JPH0510507B2 - - Google Patents

Info

Publication number
JPH0510507B2
JPH0510507B2 JP58171469A JP17146983A JPH0510507B2 JP H0510507 B2 JPH0510507 B2 JP H0510507B2 JP 58171469 A JP58171469 A JP 58171469A JP 17146983 A JP17146983 A JP 17146983A JP H0510507 B2 JPH0510507 B2 JP H0510507B2
Authority
JP
Japan
Prior art keywords
engine
output
ignition timing
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58171469A
Other languages
Japanese (ja)
Other versions
JPS6062664A (en
Inventor
Satoru Komurasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58171469A priority Critical patent/JPS6062664A/en
Priority to US06/647,652 priority patent/US4607602A/en
Publication of JPS6062664A publication Critical patent/JPS6062664A/en
Publication of JPH0510507B2 publication Critical patent/JPH0510507B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/1455Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means by using a second control of the closed loop type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1528Digital data processing dependent on pinking for turbocompressed engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は内燃機関の点火時期制御装置に関す
るもので、機関に発生のノツキングを抑制するも
のに係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ignition timing control device for an internal combustion engine, and more particularly, to an apparatus for suppressing knocking occurring in the engine.

内燃機関の効率は一般に点火時期をMBT
(Minimum Advance for Best Torque)に近づ
けて設定すれば向上する。
The efficiency of an internal combustion engine is generally determined by determining the ignition timing MBT.
Setting it closer to (Minimum Advance for Best Torque) will improve the performance.

〔従来技術〕[Prior art]

しかし点火時期をMBTに近づけすぎるとノツ
キングが発生し、過大ノツキングは機関の損傷を
紹く。このため近年機関に発生のノツキングを検
出し、点火時期を制御してノツキングを抑制する
点火時期制御装置が開発され、採用されるように
なつた。特に過給機付機関においては過大ノツキ
ングの発生を防止して機関を保護し、その出力を
より一層の高出力にすると共に省燃費を狙いとし
て多く装着されている。
However, if the ignition timing is set too close to the MBT, knotting will occur, and excessive knotting can lead to engine damage. For this reason, in recent years, ignition timing control devices have been developed and used that detect knocking occurring in engines and control the ignition timing to suppress knocking. Particularly in turbocharged engines, they are often installed to prevent excessive knocking, protect the engine, increase its output even higher, and save fuel.

以下、従来装置について図について説明する。 Hereinafter, the conventional device will be explained with reference to the drawings.

第1図はこの種の従来装置を示し、1は機関に
取付けられ機関の振動加速度を検出する加速度セ
ンサ、2は加速度センサ1の出力信号のうちノツ
キングに対して感度の高い周波数の信号成分を通
過させる周波数フイルタ、3は周波数フイルタ2
の出力信号のうちノツク検出に対して妨害波とな
るノイズを遮断するアナログゲートで上記周波数
フイルタ2とともにノツキング検出手段を構成し
ており、4は妨害ノイズの発生時期に対応してア
ナログゲート3の開閉を指示するゲートタイミン
グ制御器、5はノツキング時以外の機関の機械的
振動ノイズのレベルを検出する基準レベル設定手
段であるノイズレベル検出器、6はアナログゲー
ト3の出力電圧とノイズレベル検出器5の出力電
圧とを比較し、ノツク検出パルスを発生する比較
器、7は比較器6の出力パルスを積分し、ノツキ
ング強度に応じた積分電圧を発生する積分器で比
較器6とともに遅角量設定手段を構成しており、
8は積分器7の出力電圧に応じて基準の点火信号
の位相を変位させる移相器、9は予め設定した点
火進角特性に応じた点火信号を発生する回転信号
発生器、10は回転信号発生器9の出力を波形整
形し、同時に点火コイル12の通電の閉路角制御
を行う波形整形回路、11は移相器8の出力信号
により点火コイル12の給電を断続するスイツチ
ング回路で、移相器8とともに点火時期制御手段
を構成している。
Fig. 1 shows a conventional device of this type, in which numeral 1 is an acceleration sensor attached to an engine and detects the vibration acceleration of the engine, and numeral 2 is a signal component of the output signal of the acceleration sensor 1 at a frequency that is sensitive to knocking. Frequency filter to pass, 3 is frequency filter 2
An analog gate for blocking noise that becomes a disturbance wave for knock detection in the output signal of the knock detection means constitutes knocking detection means together with the frequency filter 2, and reference numeral 4 indicates the timing of the knock detection of the analog gate 3 corresponding to the generation time of the disturbance noise. A gate timing controller instructs opening/closing, 5 a noise level detector which is a reference level setting means for detecting the level of mechanical vibration noise of the engine other than when knocking, 6 an output voltage and noise level detector of the analog gate 3. Comparator 7 compares the output voltage of 5 with the knocking detection pulse and generates a knock detection pulse. 7 integrates the output pulse of comparator 6 and generates an integrated voltage according to the knocking intensity. It constitutes a setting means,
8 is a phase shifter that shifts the phase of the reference ignition signal according to the output voltage of the integrator 7, 9 is a rotation signal generator that generates an ignition signal according to a preset ignition advance characteristic, and 10 is a rotation signal. A waveform shaping circuit that shapes the output of the generator 9 and at the same time controls the closing angle of the energization of the ignition coil 12; 11 is a switching circuit that cuts off and on the power supply to the ignition coil 12 according to the output signal of the phase shifter 8; Together with the device 8, it constitutes an ignition timing control means.

