JPH02260399A - Generating method of high pressure plasma arc - Google Patents

Generating method of high pressure plasma arc

Info

Publication number
JPH02260399A
JPH02260399A JP1078383A JP7838389A JPH02260399A JP H02260399 A JPH02260399 A JP H02260399A JP 1078383 A JP1078383 A JP 1078383A JP 7838389 A JP7838389 A JP 7838389A JP H02260399 A JPH02260399 A JP H02260399A
Authority
JP
Japan
Prior art keywords
plasma
pressure
plasma arc
furnace
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1078383A
Other languages
Japanese (ja)
Inventor
Ryuichi Shimada
隆一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Denpa Koki Kk
Fuji Electronics Industry Co Ltd
Original Assignee
Fuji Denpa Koki Kk
Fuji Electronics Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Denpa Koki Kk, Fuji Electronics Industry Co Ltd filed Critical Fuji Denpa Koki Kk
Priority to JP1078383A priority Critical patent/JPH02260399A/en
Publication of JPH02260399A publication Critical patent/JPH02260399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

PURPOSE:To generate high pressure plasma arc eletrodelessly by generating plasma by means of applying high frequency voltage in a condition the gas pressure in furnace is sufficiently lowered, and then by retaining the plasma current and gradually increasing the pressure in furnace at the same time. CONSTITUTION:In a condition the gas pressure in a hollow part 25 is sufficiently lowered so as to electrodeless discharge is easily performed, an induction field is generated from a high frequency oscillator 23 through a transformer core 21, according to the principle of transformer, and high frequency voltage is applied to a discharge tube 24 so as to generate a toroidal plasma. Then, as applying high frequency voltage, by retaining the plasma current and gradually increasing the gas pressure in the hollow part 25 at the same time, high pressure plasma arc is generated. Air current is rotated so as to offset plasma buoyancy generated at high pressure, and the plasma is thus generated near the center of the hollow part 25 stably for a long time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高気圧プラズマの熱及び光を利用して。[Detailed description of the invention] [Industrial application field] The present invention utilizes heat and light from high-pressure plasma.

を機、無機のを害物質の分解を行う高温プラズマアーク
炉を用いた高気圧プラズマアーク発生方法の改良に関す
る。
This paper relates to an improvement in a method for generating a high-pressure plasma arc using a high-temperature plasma arc furnace for decomposing harmful organic and inorganic substances.

[従来の技術] 熱プラズマの応用は、その光、熱を利用して照明用、製
鋼アーク炉、アーク溶接等があり、その制御性を生かし
、高温をうまく利用することが重要である。
[Prior Art] Applications of thermal plasma include lighting, steelmaking arc furnaces, arc welding, etc., using its light and heat, and it is important to take advantage of its controllability and effectively utilize high temperatures.

又、プラズマはどのような有毒廃棄物も最終的に元素の
レベルに破壊するという能力があり、熱プラズマ炉の応
用の一つとして産業廃棄物分解が考えられる。例えばP
CBの分解とかフロンの分解等がそれである。
Furthermore, plasma has the ability to ultimately destroy any toxic waste to the elemental level, and one possible application of thermal plasma reactors is the decomposition of industrial waste. For example, P
Examples include the decomposition of CB and the decomposition of Freon.

一方多くの研究成果が報告されているが電力多消費型プ
ロセスとなるのが最大の問題点とされてきた。しかし、
特に高温高密度な領域(5000度以上)では、ほかで
は得難い高温を発生するという特徴がある。その性質を
最大限利用して、特殊な超高温炉を作ることができる。
On the other hand, although many research results have been reported, the biggest problem has been that it is a power-consuming process. but,
Particularly in high-temperature, high-density areas (over 5000 degrees Celsius), it has the characteristic of generating high temperatures that are difficult to obtain elsewhere. Taking full advantage of its properties, it is possible to create a special ultra-high temperature furnace.

プラズマの温度を従来のアークより高くして、2万度以
上にし。
The plasma temperature is higher than that of conventional arcs, reaching over 20,000 degrees.

