JPH05107046A - Method and apparatus for measuring thickness deviation - Google Patents

Method and apparatus for measuring thickness deviation

Info

Publication number
JPH05107046A
JPH05107046A JP26955991A JP26955991A JPH05107046A JP H05107046 A JPH05107046 A JP H05107046A JP 26955991 A JP26955991 A JP 26955991A JP 26955991 A JP26955991 A JP 26955991A JP H05107046 A JPH05107046 A JP H05107046A
Authority
JP
Japan
Prior art keywords
linear body
coating
uneven thickness
light
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26955991A
Other languages
Japanese (ja)
Inventor
Takehito Kobayashi
勇仁 小林
Toru Inoue
亨 井上
Hideji Shinoki
秀次 篠木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP26955991A priority Critical patent/JPH05107046A/en
Publication of JPH05107046A publication Critical patent/JPH05107046A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To make it possible to measure the degree of thickness deviation of a covering accurately in line by detecting the central positions of linear bodies before and after the passing of covering dies and comparing the positions in the linear bodies. CONSTITUTION:A resin covering is applied on an optical fiber 100 with covering dies 101, and a resin-covered optical fiber 102 is obtained. The parallel luminous fluxes from first and second light sources 103a and 103b, which are arranged so as to face the side surfaces of the optical fibers 100 and 102, are projected on the optical fibers 100 and 102. The projected lights are received with first and second light receiving parts 104a and 104b, respectively, and the brightnesses are detected. The light receiving part is constituted of, e.g. a position-detecting semiconductor device, and the central position of the optical fibers can be obtained. In a control part (CPU) 106, the data from the light receiving parts 104a and 104b are compared and processed. Thus, the degree of thickness deviation is measured. Furthermore, the relative positions of the light receiving parts 104a and 104b are strictly adjusted. The relative deviation between the central positions of the optical fibers 100 and 102 can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、線状体に施された被覆
の偏肉(偏肉度、偏肉方向)を測定する偏肉測定方法及
び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an uneven thickness measuring method and apparatus for measuring uneven thickness (unevenness, direction of uneven thickness) of a coating applied to a linear body.

【従来の技術】[Prior Art]

【0002】光ファイバは材質的な問題からそのまま光
伝送用媒体として使用するのは極めて困難であるので、
従来より光ファイバの線引き直後に樹脂被覆を施して被
覆光ファイバとし、光ファイバ製造直後の初期強度の維
持を図ると共に長期使用に耐えうるようにしている。
It is extremely difficult to use an optical fiber as it is as a medium for optical transmission because of its material problem.
Conventionally, a coated optical fiber is formed by coating a resin immediately after drawing the optical fiber to maintain the initial strength immediately after manufacturing the optical fiber and to withstand long-term use.

【0003】すなわち、図5に示すように、光ファイバ
母材1の先端を加熱炉2により加熱・溶融しつつ線引き
して形成された光ファイバ3は、一般に、第一の加圧ダ
イ4A、第一の硬化炉5A、第二の加圧ダイ4B、第二
の硬化炉5Bに順次挿通されることにより、その外表面
に二層の樹脂被覆が施された被覆光ファイバ6となって
キャプスタン7を介して巻取機8に巻取られるようにな
っている。ここで、かかる被覆光ファイバ6に使用され
ている樹脂被覆材料は、例えば、シリコーン樹脂、ウレ
タン樹脂、エポキシ樹脂などの熱硬化型樹脂や、エポキ
シアクリレート、ウレタンアクリレート、ポリエステル
アクリレートなどの紫外線硬化型樹脂、その他、放射線
硬化型樹脂などの高分子材料である。
That is, as shown in FIG. 5, an optical fiber 3 formed by drawing the tip of an optical fiber preform 1 while heating and melting it in a heating furnace 2 generally has a first pressing die 4A, By being sequentially inserted into the first curing oven 5A, the second pressing die 4B, and the second curing oven 5B, the outer surface of the coated optical fiber 6 is coated with two layers of resin to form a capped optical fiber 6. It is adapted to be wound up by the winder 8 via the stun 7. Here, the resin coating material used for the coated optical fiber 6 is, for example, a thermosetting resin such as silicone resin, urethane resin or epoxy resin, or an ultraviolet curing resin such as epoxy acrylate, urethane acrylate or polyester acrylate. In addition, it is a polymer material such as a radiation curable resin.

