G 1 , is injected into the outer pipe 101 . is set to possible.

図中の2および201はプラズマトーチ1′の
従来着火装置を構成する炭素棒および炭素棒保持
管である。炭素棒2は上記内管102の閉端面を
貫通する保持管201に一方側部分を嵌入され、
他方側部分を内管102の軸線にそつて伸延して
その先端がほぼ開口端面にまで達するように装着
される。また炭素棒2の保持管201内の端面に
は導電線202が接続されていて接地となつてい
る。
Reference numerals 2 and 201 in the figure are a carbon rod and a carbon rod holding tube that constitute a conventional ignition device of the plasma torch 1'. One side of the carbon rod 2 is fitted into a holding tube 201 that passes through the closed end surface of the inner tube 102,
The other side portion is installed so that it extends along the axis of the inner tube 102 so that its tip reaches almost the open end surface. Further, a conductive wire 202 is connected to the end face of the carbon rod 2 inside the holding tube 201 and is grounded.

上記接地炭素棒方式の着火理論では、コアガス
G1が内管102に注入されつつある状態でコイ
ルCに高周波電流の通電を開始すると、コイルC
から発生する磁束によつて炭素棒2に渦電流が誘
起されて発熱し、加熱された炭素棒2がこれにそ
つて流れるコアガスG1の電離を促進するととも
に、接地されて低電位の炭素棒2と高電位のコイ
ルCとの間に生ずる半径方向の電界によつて火花
電圧…無声放電開始電圧を生じコアガスG素子が
着火されるとする。
In the ignition theory of the above grounded carbon rod method, the core gas
When high-frequency current is started to flow through the coil C while G 1 is being injected into the inner tube 102, the coil C
An eddy current is induced in the carbon rod 2 by the magnetic flux generated from the carbon rod 2, which generates heat, and the heated carbon rod 2 promotes ionization of the core gas G1 flowing along it. It is assumed that a radial electric field generated between the coil C and the high-potential coil C generates a spark voltage, a silent discharge starting voltage, and the core gas G element is ignited.

(発明が解決しようとする問題点) ところで、上記従来接地炭素棒方式では炭素棒
2は保持管201に嵌着固定されていて、着火後
も先端が高周波エネルギー領域内に定着状態を維
持しているため、プラズマフアイヤPのヘツドと
常に接触を保つので炭素成分がプラズマ中に溶出
混入して、コアガスG1成分のみからなる純度の
高いプラズマフアイヤPを得ることが困難であつ
た。
(Problems to be Solved by the Invention) By the way, in the conventional grounded carbon rod method described above, the carbon rod 2 is fitted and fixed in the holding tube 201, and even after ignition, the tip remains fixed in the high frequency energy region. Since the gas is constantly in contact with the head of the plasma fire P, carbon components are eluted and mixed into the plasma, making it difficult to obtain a highly pure plasma fire P consisting only of the core gas G1 component.

(発明の目的) 本発明は純度の高いプラズマフアイヤを得るこ
とを目的としてなされた研究実験から得られた成
果であつて、従来接地炭素棒方式とは異る新規な
プラズマトーチの着火方法を提供するものであ
る。
(Purpose of the Invention) The present invention is a result of research experiments conducted with the aim of obtaining a plasma fire of high purity, and is a novel plasma torch ignition method different from the conventional grounded carbon rod method. This is what we provide.