従来効率的に不可能と言われてきた反応プロセスを高効
率で行うことが出来ればこの電力多消費型プロセスも工
業的に発展するものと思われる。
If it is possible to carry out highly efficient reaction processes that have hitherto been said to be impossible, it is believed that this power-intensive process will be industrially developed.

産業廃棄物分解のための熱プラズマ生成方法において、
従来のプラズマトーチはプラズマジェットが電極と反応
して、蒸発し不純物となるとともに電極寿命の問題があ
った。また、ジェットの超音速流は速度勾配により大き
な音響を発する。これに対して高周波プラズマトーチは
無電極であるのでよいがプラズマ流を絞れずに電流密度
が上がらず、2万度どまりである。これはいずれもガス
が常に流れており、高温プラズマを閉じ込めるという考
えはない。
In a thermal plasma generation method for industrial waste decomposition,
In conventional plasma torches, the plasma jet reacts with the electrode, evaporates and becomes impurities, and there is a problem with the life of the electrode. In addition, the supersonic flow of a jet produces a large amount of sound due to its velocity gradient. On the other hand, a high-frequency plasma torch is good because it has no electrodes, but the plasma flow cannot be narrowed and the current density does not increase, and the current density is only 20,000 degrees. In both cases, gas is constantly flowing, and there is no concept of confining high-temperature plasma.

第3図は従来の典型的なりCプラズマトーチの電極構成
であり、直流電源から陰極1と陽極2間に電流を流して
アークプラズマ3を発生させる。
FIG. 3 shows the electrode configuration of a typical conventional C plasma torch, in which a current is passed between the cathode 1 and the anode 2 from a DC power source to generate arc plasma 3.

陽極ノズル4には水5が注入され、陰極1と陽極2間に
はガス6が流入される。
Water 5 is injected into the anode nozzle 4, and gas 6 is introduced between the cathode 1 and the anode 2.

又、第4図は従来の高周波プラズマ発生原理を示すが高
周波発振器から高周波誘導コイル7に高周波電流を流す
ことによってプラズマ8を発生させる。9は石英管、1
0はプラズマガス、11はシールガスを示し、Hzおよ
びEθは、それぞれ軸方向の磁場およびθ方向の電場を
示す。
Further, FIG. 4 shows the conventional principle of generating high-frequency plasma, in which plasma 8 is generated by flowing a high-frequency current from a high-frequency oscillator to high-frequency induction coil 7. In FIG. 9 is a quartz tube, 1
0 indicates the plasma gas, 11 indicates the seal gas, and Hz and Eθ indicate the axial magnetic field and the θ-direction electric field, respectively.

[発明が解決しようとする課題] 従来のDCプラズマトーチは電極と反応して。[Problem to be solved by the invention] Traditional DC plasma torches react with electrodes.

蒸発しプラズマ中に不純物を発生させるとともに電極寿
命の問題があった。また、高周波プラズマ発生装置は無
電極であるのはよいが電流密度が絞れずにプラズマの温
度が上がらなかった。このいずれも冷たいガスが常にプ
ラズマの熱を取り去る形になるため高温のプラズマは効
率よく得られなかった。
This evaporates and generates impurities in the plasma, and there is a problem with electrode life. Furthermore, although it is good that the high-frequency plasma generator is electrodeless, the current density cannot be reduced and the temperature of the plasma cannot be increased. In both of these methods, high-temperature plasma could not be obtained efficiently because the cold gas always removes heat from the plasma.

本発明は上記の欠点を解決するためなされたもので、ト
ーラス形状のプラズマアークを高気圧ガス中に発生させ
て高周波電流を流して加熱し、より高温を効率よく発生
する高気圧プラズマアーク発生方法を提供することを目
的とする。
The present invention has been made to solve the above-mentioned drawbacks, and provides a method for generating a high-pressure plasma arc that efficiently generates a higher temperature by generating a torus-shaped plasma arc in high-pressure gas and heating it by flowing a high-frequency current. The purpose is to