【0004】ところで、このような被覆光ファイバ6に
おいては、その伝送特性及び機械的特性を向上するた
め、光ファイバ1の周囲に施される樹脂被覆が同心円状
となっていることが重要である。一方、光ファイバの生
産性向上のため線速を大きくすると、光ファイバ1の温
度が上昇して加圧ダイ4A,4B中での樹脂の流れが不
均一となるためか樹脂被覆に偏肉が生じ易いという問題
がある。また、偏肉は樹脂内にゴミが混入した場合など
にも生じる。そこで、光ファイバ線引きラインにおいて
は、インラインで被覆光ファイバ6の偏肉を測定し、偏
肉の発生に応じて線速を小さくしたり、線引きを停止し
たりする制御を行う必要がある。
By the way, in such a coated optical fiber 6, it is important that the resin coating around the optical fiber 1 is concentric in order to improve its transmission characteristics and mechanical characteristics. .. On the other hand, if the linear velocity is increased to improve the productivity of the optical fiber, the temperature of the optical fiber 1 rises and the resin flow in the pressure dies 4A and 4B becomes uneven. There is a problem that it easily occurs. The uneven thickness also occurs when dust is mixed in the resin. Therefore, in the optical fiber drawing line, it is necessary to measure the eccentricity of the coated optical fiber 6 in-line and control the linear velocity to be reduced or the drawing to be stopped according to the occurrence of the eccentricity.

【0005】ここで、従来の偏肉測定方法の一例を図6
を参照しながら説明する。同図に示すように、従来にお
いては、線引きされる被覆光ファイバ10の側面にレー
ザ光源11からのレーザビーム12を照射し、その前方
散乱光パターン13を検出することにより偏肉を測定し
ている(特開昭60−238737号公報参照)。かか
る方法の原理を図7に示す。同図に示すように、被覆光
ファイバ10を簡単のためにガラス部10aと樹脂部1
0bとからなるとすると、両者の屈折率の違い(通常、
ガラス部10aの屈折率ng =1.46、樹脂部10b
の屈折率n r =1.48〜1.51程度である)から、
前方散乱光パターン13には、樹脂部10b−ガラス部
10a−樹脂部10bと通過した中央部分の光束13a
と、樹脂部10bのみを通過した周辺部の光束13bと
が存在する。したがって、前方散乱光パターン13の左
右の対称性及び左右の受光パワーの比により偏肉を検出
することができる。
Here, an example of a conventional uneven thickness measuring method is shown in FIG.
Will be described with reference to. As shown in the figure,
The side surface of the coated optical fiber 10 to be drawn.
Irradiate the laser beam 12 from the light source 11 and in front of it.
The uneven thickness is measured by detecting the scattered light pattern 13.
(See Japanese Patent Laid-Open No. 60-238737). Scarecrow
The principle of the method is shown in FIG. As shown in the figure, the coated light
To simplify the fiber 10, the glass portion 10a and the resin portion 1
0b and the difference in refractive index between them (usually,
Refractive index n of the glass part 10ag= 1.46, resin portion 10b
Refractive index n of r= 1.48 to 1.51),
The forward scattered light pattern 13 includes a resin portion 10b-a glass portion.
10a-light flux 13a in the central portion that has passed through the resin portion 10b
And the luminous flux 13b in the peripheral portion that has passed only the resin portion 10b.
Exists. Therefore, the left side of the forward scattered light pattern 13
Detection of uneven thickness by the symmetry on the right and the ratio of the received light power on the left and right
can do.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
た方法では、前方散乱光パターン13の左右側におい
て、樹脂部10b及びガラス部10aの両方を通過した
光と、樹脂部10bのみを通過した光とが明確に区別さ
れなければ偏肉を検出できないので、例えば図10に示
すように被覆径が小さくて樹脂部10bの肉厚が小さい
場合(図8(A))、又は偏肉が大きすぎる場合(図8
(B))には偏肉が良好には検出できない。すなわち、
図8(A)の場合には、樹脂部10bの肉厚が小さすぎ
るので、樹脂部10bのみを通過する光が存在せず、全
て樹脂部10b及びガラス部10aの両方を通過してし
まい、偏肉が検出できない。また、図8(B)の場合に
は、図中下側において樹脂部10bが薄肉となるので、
やはり図中下側の樹脂部10bのみを通過する光が存在
しないので、偏肉が生じていることは判断できるが、ど
の程度の偏肉なのかが検出できない。
However, in the above-mentioned method, the light passing through both the resin portion 10b and the glass portion 10a and the light passing through only the resin portion 10b are provided on the left and right sides of the forward scattered light pattern 13. Since the uneven thickness cannot be detected unless it is clearly distinguished, for example, as shown in FIG. 10, when the coating diameter is small and the thickness of the resin portion 10b is small (FIG. 8A), or when the uneven thickness is too large. (Fig. 8
In (B), uneven thickness cannot be detected well. That is,
In the case of FIG. 8A, since the resin portion 10b is too thin, there is no light passing through only the resin portion 10b, and all the light passes through both the resin portion 10b and the glass portion 10a. Uneven thickness cannot be detected. Further, in the case of FIG. 8B, since the resin portion 10b is thin on the lower side in the figure,
After all, since there is no light that passes through only the resin portion 10b on the lower side in the figure, it is possible to determine that uneven thickness has occurred, but it is not possible to detect the extent of uneven thickness.