(発明の技術思想) 本発明の要旨は、 (1−1) 一方端を閉端面とし他方端をチヤン
バー内に開口する開端面とした管体の所定領域
外周に巻回した高周波コイルから発生する高周
波エネルギーを管体内へ注入されるコアガスに
付与して高温プラズマフアイヤを得るプラズマ
トーチにおいて、 (1−2) 上記管体内に管路を接続する真空排
気装置を設けるとともに、 (1−3) 管体の開端面に当接してこれを閉成
可能な蓋部材を常時常圧を維持するチヤンバー
内に設け、 (1−4) 当該蓋部材がチヤンバー内と管体内
との圧力差によつて開端面に吸着またはこれか
ら解離可能に構成し、 (1−5) 着火時にはコアガスの注入が停止さ
れている管体の閉端面に蓋部材を当接のうえ真
空排気装置を駆動させて所定減圧状態となつた
管体内に高周波エネルギーによつてグロー放電
を発生せしめ、 (1−6) ついで管内へコアガスを序々に注入
して上記グロー放電を高温プラズマフアイヤに
変換し、 (1−7) 同時に常圧に近づいた管体の開端面
から蓋部材が自重により解離するようにした ことを特徴とするプラズマトーチの着火方法にあ
る。
(Technical Thought of the Invention) The gist of the present invention is as follows: (1-1) A high-frequency coil is generated from a high-frequency coil wound around the outer periphery of a predetermined area of a tube body with one end as a closed end face and the other end as an open end face opening into the chamber. In a plasma torch that obtains a high-temperature plasma fire by imparting high-frequency energy to a core gas injected into a tube, (1-2) providing a vacuum exhaust device for connecting a conduit within the tube; (1-3) A lid member capable of contacting and closing the open end surface of the tube body is provided in a chamber that maintains normal pressure at all times, and (1-4) the lid member is provided with a lid member that can close the open end surface of the tube body by a pressure difference between the inside of the chamber and the inside of the tube body. (1-5) At the time of ignition, the lid member is brought into contact with the closed end surface of the tube whose injection of core gas is stopped, and the evacuation device is driven to create a predetermined depressurized state. (1-6) Then, core gas is gradually injected into the tube to convert the glow discharge into a high-temperature plasma fire. (1-7) At the same time, A method for igniting a plasma torch is characterized in that a lid member is separated by its own weight from the open end surface of a tube body when the pressure approaches normal pressure.

(実施例の構成) 上記発明を第1図〜第2図dに示す実施例に従
つてさらに詳述する。
(Configuration of Embodiment) The above invention will be further explained in detail according to the embodiment shown in FIGS. 1 to 2d.

第1図において、1はプラズマトーチ全体を示
し、101および102は耐熱性のある石英管等
を用いた大径の外管および小径の内管であつて、
上記外管101の1方端は閉端面としてチヤンバ
ーch外に、他方端は開端面としてチヤンバーch
内に開口し、上記内管102の一方端は閉端面と
して外管101外に、他方端は開端面として外管
101の閉端面を貫通して管内所定位置まで伸延
した二重管体となつており、また上記外管101
のチヤンバーchに近接した所定領域外周にはコ
イルCが巻回されており、外管101および内管
102それぞれの閉端面近傍にはコアガスG1
よび例えばコアガスG1と同質の管壁冷却用ガス
G2をそれぞれの管内に注入可能に設定されてい
るのは前記従来着火方法の説明で述べたプラズマ
トーチ1′と同様である。
In FIG. 1, 1 indicates the entire plasma torch, and 101 and 102 are a large-diameter outer tube and a small-diameter inner tube made of heat-resistant quartz tube, etc.
One end of the outer tube 101 is a closed end face outside the chamber ch, and the other end is an open end face outside the chamber ch.
One end of the inner tube 102 is a closed end surface extending outside the outer tube 101, and the other end is an open end surface extending through the closed end surface of the outer tube 101 to a predetermined position inside the tube. Also, the outer tube 101
A coil C is wound around the outer periphery of a predetermined area close to the chamber ch, and a core gas G 1 and a tube wall cooling gas of the same quality as the core gas G 1 are arranged near the closed end surfaces of each of the outer tube 101 and the inner tube 102 .
The configuration in which G 2 can be injected into each tube is the same as in the plasma torch 1' described in the explanation of the conventional ignition method.

しかし本発明では第3図に2として示す着火用
の接地炭素棒は用いない。
However, in the present invention, the grounded carbon rod shown as 2 in FIG. 3 for ignition is not used.