第2図は加速度センサ1の出力信号の周波数特
性を示し、曲線Aはノツキングのない場合、曲線
Bはノツキングが発生した場合を示す。この加速
度センサ1の出力信号にはノツク信号(ノツキン
グに伴い発生される信号)、機関の機械的ノイズ
および信号伝達経路に乗る各種ノイズ成分例えば
イグニツシヨンノイズ等が含まれる。第2図の曲
線A,Bを比較すると、ノツク信号には特有の周
波数特性のあることが解る。その分布は機関の違
いや加速度センサ1の取付位置の違いにより差は
あるが、いずれにしろノツキングの有無によつて
明確な周波数分布の違いがある。そこで、このノ
ツク信号の有する周波数成分を通過させることに
よつて他の周波数成分のノイズを抑制し、ノツク
信号を効率良く検出することができる。又、第
3,4図は第1図に示した装置の各部の動作波形
を示し、第3図はノツキングが発生していないモ
ードを、第4図はノツキングが発生しているモー
ドを示す。
FIG. 2 shows the frequency characteristics of the output signal of the acceleration sensor 1, where curve A shows the case where no knocking occurs, and curve B shows the case where knocking occurs. The output signal of the acceleration sensor 1 includes a knock signal (a signal generated due to knocking), mechanical noise of the engine, and various noise components on the signal transmission path, such as ignition noise. Comparing curves A and B in FIG. 2, it can be seen that the knock signal has unique frequency characteristics. The distribution varies depending on the engine and the mounting position of the acceleration sensor 1, but in any case, there is a clear difference in the frequency distribution depending on the presence or absence of knocking. Therefore, by passing the frequency component of this knock signal, the noise of other frequency components can be suppressed, and the knock signal can be detected efficiently. 3 and 4 show operating waveforms of each part of the apparatus shown in FIG. 1, FIG. 3 shows a mode in which knocking does not occur, and FIG. 4 shows a mode in which knocking occurs.

次に第1図に示した従来装置の動作を説明す
る。機関の回転により予め設定された点火時期特
性に対応して回転信号発生器9から発生された回
転信号は波形整形回路10によつて所望の閉路角
を持つ開閉パルスに波形成形され、移相器8を介
してスイツチング回路11を駆動し、点火コイル
12の給電を断続し、その通電遮断時に発生する
点火コイル12の点火電圧によつて機関は点火さ
れて運転される。この機関の運転中に起る機関振
動は加速度センサ1によつて検出される。
Next, the operation of the conventional device shown in FIG. 1 will be explained. The rotation signal generated by the rotation signal generator 9 in accordance with the ignition timing characteristics set in advance by the rotation of the engine is waveform-shaped by the waveform shaping circuit 10 into opening/closing pulses having a desired closing angle. 8, the switching circuit 11 is driven on and off to the ignition coil 12, and the engine is ignited and operated by the ignition voltage of the ignition coil 12 generated when the energization is cut off. Engine vibrations occurring during operation of the engine are detected by an acceleration sensor 1.