【0007】したがって、光ファイバ生産分野におい
て、高性能な光ファイバを生産性よく製造するために、
被覆光ファイバの偏肉をインラインで正確に測定しうる
技術の出現が望まれている。また、かかる技術は種々の
分野に適用可能である。
Therefore, in the field of optical fiber production, in order to produce a high-performance optical fiber with high productivity,
The advent of a technique capable of accurately measuring the uneven thickness of a coated optical fiber in-line is desired. Moreover, such a technique can be applied to various fields.

【0008】[0008]

【課題を解決するための手段】前記課題を解決する本発
明に係る偏肉測定方法は、線状体に被覆ダイスを用いて
樹脂被覆を施す過程において、該被覆ダイス通過前後の
被覆なし、被覆あり、それぞれの線状体中心位置を検出
し、比較することにより該被覆の偏肉の度合いを測定す
ることを特徴とする。
The uneven thickness measuring method according to the present invention, which solves the above-mentioned problems, is a process of applying a resin coating on a linear body using a coating die, without coating before and after passing through the coating die. It is characterized in that the degree of uneven thickness of the coating is measured by detecting the center position of each linear body and comparing them.

【0009】また、一方の本発明に係る偏肉測定装置の
構成は、線状体の表面に被覆を施す被覆ダイスと、該被
覆ダイスの線状体通過前後に各々設けられ、且つ線状体
の側面に対向し該線状体の長手方向に直交する面内で該
線状体の側面に対して平行光束を出射する第1、第2の
光源と、該第1、2光源からの平行光束の線状体での光
の明暗を受光しその受光位置を各々検出する第1,2受
光部と、検出した受光位置の被覆ダイスの通過前後の線
状体中心位置を検出、比較処理して上記線状体の偏肉を
求める処理部とを具えたことを特徴とする。
Further, the structure of the uneven thickness measuring device according to the present invention is such that a coating die for coating the surface of the linear body and the linear die provided before and after the coating die pass through the linear body. Of the first and second light sources that emit parallel light flux to the side surface of the linear body in a plane that faces the side surface of the linear body and is orthogonal to the longitudinal direction of the linear body, and the parallel light from the first and second light sources. Detects and compares the first and second light receiving parts that detect the light and darkness of light in the linear body of the light flux and detect the light receiving positions respectively, and the central position of the linear body before and after passing through the coating die at the detected light receiving position. And a processing unit for determining the uneven thickness of the linear body.