[課題を解決するための手段と作用コ 本発明は6高気圧プラズマの熱及び光を利用して、有機
、無機の有害物質を分解する高温プラズマアーク炉にお
いて、炉内のガス圧力を十分さげた状態で高周波電圧を
印加しプラズマを発生させた後、そのプラズマ電流を維
持したまま炉内気圧を徐徐に上昇させることによって、
高気圧のプラズマアークを発生することを特徴とするも
ので。
[Means and effects for solving the problem] The present invention is a high-temperature plasma arc furnace that decomposes organic and inorganic harmful substances by using the heat and light of high-pressure plasma, and the gas pressure in the furnace is sufficiently reduced. After applying a high-frequency voltage to generate plasma, the pressure inside the reactor is gradually increased while maintaining the plasma current.
It is characterized by generating a high-pressure plasma arc.

トーラス形状のプラズマアークを高気圧ガス中に発生さ
せて高周波7に流を流して加熱し、より高温を効率よく
発生するものである。
A torus-shaped plasma arc is generated in high-pressure gas and heated by flowing a high-frequency wave 7 to efficiently generate a higher temperature.

[実施例] 以下図面を参照して本発明の実施例を詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る高温プラズマアーク炉の一例を示
し、例えば円環状のフェライトコアよりなるトランスコ
ア21の1次巻線22には高周波発振器23が接続され
、このトランスコア21の2次側にはトランスコア21
を囲むようにしてトーラス状容器よりなる放電管24が
設けられる。
FIG. 1 shows an example of a high-temperature plasma arc furnace according to the present invention. A high-frequency oscillator 23 is connected to the primary winding 22 of a transformer core 21 made of, for example, an annular ferrite core. Transformer core 21 on the side
A discharge tube 24 made of a toroidal container is provided so as to surround the discharge tube 24 .

前記放電管24は例えばアクリル樹脂より円環状に形成
され、内部には外周に沿った円環状の円筒状中空部25
が内面をシリコーンコーティングされて設けられる。こ
の中空部25にはガラス円板の中心部に穴を開けたガラ
スリミッタ26が所定間隔毎に複数枚設けられる。又、
前記中空部25の内周部接線方向には多数の吸入用穴2
7が環状に沿って設けられると共に、前記中空部25の
外周部接線方向には多数の排気用穴28が環状に沿って
設けられる。更に、前記放電管24の外周面には大きな
プラズマ電流を発生させるコイル2つが設けられると共
に、前記放電管24の外面にはトロイダル磁場を発生さ
せるコイル30がへりカル巻されて設けられる。
The discharge tube 24 is formed of, for example, an acrylic resin in an annular shape, and has an annular cylindrical hollow portion 25 along the outer periphery inside.
The inner surface is coated with silicone. In this hollow portion 25, a plurality of glass limiters 26 each having a hole formed in the center of a glass disc are provided at predetermined intervals. or,
A large number of suction holes 2 are provided in the tangential direction of the inner circumference of the hollow portion 25.
7 are provided along the annular shape, and a large number of exhaust holes 28 are provided along the annular shape in the tangential direction of the outer periphery of the hollow portion 25 . Further, two coils for generating a large plasma current are provided on the outer peripheral surface of the discharge tube 24, and a coil 30 for generating a toroidal magnetic field is provided helically wound on the outer surface of the discharge tube 24.

第2図は本発明に係る中空部25内のガス圧力持性31
及び高周波発振器23の出力特性32の一例を示す特性
図である。
FIG. 2 shows gas pressure retention 31 in the hollow part 25 according to the present invention.
FIG. 3 is a characteristic diagram showing an example of an output characteristic 32 of the high-frequency oscillator 23. FIG.