図において、3はコアガスG1の供給源であつ
て、例えば可変流量弁V1を介して内管102へ
コアガスG1を注入可能に管路31が、また上記
可変流量弁V1および同じく可変流量弁であるV2
を介して外管101へ管壁冷却用ガスG2を注入
可能に管路32がそれぞれ配設されている。4は
例えば油回転ポンプからなる真空排気装置であつ
て、当該真空排気装置4は弁V3を介して管路3
1に接続されている。5はチヤンバーch内に設
けられている蓋部材であつて、例えばセラミツク
あるいは耐熱金属等を使用した、外管101の開
口端面より大なる板材で、その表面が平坦鏡面仕
上げとされ、同じく平坦鏡面仕上げとされた外管
101の開端面管縁に当接してこれを閉成可能で
ある。当該蓋部材5は例えばチヤンバーchの側
壁を貫通して図示矢印a←→bの如く水平移動可能
で、その先端がa方向へ変位すると外管101の
開端面近傍まで到達する可動板51の先端面と、
第2図aに示される如く、その所定辺を蝶番接続
52されている。可動板51の裏面には保持鐶5
31および532が設けられていて、当該保持鐶
531,532に保持される蓋支承棒54がチヤ
ンバーchの内外にわたり可動板51にそつて配
置される。当該蓋支承棒54は可動板51とは個
別に矢印a′←→b′として示す如く可動板51の裏面
を摺動可能であり、a′方向への変位によつてその
先端部が可動板51の先端より突出して、その前
方に蝶番接続52された蓋部材5を第1図および
第2図aの如く水平に支承して外管101の開端
面に当接可能、またb′方向への変位によつてその
先端部が可動板51の先端より引込み、その前方
に蝶番接続52された蓋部材5を第2図cに示す
如く下垂せしめることが可能である。また可動板
51のb方向への変位により上記下垂状態の蓋部
材5を第2図dに示す如くチヤンバー側壁まで退
避せしめることができる。尚511は可動板51
上に設けられた位置決め兼用ストツパー、また5
41は蓋支承棒54の先端に設けたストツパーで
ある。
In the figure, reference numeral 3 denotes a supply source of the core gas G 1 , for example , the pipe line 31 is capable of injecting the core gas G 1 into the inner pipe 102 via the variable flow valve V 1 , and also the variable flow valve V 1 and the same variable flow valve V 1 . V2 which is a flow valve
Pipe lines 32 are respectively arranged so that pipe wall cooling gas G 2 can be injected into the outer pipe 101 via the pipes 32 . Reference numeral 4 denotes a vacuum evacuation device consisting of, for example, an oil rotary pump, and the vacuum evacuation device 4 is connected to the pipe line 3 via a valve V3.
Connected to 1. Reference numeral 5 denotes a lid member provided in the chamber ch, which is a plate material made of ceramic or heat-resistant metal, for example, which is larger than the opening end surface of the outer tube 101, and whose surface is finished with a flat mirror finish. The open end surface of the finished outer tube 101 can be brought into contact with the tube edge to close it. The lid member 5 can, for example, penetrate the side wall of the chamber ch and move horizontally as shown by the arrow a←→b, and when its tip is displaced in the direction a, the tip of the movable plate 51 reaches near the open end surface of the outer tube 101. The face and
As shown in FIG. 2a, predetermined sides thereof are hingedly connected 52. On the back side of the movable plate 51 is a retainer 5.
31 and 532 are provided, and a lid support rod 54 held by the retaining pins 531 and 532 is arranged along the movable plate 51 across the inside and outside of the chamber ch. The lid support rod 54 is capable of sliding on the back surface of the movable plate 51 as shown by the arrow a'←→b' separately from the movable plate 51, and by displacement in the direction a', its tip portion moves against the movable plate. The lid member 5, which protrudes from the tip of the outer tube 101 and is hinged 52 in front thereof, can be supported horizontally as shown in FIGS. As a result of the displacement of the movable plate 51, the distal end thereof is retracted from the distal end of the movable plate 51, and the lid member 5, which is hinged 52 in front of the movable plate 51, can be lowered as shown in FIG. 2c. Further, by displacing the movable plate 51 in the direction b, the lid member 5 in the hanging state can be retracted to the side wall of the chamber as shown in FIG. 2d. In addition, 511 is a movable plate 51
The positioning stopper provided on the top, and the 5
41 is a stopper provided at the tip of the lid support rod 54.