【0010】以下、本発明の内容を図面を参照しながら
詳細に説明する。図1は本発明方法を実施するための偏
肉測定装置の一例を概念的に示す。
The contents of the present invention will be described below in detail with reference to the drawings. FIG. 1 conceptually shows an example of an uneven thickness measuring device for carrying out the method of the present invention.

【0011】同図に示すように、被検体である線状体の
一例としての被覆光ファイバ100は、線引きされた後
被覆ダイス101によって樹脂被覆102が施されてい
る。本実施例では前記構成において、被覆ダイス101
の直前、直後で線状体の流れ方向を上方から下方へと仮
定し、それに対して線状体径方向の右端及び左端の位置
を測定し、左右両端それぞれの被覆ダイス通過による変
位から塗布された樹脂の肉厚を求め、偏肉量を推定する
ものである。
As shown in FIG. 1, a coated optical fiber 100 as an example of a linear body which is a subject has a resin coating 102 applied by a coating die 101 after being drawn. In the present embodiment, in the above-mentioned configuration, the coating die 101
Immediately before and immediately after, the flow direction of the linear body is assumed to be from the upper side to the lower side. The thickness of the resin is calculated and the amount of uneven thickness is estimated.

【0012】また、少なくとも線状体の長手方向と直交
する2方向の肉厚を測定することで、正確な偏肉量及び
偏肉方向を推定することができる。
Further, by measuring the wall thickness in at least two directions orthogonal to the longitudinal direction of the linear body, it is possible to accurately estimate the amount of uneven thickness and the direction of uneven thickness.

【0013】以下、本発明に係る偏肉測定装置の一例
と、その測定例を説明する。
An example of the uneven thickness measuring device according to the present invention and an example of the measurement will be described below.

【0014】図1に示すように、被覆光ファイバ100
はガラス部あるいは樹脂被覆されたガラス部に、被覆ダ
イス101にて樹脂被覆を施し、樹脂被覆光ファイバ1
02を製造している。該被覆ダイス101通過前後の光
ファイバ100,102の側方には、各々第1,2光源
103a,103b及び第1,2受光部104a,10
4bが配設されている。
As shown in FIG. 1, a coated optical fiber 100.
Is coated on the glass portion or the resin-coated glass portion with a coating die 101, and the resin-coated optical fiber 1
02 is manufactured. The first and second light sources 103a and 103b and the first and second light receiving portions 104a and 10 are provided on the sides of the optical fibers 100 and 102 before and after passing through the coating die 101, respectively.
4b is provided.

【0015】ここで第1,2光源103a,103bは
光ファイバ100,102の側面に対向して設けられる
と共に、光軸が光ファイバ100,102の長手方向と
直交するコリメートレンズ105a,105bを具えて
おり、光ファイバ100,102の側面に直交する平行
光束を照射している。
Here, the first and second light sources 103a and 103b are provided so as to face the side surfaces of the optical fibers 100 and 102, and collimator lenses 105a and 105b whose optical axes are orthogonal to the longitudinal direction of the optical fibers 100 and 102 are provided. Therefore, a parallel light beam orthogonal to the side surfaces of the optical fibers 100 and 102 is emitted.