即ち、前記中空部25内に吸入用穴27がらガスを吸入
すると共に、排気用穴28がらガスを排気することによ
り、中空部25内にトロイダル状の旋回流を作ると共に
、中空部25内のガス圧力(気圧)を制御する。しかし
て、第2図に示すように、無電極で放電しやすいように
中空部25内のガス圧力を十分下げた状態で、高周波発
振器23からトランスコア21を介して変圧器の原理で
誘導電界を発生させ、放電管24に高周波電圧を印加し
トロイダルプラズマを発生させる。その後、高周波電圧
を印加しながら、そのプラズマ電流を維持したまま中空
部25内のガス圧力(気圧)を徐徐に上昇させることに
よって、高気圧のプラズマアークを発生する。このとき
、気流を旋回させ、高気圧になると生じるプラズマの浮
力を打ち消し、プラズマを中空部25の中心近くに長時
間安定に発生させる。従って、高気圧のプラズマアーク
をトーラス形状にて無電極放電させることができ、電極
からの熱損失と電極の消耗をなくすことができる。
That is, by inhaling gas into the hollow part 25 through the suction hole 27 and exhausting the gas through the exhaust hole 28, a toroidal swirling flow is created in the hollow part 25, and the inside of the hollow part 25 is Controls gas pressure (atmospheric pressure). As shown in FIG. 2, an induced electric field is generated from the high frequency oscillator 23 via the transformer core 21 on the principle of a transformer while the gas pressure in the hollow part 25 is sufficiently lowered to facilitate discharge without electrodes. is generated, and a high frequency voltage is applied to the discharge tube 24 to generate toroidal plasma. Thereafter, a high-pressure plasma arc is generated by gradually increasing the gas pressure (atmospheric pressure) in the hollow portion 25 while maintaining the plasma current while applying a high-frequency voltage. At this time, the air current is swirled to cancel the buoyancy of the plasma that occurs when the pressure becomes high, and plasma is stably generated near the center of the hollow portion 25 for a long time. Therefore, a high-pressure plasma arc can be discharged in a torus shape without electrodes, and heat loss from the electrodes and wear and tear on the electrodes can be eliminated.

尚2アークを高温にするには電流密度を高める必要があ
る。そのためには電流路を絞り、気圧を高める必要があ
る。また電子温度とイオン温度の差を小さくして気体の
温度を高めるにも気圧を高くするのがよい。
2. In order to make the arc high temperature, it is necessary to increase the current density. To do this, it is necessary to narrow down the current path and increase the atmospheric pressure. It is also good to increase the atmospheric pressure to reduce the difference between the electron temperature and the ion temperature and increase the gas temperature.

又、従来高気圧のプラズマアークを得るためには気体を
ブレークダウンさせるに十分な高電圧を電極間に必要と
するが、無電極ではトーラス状のプラズマを高気圧ガス
中で得る方法はなかつた。
In addition, conventionally, in order to obtain a high-pressure plasma arc, a high voltage sufficient to break down the gas is required between electrodes, but there is no method to obtain a toroidal plasma in a high-pressure gas without electrodes.

そこで0本発明によるプラズマアーク炉は炉内の気圧が
制御できるトーラス状容器と、変圧器の原理で誘導電界
を発生させるトランスコア及び高周波発振器からなる。
Therefore, the plasma arc furnace according to the present invention consists of a torus-shaped container in which the atmospheric pressure inside the furnace can be controlled, a transformer core that generates an induced electric field on the principle of a transformer, and a high-frequency oscillator.

[発明の効果] 以上述べたように本発明によれば、高温プラズマアーク
炉において高温プラズマを高温度にて。
[Effects of the Invention] As described above, according to the present invention, high-temperature plasma is generated at high temperature in a high-temperature plasma arc furnace.

電極などの消耗部品なしに連続運転可能な無電極プラズ
マが得られ、効率のよい高温炉が提供できる。
Electrodeless plasma that can be operated continuously without consumable parts such as electrodes can be obtained, and an efficient high-temperature furnace can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、T52図は本
発明に係るガス圧力特性及び高周波発振器の出力特性の
一例を示す特性図、第3図は従来の典型的なりCプラズ
マトーチの電極構成を示す断面図6第4図は高周波プラ
ズマ発生原理を示す構成断面図である。 21・・・トランスコア、22・・・1次巻線。 23・・・高周波発振器、24・・・放電管、25・・
・中空部、26・・・ガラスリミッタ、27・・・吸入
用穴。 28・・・排気用穴。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a configuration diagram showing one embodiment of the present invention, FIG. FIG. 4 is a cross-sectional view showing the principle of high-frequency plasma generation. 21...Transformer core, 22...Primary winding. 23...High frequency oscillator, 24...Discharge tube, 25...
・Hollow part, 26... Glass limiter, 27... Suction hole. 28...Exhaust hole. Applicant's agent Patent attorney Takehiko Suzue