(実施例の作用) 上記の構成からなる本発明実施例によつてプラ
ズマトーチ1を着火する場合を第2図a〜dに従
つて以下に述べる。
(Operation of the Embodiment) The case of igniting the plasma torch 1 according to the embodiment of the present invention having the above-mentioned configuration will be described below with reference to FIGS. 2a to 2d.

まず、可変流量弁V1およびV2それぞれを閉成
とし、プラズマトーチ1内にはコアガスG1およ
び管壁冷却用ガスG2が注入されない状態となし、
可動板51および蓋支承棒54をそれぞれaおよ
びa′方向へ変位せしめる。これによりチヤンバー
ch内の蓋部材5は第2図aに示される如く当該
チヤンバーch内に開口する外管101の開端面
に当接した状態となる。次に弁V3を開成して真
空排気装置4を駆動する。これによりプラズマト
ーチ1の管体内のガス(この場合のガスはコアガ
スG1であつても、あるいは空気であつても何等
支障はない)は急速に排出され、常圧を維持して
いるチヤンバーch内よりも減圧されるので、蓋
部材5は当接している外管101の開端面に吸着
状態となる。次に蓋支承棒54をb′方向へ変位せ
しめる。蓋部材5は上記したとおり外管101の
開端面に吸着されているので第2図bに示す状態
が維持される。プラズマトーチ1内の排気が進み
所定減圧状態、例えば10torr以下となつた時点で
コイルCへの通電を開始する。外管101内の所
定領域…高周波エネルギー領域には直ちにグロー
放電が発生する。この状態において弁V3の閉成
と真空排気装置4の駆動停止を行い、替つてコア
ガス供給源3に接続する可変流量弁V1を流量が
序々に大となる如く操作しつつ開成とする。コア
ガスG1は管路31を介して内管102へ流入し、
その開端面から外管101内に発生しているグロ
ー放電領域へ序々に注入される。低温のグロー放
電領域では注入されるコアガスG1によつて序々
に増加する分子が付与される高周波エネルギによ
り励起されて活発に運動し、衝突が次第に激しく
なり電離状態へ突入するためと思われるが、順次
温度が高まつてゆき、グロー放電は高温のプラズ
マP1へと変換される。高温プラズマP1への移行
圧力は定かではないが500torr前後と推定される。
グロー放電が高温プラズマ化すると間もなく、プ
ラズマトーチ1内のガス圧が常圧に近づくので、
これまで外管101の開端面に吸着状態を維持し
ていた蓋部材5は自重によつて解離し、第2図c
に示される状態となる。この状態となつたら直ち
に可動板51および蓋支承棒54をそれぞれb,
b′方向へ移動して第2図dに示す如く蓋部材5を
チヤンバーchの側壁へと退避させ、同時に可変
流量弁V2を開成かつV1を所定全開流量に調整し
て適正なプラズマフアイヤPとなし、プラズマト
ーチ1の着火操作を終り、チヤンバーch内での
処理工程の実行が可能となる。
First, the variable flow valves V 1 and V 2 are each closed, so that the core gas G 1 and the pipe wall cooling gas G 2 are not injected into the plasma torch 1.
The movable plate 51 and the lid support rod 54 are respectively displaced in directions a and a'. This allows the chamber
The lid member 5 in the chamber ch comes into contact with the open end surface of the outer tube 101 opening into the chamber ch, as shown in FIG. 2a. Next, the valve V 3 is opened and the evacuation device 4 is driven. As a result, the gas in the tube of plasma torch 1 (in this case, there is no problem whether the gas is core gas G 1 or air) is rapidly discharged, and the chamber channel, which maintains normal pressure, is discharged rapidly. Since the pressure is lower than that on the inside, the lid member 5 is attracted to the open end surface of the outer tube 101 that it is in contact with. Next, the lid support rod 54 is displaced in the b' direction. Since the lid member 5 is attracted to the open end surface of the outer tube 101 as described above, the state shown in FIG. 2b is maintained. When the exhaust inside the plasma torch 1 progresses and the pressure reaches a predetermined reduced pressure, for example, 10 torr or less, energization to the coil C is started. A glow discharge immediately occurs in a predetermined region within the outer tube 101, that is, a high frequency energy region. In this state, the valve V 3 is closed and the evacuation device 4 is stopped, and the variable flow rate valve V 1 connected to the core gas supply source 3 is opened while being operated so that the flow rate gradually increases. Core gas G 1 flows into the inner pipe 102 via the pipe line 31,
The gas is gradually injected into the glow discharge region generated within the outer bulb 101 from its open end surface. This seems to be because in the low-temperature glow discharge region, the molecules that gradually increase due to the injected core gas G1 are excited by the high-frequency energy imparted and move actively, and the collisions gradually become more intense and the molecules enter an ionized state. , the temperature increases one after another, and the glow discharge is converted into high temperature plasma P1 . The transition pressure to high-temperature plasma P 1 is not certain, but it is estimated to be around 500 torr.
As soon as the glow discharge turns into high-temperature plasma, the gas pressure inside the plasma torch 1 approaches normal pressure.
The lid member 5, which had been maintained in an adsorbed state on the open end surface of the outer tube 101, dissociates due to its own weight, and as shown in FIG.
The state shown in is reached. When this state is reached, immediately move the movable plate 51 and the lid support rod b,
b ' direction, the lid member 5 is retracted to the side wall of the chamber ch as shown in FIG. After turning on the ear P and completing the ignition operation of the plasma torch 1, it becomes possible to execute the processing process in the chamber ch.