【0016】一方、第1,2受光部104a,104b
は、光ファイバ100,102の側面に対向して各々配
設されており、第1,2光源103a,103bからの
平行光束が光ファイバ100,102によって投影され
る光の明暗を受光して検知している。例えばイメージセ
ンサや位置検出用半導体装置( Posion SensitiveDevic
e)から構成されており、光ファイバ100,102の
中心位置を求めるようにしている。
On the other hand, the first and second light receiving portions 104a and 104b
Are arranged so as to face the side surfaces of the optical fibers 100 and 102, respectively, and the parallel light fluxes from the first and second light sources 103a and 103b receive and detect the brightness of the light projected by the optical fibers 100 and 102. is doing. For example, image sensors and position detection semiconductor devices (Posion SensitiveDevic
e), and the center positions of the optical fibers 100 and 102 are obtained.

【0017】そして、制御部106において、第1,2
光源103a,103b及び第1,2受光部104a,
104bからのデータを例えばCPUによって処理する
ことにより、偏肉の度合いを推定している。
Then, in the control unit 106, the first and second
The light sources 103a and 103b and the first and second light receiving units 104a,
The degree of uneven thickness is estimated by processing the data from 104b by CPU, for example.

【0018】尚、受光部104a,104bにおいて用
いるイメージセンサとは、固体撮像素子をいい、MOS
トランジスターやCCDメモリの配列上に光を受けて各
セルの出力を電子的に走査することにより、光を電位信
号に変換する装置をいう。また、本発明で受光器とは、
光の受光を検出して、その光に応じて電気的信号を出力
する素子をいう。よって制御部106は該イメージセン
サの出力信号を処理し、光ファイバ100,102によ
ってできる影を検出するCPUを具えている。
The image sensor used in the light receiving portions 104a and 104b is a solid-state image sensor, and is a MOS.
It is a device that converts light into a potential signal by receiving light on an array of transistors or CCD memories and electronically scanning the output of each cell. Further, in the present invention, the light receiver means
An element that detects the reception of light and outputs an electrical signal according to the light. Therefore, the control unit 106 includes a CPU that processes the output signal of the image sensor and detects the shadow formed by the optical fibers 100 and 102.

【0019】次に、図2、図3を参照して偏肉測定の原
理を説明する。
Next, the principle of uneven thickness measurement will be described with reference to FIGS.

【0020】図2において、第1,2光源103a,1
03bからの光はコリメートレンズ105a,105b
によって平行光束光となり、光ファイバ100,102
に送られる。この結果、図2(A)に示すように、第1
光源103aからの光はd0 〜d2 ,d3 〜d5 の光線
束がそのまま受光され、d2 〜d3 を通る光線束は樹脂
被覆前の光ファイバ100に遮断され、第1受光部10
4a,104bに影を落す。
In FIG. 2, the first and second light sources 103a, 1
The light from 03b collimates the lenses 105a and 105b.
Is converted into parallel light flux by the optical fibers 100, 102
Sent to. As a result, as shown in FIG.
The light beam from the light source 103a receives the light beam bundles d 0 to d 2 and d 3 to d 5 as it is, and the light beam bundle passing through d 2 to d 3 is blocked by the optical fiber 100 before resin coating, and the first light receiving unit. 10
A shadow is cast on 4a and 104b.

【0021】また図2(B)に示すように、第2光源1
03bからの光はd0 〜d1 ,d4 〜d5 の光線束がそ
のまま受光され、d1 〜d4 を通る光線束が樹脂被覆後
の被覆ファイバ102に遮断され、受光部104bに影
を落す。これらの結果を図3に示す。
As shown in FIG. 2B, the second light source 1
As for the light from 03b, the light bundles of d 0 to d 1 and d 4 to d 5 are received as they are, and the light bundles passing through d 1 to d 4 are blocked by the coated fiber 102 after resin coating and shadowed on the light receiving portion 104b. Drop. The results are shown in FIG.

【0022】尚、光ファイバは樹脂被覆前において、被
覆ダイス101の中心と光ファイバ100の中心位置と
は少なくとも一致するようあらかじめ調整されている。
Before coating the resin, the optical fiber is adjusted in advance so that the center of the coating die 101 and the center of the optical fiber 100 at least coincide with each other.