Claims (2)

【特許請求の範囲】[Claims] (1)高気圧プラズマの熱及び光を利用して、有機、無
機の有害物質を分解する高温プラズマアーク炉において
、炉内のガス圧力を十分さげた状態で高周波電圧を印加
しプラズマを発生させた後、そのプラズマ電流を維持し
たまま炉内気圧を徐徐に上昇させることによって、高気
圧のプラズマアークを発生することを特徴とする高気圧
プラズマアーク発生方法。
(1) In a high-temperature plasma arc furnace that uses the heat and light of high-pressure plasma to decompose organic and inorganic harmful substances, plasma is generated by applying a high-frequency voltage while sufficiently reducing the gas pressure in the furnace. A method for generating a high-pressure plasma arc, which is characterized in that a high-pressure plasma arc is generated by gradually increasing the pressure inside the furnace while maintaining the plasma current.
(2)高温プラズマアーク炉として、高気圧アークをト
ーラス形状にて無電極放電させることにより、電極から
の熱損失と電極の消耗をなくした高温プラズマアーク炉
を用いることを特徴とする請求項1記載の高気圧プラズ
マアーク発生方法。
(2) As the high-temperature plasma arc furnace, a high-temperature plasma arc furnace is used in which heat loss from the electrodes and wear and tear of the electrodes are eliminated by electrodeless discharge of a high-pressure arc in a torus shape. How to generate a high-pressure plasma arc.
JP1078383A 1989-03-31 1989-03-31 Generating method of high pressure plasma arc Pending JPH02260399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078383A JPH02260399A (en) 1989-03-31 1989-03-31 Generating method of high pressure plasma arc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078383A JPH02260399A (en) 1989-03-31 1989-03-31 Generating method of high pressure plasma arc

Publications (1)

Publication Number Publication Date
JPH02260399A true JPH02260399A (en) 1990-10-23

Family

ID=13660492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078383A Pending JPH02260399A (en) 1989-03-31 1989-03-31 Generating method of high pressure plasma arc

Country Status (1)

Country Link
JP (1) JPH02260399A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722195A (en) * 1992-03-18 1995-01-24 Internatl Business Mach Corp <Ibm> High density plasma treating device
WO1999000823A1 (en) * 1997-06-26 1999-01-07 Applied Science And Technology, Inc. Toroidal low-field reactive gas source
US5998933A (en) * 1998-04-06 1999-12-07 Shun'ko; Evgeny V. RF plasma inductor with closed ferrite core
US6418874B1 (en) 2000-05-25 2002-07-16 Applied Materials, Inc. Toroidal plasma source for plasma processing
US6634313B2 (en) 2001-02-13 2003-10-21 Applied Materials, Inc. High-frequency electrostatically shielded toroidal plasma and radical source
US6755150B2 (en) 2001-04-20 2004-06-29 Applied Materials Inc. Multi-core transformer plasma source
US6855906B2 (en) 2001-10-16 2005-02-15 Adam Alexander Brailove Induction plasma reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168900A (en) * 1984-05-25 1986-04-09 高周波熱錬株式会社 Method of igniting plasma torch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168900A (en) * 1984-05-25 1986-04-09 高周波熱錬株式会社 Method of igniting plasma torch