上記着火操作はプラズマトーチ1の大きさやコ
イルCの整合状態によつて多少の差は生ずるが極
めて短時間で完了する。殊にグロー放電の開始か
ら高温プラズマへの変換までに要する時間は、整
合が良好でコアガスG1の流量調整が最適ならば、
数秒ですむ。また外管101の開端面を閉成する
蓋部材5と初期高温プラズマP1発生位置との間
隔を所定の如く設定しておけば、蓋部材5には高
温プラズマP1が直接当らないので、加熱昇温温
度が余り高温にはならず、コアガスG1のみによ
る高温プラズマP1が保持され、ついで蓋部材5
の落下と退避とによつてプラズマフアイヤPの純
度も保証される。
The above ignition operation is completed in an extremely short time, although there may be some differences depending on the size of the plasma torch 1 and the matching state of the coil C. In particular, the time required from the start of glow discharge to conversion to high-temperature plasma can be reduced if the matching is good and the flow rate adjustment of core gas G 1 is optimal.
It only takes a few seconds. Furthermore, if the distance between the lid member 5 that closes the open end surface of the outer tube 101 and the initial high-temperature plasma P 1 generation position is set to a predetermined value, the high-temperature plasma P 1 will not directly hit the lid member 5. The heating temperature does not become too high, and the high temperature plasma P 1 is maintained only by the core gas G 1 , and then the lid member 5
The purity of the plasma fire P is also guaranteed by the drop and evacuation of the plasma fire P.

(他の実施例) 上記実施例では蓋部材5としてセラミツク板や
耐熱性のある金属板材を挙げ、かつ可動板51や
蓋支承棒54を使用した場合として説明したが、
これに限らず、例えばゴム様弾力性があり、かつ
耐熱性もある蓋部材(ゴムは250℃前後で変質す
るので好ましくないが)のみを用い、プラズマト
ーチ1内の減圧で吸着させ、コアガスG1の注入
による増圧でチヤンバーchの底に自然落下せし
めるようにしてもよい。
(Other Embodiments) In the above embodiments, a ceramic plate or a heat-resistant metal plate is used as the lid member 5, and the movable plate 51 and the lid support rod 54 are used.
For example, the core gas G is adsorbed under reduced pressure inside the plasma torch 1 by using only a lid member that has rubber-like elasticity and heat resistance (although rubber deteriorates at around 250°C, so it is not preferable). It may also be possible to increase the pressure by injecting 1 to allow it to fall naturally to the bottom of the chamber channel.