【0023】また、各々第1,2の受光部104a,1
04bは互いにその相対位置を厳密に調整しており、被
覆前後の光ファイバ100,102の影の中心、すなわ
ち、光ファイバの中心位置の相対的なずれを求めること
ができる。一方偏肉の状態が平行光線束の進行方向にの
み偏心している場合には、得られる影の各中心は重なり
正常状態となるので、この場合には、光ファイバの周囲
の複数方向、例えばX−Y2軸測定を上述した方法で行
うことで偏肉の状態を知ることができる。
Further, the first and second light receiving portions 104a and 104a, respectively.
Reference numeral 04b strictly adjusts the relative position of each other, and the center of the shadow of the optical fibers 100 and 102 before and after the coating, that is, the relative shift of the center positions of the optical fibers can be obtained. On the other hand, when the state of uneven thickness is eccentric only in the traveling direction of the parallel light flux, the centers of the obtained shadows overlap and become a normal state. In this case, in this case, a plurality of directions around the optical fiber, for example, X The state of uneven thickness can be known by performing the Y2-axis measurement by the method described above.

【0024】[0024]

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.

【0025】図1に示す偏肉測定装置で偏肉を求めた。
下記に示す二層被覆の被覆光ファイバの偏肉度を偏肉測
定装置を2台使用することにより求めた。 a.測定対象 ガラス部 φ=125μm 第一層被覆部 φ=180μm 第二層被覆部 φ=250μm b.測定位置 第一層被覆ダイス直前直後及び第二層被覆ダイス直前直
後 c.測定条件 測定領域 2mmφ ファイバ移動量 max 1000m/min 測定頻度 一回/min 以上 d.測定方式 ・平行光線束により形成される光ファイバによる陰影を
検知する ・XY2軸同時測定 e.光 源 ハロゲンランプ f.受光部 CCDイメージセンサ 上記条件にて測定した結果を図4に示す。これにより線
引き時の偏肉の度合いをインラインで判別することがで
きる。
The thickness deviation was measured by the thickness deviation measuring device shown in FIG.
The thickness deviation of the coated optical fiber having the two-layer coating shown below was determined by using two thickness deviation measuring devices. a. Measurement target Glass portion φ = 125 μm First layer coating portion φ = 180 μm Second layer coating portion φ = 250 μm b. Measurement position Immediately before and after the first layer coating die and immediately before and after the second layer coating die c. Measurement conditions Measurement area 2 mmφ Fiber movement amount max 1000 m / min Measurement frequency 1 time / min or more d. Measurement method ・ Detects the shadow caused by the optical fiber formed by the parallel light flux ・ Simultaneous XY 2-axis measurement e. Light source Halogen lamp f. Light receiving part CCD image sensor The result measured under the above conditions is shown in FIG. This allows the degree of uneven thickness during drawing to be determined inline.

【0026】[0026]

【発明の効果】以上説明したように、本発明によると、
被覆線状体の被覆前後の中心位置を求めることにより、
線状体に施された被覆の偏肉をインラインで検出するこ
とができる。
As described above, according to the present invention,
By obtaining the center position before and after coating of the coated linear body,
The uneven thickness of the coating applied to the linear body can be detected inline.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の偏肉測定装置の一例を示す概念図であ
る。
FIG. 1 is a conceptual diagram showing an example of an uneven thickness measuring device of the present invention.

【図2】本発明に係る偏肉測定を説明するための原理図
である。
FIG. 2 is a principle diagram for explaining uneven thickness measurement according to the present invention.

【図3】本装置により得られる線状体の形成する影のパ
ターンを示すグラフである。
FIG. 3 is a graph showing a shadow pattern formed by a linear body obtained by this apparatus.

【図4】本装置により得られる線状体の形成する影のパ
ターンを示すグラフである。
FIG. 4 is a graph showing a shadow pattern formed by a linear body obtained by this apparatus.

【図5】光ファイバの製造ラインの一例を示す概念図で
ある。
FIG. 5 is a conceptual diagram showing an example of an optical fiber manufacturing line.