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722195A (en) * 1992-03-18 1995-01-24 Internatl Business Mach Corp <Ibm> High density plasma treating device
EP1310980A1 (en) * 1997-06-26 2003-05-14 Applied Science & Technology, Inc. Toroidal low-field reactive gas source
EP1313130A1 (en) * 1997-06-26 2003-05-21 Applied Science & Technology, Inc. Toroidal low-field reactive gas source
US6150628A (en) * 1997-06-26 2000-11-21 Applied Science And Technology, Inc. Toroidal low-field reactive gas source
JP2002507315A (en) * 1997-06-26 2002-03-05 アプライド サイエンス アンド テクノロジー,インコーポレイテッド Toroidal low-field reactive gas source
WO1999000823A1 (en) * 1997-06-26 1999-01-07 Applied Science And Technology, Inc. Toroidal low-field reactive gas source
US6559408B2 (en) 1997-06-26 2003-05-06 Applied Science & Technology, Inc. Toroidal low-field reactive gas source
JP2008218431A (en) * 1997-06-26 2008-09-18 Mks Instruments Inc Toroidal plasma chamber
JP2007165304A (en) * 1997-06-26 2007-06-28 Mks Instruments Inc Toroidal plasma chamber
EP1310981A1 (en) * 1997-06-26 2003-05-14 Applied Science & Technology, Inc. Toroidal low-field reactive gas source
EP1313131A1 (en) * 1997-06-26 2003-05-21 Applied Science & Technology, Inc. Toroidal low-field reactive gas source
EP1313128A1 (en) * 1997-06-26 2003-05-21 Applied Science & Technology, Inc. Toroidal low-field reactive gas source
EP1313129A1 (en) * 1997-06-26 2003-05-21 Applied Science & Technology, Inc. Toroidal low-field reactive gas source
EP1313132A1 (en) * 1997-06-26 2003-05-21 Applied Science & Technology, Inc. Toroidal low-field reactive gas source
EP2256781A1 (en) * 1997-06-26 2010-12-01 Mks Instruments, Inc. Toroidal Plasma Chamber
US5998933A (en) * 1998-04-06 1999-12-07 Shun'ko; Evgeny V. RF plasma inductor with closed ferrite core
US6418874B1 (en) 2000-05-25 2002-07-16 Applied Materials, Inc. Toroidal plasma source for plasma processing
US6712020B2 (en) 2000-05-25 2004-03-30 Applied Materials Inc. Toroidal plasma source for plasma processing
US6634313B2 (en) 2001-02-13 2003-10-21 Applied Materials, Inc. High-frequency electrostatically shielded toroidal plasma and radical source
US6755150B2 (en) 2001-04-20 2004-06-29 Applied Materials Inc. Multi-core transformer plasma source
US7363876B2 (en) 2001-04-20 2008-04-29 Applied Materials, Inc. Multi-core transformer plasma source
US6855906B2 (en) 2001-10-16 2005-02-15 Adam Alexander Brailove Induction plasma reactor

Similar Documents

Publication Publication Date Title
US3324334A (en) Induction plasma torch with means for recirculating the plasma
US6362449B1 (en) Very high power microwave-induced plasma
CN111479376B (en) Atmospheric pressure injection frequency thermal plasma generator based on preionization ignition device
JPS5939178B2 (en) Activated gas generator
Kim et al. Simple microwave plasma source at atmospheric pressure
US6261525B1 (en) Process gas decomposition reactor
CN201230400Y (en) Atmosphere pressure microwave plasma producing device
JPH02260399A (en) Generating method of high pressure plasma arc
TWI700462B (en) Radiant burner and method of treating an effluent gas stream
JP2004523869A (en) Plasma welding method
JP3662621B2 (en) Induction plasma generation method and apparatus
WO2016209007A1 (en) Double-frequency power-driven inductively coupled plasma torch, and apparatus for generating nanoparticle using same
JPH0357199A (en) Microwave hot plasma torch
JP3615938B2 (en) Plasma generator
CN202587573U (en) High frequency induction plasma generator
JPH03211284A (en) Multistage thermal plasma reaction apparatus
JPH11251088A (en) Inductive coupling plasma device
JPH06290896A (en) High frequency plasma heater and its operating method
JP2001300298A (en) Method and apparatus for decomposing sf6 gas
RU2153781C1 (en) Microwave plasma generator
JPH08195295A (en) Inductive coupling type plasma torch
JPH03214600A (en) Microwave heated plasma reaction device
JP3454903B2 (en) Plasma reactor
US11956882B2 (en) High-power plasma torch with dielectric resonator
JPH0367496A (en) Induction plasma generation device