また、上記実施例では真空排気装置4をコアガ
スG1の内管102への供給用管路31に接続と
したが、例えば別個に直接内管102もしくは外
管101へ接続するもよく、管路設計は自由であ
る。
Further, in the above embodiment, the evacuation device 4 is connected to the supply pipe 31 for supplying the core gas G 1 to the inner pipe 102, but for example, it may be connected directly to the inner pipe 102 or the outer pipe 101, or the pipe Design is free.

以上のほかにも種々の構成によつて本願と同一
の作用を行わせることが可能である。
In addition to the above, it is possible to achieve the same effect as the present application by using various configurations.

(発明の効果) 本発明を実施することにより、コアガスのみか
ららな高純度の高温プラズマフアイヤが得られ、
当該プラズマフアイヤを使用して行われる各種処
理に効果的な作用を及ぼすこととなり、また実施
に要する設備も極めてありふれたもので足り、か
つ安価に設備しうるので、斉らされる効果は顕著
である。
(Effects of the Invention) By carrying out the present invention, a high-purity high-temperature plasma fire consisting only of core gas can be obtained,
It has an effective effect on various treatments performed using the plasma fire, and since the equipment required for implementation is extremely common and can be installed at low cost, the effects are remarkable. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例装置の一部断面正面
図、第2図aは第1図の部分斜視図、第2図b,
cおよびdは第1図に示す実施例装置の作用を示
す部分正面図、第3図は従来着火方法を用いた装
置の一部断面正面図である。 1……プラズマトーチ、101,102……外
管および内管からなる管体、3……コアガス供給
源、31……管路、4……真空排気装置、5……
蓋部材、C……高周波誘導コイル、G1……コア
ガス、ch……チヤンバー、P……高温プラズマ
フアイヤ。
Fig. 1 is a partially sectional front view of an embodiment of the present invention, Fig. 2a is a partial perspective view of Fig. 1, Fig. 2b,
c and d are partial front views showing the operation of the embodiment device shown in FIG. 1, and FIG. 3 is a partially sectional front view of the device using the conventional ignition method. DESCRIPTION OF SYMBOLS 1...Plasma torch, 101, 102...Tube body consisting of an outer tube and an inner tube, 3...Core gas supply source, 31...Pipe line, 4...Evacuation device, 5...
Lid member, C...high frequency induction coil, G1 ...core gas, ch...chamber, P...high temperature plasma fire.

Claims (1)