【図6】従来技術に係る偏肉測定を説明するための原理
図である。
FIG. 6 is a principle diagram for explaining uneven thickness measurement according to a conventional technique.

【図7】従来技術に係る偏肉測定の原理を説明するため
の説明図である。
FIG. 7 is an explanatory diagram for explaining a principle of uneven thickness measurement according to a conventional technique.

【図8】従来技術に係る偏肉測定の問題点を示す説明図
である。
FIG. 8 is an explanatory diagram showing a problem of uneven thickness measurement according to a conventional technique.

【符号の説明】[Explanation of symbols]

100,102 光ファイバ 101 被覆ダイス 103a,103b 第1,2光源 104a,104b 第1,2受光部 105a,105b コリメートレンズ 106 制御部 100,102 Optical fiber 101 Coated dice 103a, 103b First and second light sources 104a, 104b First and second light receiving sections 105a, 105b Collimating lens 106 Control section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 線状体に被覆ダイスを用いて樹脂被覆を
施す過程において、 該被覆ダイス通過前後の被覆なし、被覆あり、それぞれ
の線状体中心位置を検出し、比較することにより該被覆
の偏肉の度合いを測定することを特徴とする偏肉測定方
法。
1. In the process of applying a resin coating to a linear body using a coating die, there is no coating and there is a coating before and after passing through the coating die, and the coating is performed by detecting and comparing the center position of each linear body. A method for measuring uneven thickness, which comprises measuring the degree of uneven thickness.
【請求項2】 請求項1記載の偏肉測定方法において、
線状体中心位置を検出する手段として、位置検出用半導
体装置(Posion Sensitive Device )又はイメージセン
サを用いることを特徴とする偏肉測定方法。
2. The uneven thickness measuring method according to claim 1,
A thickness deviation measuring method characterized by using a position detecting semiconductor device (Posion Sensitive Device) or an image sensor as a means for detecting the linear body center position.
【請求項3】 請求項1,2記載の偏肉測定方法におい
て、線状体に樹脂被覆を施す前後で、線状体の長手方向
に直交する同一面の少なくとも2以上の方向から線状体
中心位置をそれぞれ検出することを特徴とする偏肉測定
方法。
3. The uneven thickness measuring method according to claim 1, wherein before and after applying the resin coating to the linear body, the linear body is viewed from at least two or more directions on the same plane orthogonal to the longitudinal direction of the linear body. An uneven thickness measuring method characterized by detecting the respective center positions.
【請求項4】 線状体の表面に被覆を施す被覆ダイス
と、 該被覆ダイスの線状体通過前後に各々設けられ、且つ線
状体の側面に対向し該線状体の長手方向に直交する面内
で該線状体の側面に対して平行光束を出射する第1、第
2の光源と、 該第1、2光源からの平行光束の線状体での光の明暗を
受光しその受光位置を各々検出する第1,2受光部と、 検出した受光位置の被覆ダイスの通過前後の線状体中心
位置を検出、比較処理して上記線状体の偏肉を求める処
理部とを具えたことを特徴とする偏肉測定装置。
4. A coating die for coating the surface of a linear body, and a coating die provided before and after passing through the linear body, respectively, and facing a side surface of the linear body and orthogonal to a longitudinal direction of the linear body. A first light source and a second light source that emit a parallel light beam to the side surface of the linear body in a plane, and the light and darkness of the parallel light beam from the first and second light sources is received by the linear body. The first and second light receiving portions for respectively detecting the light receiving positions, and the processing portion for detecting the center position of the linear body before and after passing through the coating die at the detected light receiving position and performing comparison processing to obtain the uneven thickness of the linear body. An uneven thickness measuring device characterized by being equipped.
JP26955991A 1991-10-17 1991-10-17 Method and apparatus for measuring thickness deviation Withdrawn JPH05107046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26955991A JPH05107046A (en) 1991-10-17 1991-10-17 Method and apparatus for measuring thickness deviation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26955991A JPH05107046A (en) 1991-10-17 1991-10-17 Method and apparatus for measuring thickness deviation

Publications (1)

Publication Number Publication Date
JPH05107046A true JPH05107046A (en) 1993-04-27

Family

ID=17474067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26955991A Withdrawn JPH05107046A (en) 1991-10-17 1991-10-17 Method and apparatus for measuring thickness deviation

Country Status (1)

Country Link
JP (1) JPH05107046A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083183A (en) * 2010-10-12 2012-04-26 Pulstec Industrial Co Ltd Thickness measuring device for light-transmissive tubular object
WO2021153765A1 (en) * 2020-01-30 2021-08-05 住友電気工業株式会社 Coating condition detection method, coating condition detection device, and optical fiber manufacturing method
US11256027B2 (en) 2017-11-01 2022-02-22 Sumitomo Electric Industries, Ltd. Optical fiber glass eccentricity measurement device and measurement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083183A (en) * 2010-10-12 2012-04-26 Pulstec Industrial Co Ltd Thickness measuring device for light-transmissive tubular object
US11256027B2 (en) 2017-11-01 2022-02-22 Sumitomo Electric Industries, Ltd. Optical fiber glass eccentricity measurement device and measurement method
WO2021153765A1 (en) * 2020-01-30 2021-08-05 住友電気工業株式会社 Coating condition detection method, coating condition detection device, and optical fiber manufacturing method
CN114945541A (en) * 2020-01-30 2022-08-26 住友电气工业株式会社 Cladding state detection method, cladding state detection device, and optical fiber manufacturing method
CN114945541B (en) * 2020-01-30 2024-02-13 住友电气工业株式会社 Cladding state detection method, cladding state detection device, and optical fiber manufacturing method

Similar Documents

Publication Publication Date Title
JPH02110356A (en) Defect detecting apparatus using linear light source
US4973343A (en) Optical fiber coating control apparatus
JPH05107046A (en) Method and apparatus for measuring thickness deviation
CA2050316A1 (en) Process and device for the contactless testing of areal and spatial test pieces
US4957526A (en) Optical fiber coating control process
WO2020162409A1 (en) Plastic optical fiber core diameter measuring method and plastic optical fiber core diameter measuring device used therefor, and plastic optical fiber defect detecting method and plastic optical fiber defect detecting device used therefor
WO2020162410A1 (en) Core diameter measuring method of plastic optical fiber and core diameter measuring device of plastic optical fiber used therefor
US11256027B2 (en) Optical fiber glass eccentricity measurement device and measurement method
JPS6395336A (en) Measurement of refractive index distribution
CN205080069U (en) Detecting device
JP3384927B2 (en) Transparent long body defect detection device
JP7495235B2 (en) Plastic optical fiber core diameter measuring method and plastic optical fiber core diameter measuring device used therefor, plastic optical fiber defect detection method and plastic optical fiber defect detection device used therefor
US20240035924A1 (en) Inspection method for optical fiber, inspection device for optical fiber, and method for manufacturing optical fiber-wound bobbin
US7116409B2 (en) Optical fiber for high-speed fiber-drawing process and coating concentricity monitor
JPH04319642A (en) Method and device for measuring eccentricity of coating
JPH04315939A (en) Method and device for measuring uneven thickness
US20170356852A1 (en) Measurement apparatus
JPH1010005A (en) Method and device for measuring covered state of cylindrical linear body
KR102562591B1 (en) Apparatus and method for monitoring of melt pool
JPH1039184A (en) Production of optical band-shaped conductor, and apparatus for production therefor
JP4332744B2 (en) Manufacturing method of fiber optic plate
CA2013243C (en) Optical fiber coating control
JPH02309228A (en) Measuring method and apparatus of distribution of index of refraction
JPH04319641A (en) Eccentricity of coating measuring method
KR100363949B1 (en) An outward inferior lump detector of magnetic wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107