【特許請求の範囲】[Claims] 1 一方端を閉端面とし他方端をチヤンバー内に
開口する開端面とした管体の所定領域外周に巻回
した高周波誘導コイルから発生する高周波エネル
ギーを管体内へ注入されるコアガスに付与して高
温プラズマフアイヤを得るプラズマトーチにおい
て、上記管体内に管路を接続する真空排気装置を
設けるとともに、管体の開端面に当接してこれを
閉成可能な蓋部材を常時常圧を維持するチヤンバ
ー内に設け、当該蓋部材がチヤンバー内と管体内
との圧力差によつて開端面に吸着またはこれから
解離可能に構成し、着火時にはコアガスの注入が
停止されている管体の開端面に蓋部材を当接のう
え真空排気装置を駆動させて所定減圧状態となつ
た管体内に高周波エネルギーによつてグロー放電
を発生せしめ、ついで管体内へコアガスを序々に
注入して上記グロー放電を高温プラズマフアイヤ
に変換し、同時に常圧に近づいた管体の開端面か
ら蓋部材が自重に解離するようにしたことを特徴
とするプラズマトーチの着火方法。
1 High-frequency energy generated from a high-frequency induction coil wound around the outer periphery of a predetermined area of a tube with one end as a closed end surface and the other end as an open end surface opening into the chamber is applied to the core gas injected into the tube to generate high temperature. In a plasma torch for producing a plasma fire, a chamber is provided with a vacuum evacuation device that connects a pipe line within the tube body, and a lid member that can close the open end surface of the tube body and maintains normal pressure at all times. The lid member is configured to be able to adsorb to or detach from the open end surface due to the pressure difference between the chamber and the tube body, and the lid member is attached to the open end surface of the tube body where injection of core gas is stopped at the time of ignition. After contacting the tube, a vacuum evacuation device is driven to generate a glow discharge using high-frequency energy inside the tube, which has reached a predetermined reduced pressure state.Then, core gas is gradually injected into the tube, and the glow discharge is transferred to a high-temperature plasma furnace. A method for igniting a plasma torch, characterized in that the lid member is dissociated by its own weight from the open end face of the tube body which has become close to normal pressure at the same time as the pressure has reached normal pressure.
JP10442084A 1984-05-25 1984-05-25 Method of igniting plasma torch Granted JPS6168900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10442084A JPS6168900A (en) 1984-05-25 1984-05-25 Method of igniting plasma torch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10442084A JPS6168900A (en) 1984-05-25 1984-05-25 Method of igniting plasma torch

Publications (2)

Publication Number Publication Date
JPS6168900A JPS6168900A (en) 1986-04-09
JPH0510800B2 true JPH0510800B2 (en) 1993-02-10

Family

ID=14380198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10442084A Granted JPS6168900A (en) 1984-05-25 1984-05-25 Method of igniting plasma torch

Country Status (1)

Country Link
JP (1) JPS6168900A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260399A (en) * 1989-03-31 1990-10-23 Fuji Denpa Koki Kk Generating method of high pressure plasma arc
JPH0523496U (en) * 1991-09-09 1993-03-26 株式会社三社電機製作所 Induction plasma torch for decompression
CN103094038B (en) 2011-10-27 2017-01-11 松下知识产权经营株式会社 Plasma processing apparatus and plasma processing method
JP6037292B2 (en) 2013-08-20 2016-12-07 パナソニックIpマネジメント株式会社 Plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
JPS6168900A (en) 1986-04-09

Similar Documents

Publication Publication Date Title
US4665296A (en) Method of and apparatus for igniting a high-frequency torch to create a high-temperature plasma of high purity
DE3461750D1 (en) Apparatus for thermally spraying coating plasma
JP2015536403A (en) Fuel injector with improved burst due to corona discharge
JP3973422B2 (en) Method and apparatus for manufacturing optical fiber preforms by plasma deposition
KR20090047463A (en) Method and device for explosion forming
JP2014533426A (en) Plasma generation system with movable electrode
JPH0510800B2 (en)
JP2010096128A (en) Spark-ignition internal combustion engine
CN1832656A (en) Plasma apparatus and apparatus for fabricating optical fiber preform by using the same
JPH0521320B2 (en)
JPS60230399A (en) Method and device for igniting plasma torch
JPH09223595A (en) Ignition method of high frequency inductive coupling arc plasma and plasma generator
CN109974030A (en) A kind of method and its application of the arc motion using magnet driving arc ignition device
JP4019255B2 (en) Glass article processing method and processing apparatus
JPH06128719A (en) Ionic nitriding furnace
KR100242327B1 (en) Ignighter of gas burner
JPS6157680B2 (en)
JPS56169768A (en) Boriding method for aluminum
JPH0367497A (en) Induction plasma generation device
US2408339A (en) Heating apparatus
JPH09266063A (en) Consumable heating coil type high-frequency heating method and device
JPH0613050A (en) Enclosed struture of electrodeless high luminance- intensity discharge lamp
GB167137A (en)
SU722588A1 (en) Apparatus for producing powder by spraying
JP2530356B2 (en) Induction plasma generator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term