今、機関のノツキングが発生していない場合に
はノツキングによる機関振動は発生しないが、他
の機械的振動により加速度センサ1の出力信号に
は第3図aで示すように機械的ノイズや点火時期
Fに信号伝送路に乗るイグニツシヨンノイズが発
生する。この信号は周波数フイルタ2を通過する
ことによつて第3図bのように機械的ノイズ成分
が相当抑制されるが、イグニツシヨンノイズ成分
は強力なため周波数フイルタ2を通過後も大きな
レベルで出力される。このままではイグニツシヨ
ンノイズをノツク信号と誤認してしまうため、ア
ナログゲート3は移相器8の出力によつてトリガ
されるゲートタイミング制御器4の出力(第3図
c)によつて点火時期からある期間そのゲートを
閉じ、イグニツシヨンノイズを遮断する。このた
めアナログゲート3の出力には第3図dのイに示
すようにレベルの低い機械的ノイズのみが残る。
一方、ノイズレベル検出器5はアナログゲート3
の出力信号のピーク値変化に応動し、この場合、
通常の機械的ノイズのピーク値による比較的緩や
かな変化には応動し得る特性を持ち、機械的ノイ
ズのピーク値より若干高い直流電圧を発生する。
これを第3図dのロに示す。このようにアナログ
ゲート3の出力信号の平均的なピーク値よりノイ
ズレベル検出器5の出力の方が大きいため、両者
を比較する比較器6の出力には第3図eに示すよ
うに何も出力されず、結局ノイズ信号は全て除去
される。従つて、積分器7の出力電圧も第3図f
のように零であり、移相器8による移相角(入出
力の位相差)も零となる。このため、移相器8の
出力により駆動されるスイツチング回路11の開
閉位相即ち点火コイル12の通電の断続位相は波
形整形回路10の出力の基準点火信号と同位相と
なり、点火時期は基準点火位置となる。
If knocking is not occurring in the engine, engine vibration due to knocking will not occur, but due to other mechanical vibrations, the output signal of the acceleration sensor 1 may be affected by mechanical noise or ignition timing as shown in Figure 3a. Ignition noise that rides on the signal transmission path occurs at F. By passing this signal through the frequency filter 2, the mechanical noise component is considerably suppressed as shown in Figure 3b, but the ignition noise component is strong and remains at a large level even after passing through the frequency filter 2. Output. If this continues, the ignition noise will be mistakenly recognized as a knock signal, so the analog gate 3 adjusts the ignition timing based on the output of the gate timing controller 4 (FIG. 3c), which is triggered by the output of the phase shifter 8. The gate is closed for a period of time to block ignition noise. Therefore, only low-level mechanical noise remains in the output of the analog gate 3, as shown in A of FIG. 3D.
On the other hand, the noise level detector 5 is connected to the analog gate 3.
In this case, in response to the change in the peak value of the output signal of
It has the characteristic of being able to respond to relatively gradual changes due to the peak value of normal mechanical noise, and generates a DC voltage slightly higher than the peak value of mechanical noise.
This is shown in Figure 3d (b). Since the output of the noise level detector 5 is larger than the average peak value of the output signal of the analog gate 3, the output of the comparator 6 that compares the two has nothing as shown in FIG. 3e. No output is made, and all noise signals are eventually removed. Therefore, the output voltage of the integrator 7 is also as shown in FIG.
The phase shift angle (phase difference between input and output) by the phase shifter 8 is also zero. Therefore, the opening/closing phase of the switching circuit 11 driven by the output of the phase shifter 8, that is, the intermittent phase of energization of the ignition coil 12, is in phase with the reference ignition signal output from the waveform shaping circuit 10, and the ignition timing is set at the reference ignition position. becomes.

又、ノツキングが発生した場合、加速度センサ
1の出力には第4図aに示すように点火時期より
ある時間遅れた付近でノツク信号が含まれ、又こ
の出力の周波数成分は第2図の曲線Bとなり、周
波数フイルタ2およびアナログゲート3を通過後
の信号は第4図dのイに示すように機械的ノイズ
にノツク信号が大きく重畳したものになる。この
アナログゲート3を通過した信号のうちノツク信
号の立上りは急峻なため、ノイズレベル検出器5
の出力電圧のレベルがノツク信号に対して応答が
遅れる。この結果、比較器6の入力は夫々第4図
dのイ,ロとなるので比較器6の出力には第4図
eに示すようにパルスが発生する。積分器7はこ
のパルスを積分し、第4図fに示すように積分電
圧を発生する。移相器8はこの積分電圧の大きさ
に応じて第4図gに示す波形整形回路10の出力
信号即ち基準点火信号を時間的に遅れ側に移相す
るため、第4図hに示す移相器8の出力信号の位
相は基準点火信号の位相よりも遅れ、この信号に
よつてスイツチング回路11は駆動される。この
ため、点火時期が遅れてノツキングが抑制された
状態になる。このように第3,4図に示した動作
状態が繰返されて最適の点火時期制御が行われ
る。
Furthermore, when knocking occurs, the output of the acceleration sensor 1 includes a knocking signal around a certain time delay from the ignition timing, as shown in Figure 4a, and the frequency component of this output follows the curve shown in Figure 2. B, and the signal after passing through the frequency filter 2 and the analog gate 3 becomes a mechanical noise largely superimposed on a knock signal, as shown in FIG. 4(d). Among the signals that have passed through the analog gate 3, the rise of the knock signal is steep, so the noise level detector 5
The response of the output voltage level to the knock signal is delayed. As a result, the inputs of the comparator 6 become A and B as shown in FIG. 4D, respectively, and a pulse is generated at the output of the comparator 6 as shown in FIG. 4E. Integrator 7 integrates this pulse and generates an integrated voltage as shown in FIG. 4f. The phase shifter 8 shifts the phase of the output signal of the waveform shaping circuit 10 shown in FIG. 4g, that is, the reference ignition signal, to the delayed side in time according to the magnitude of this integrated voltage. The phase of the output signal of the phase shifter 8 lags behind the phase of the reference ignition signal, and the switching circuit 11 is driven by this signal. Therefore, the ignition timing is delayed and knocking is suppressed. In this way, the operating states shown in FIGS. 3 and 4 are repeated to perform optimal ignition timing control.

ところで、第5図は、過給機付機関の過給特性
図を示す。この第5図で横軸は機関回転数、縦軸
は過給圧を表わす。この特性図に示すように、一
般に過給圧は回転数N以上では制御値Pに達する
が、それ以下の回転域では制限値Pに達しない立
上り領域の特性となる。この回転数Nは略2500
(rpm)前後に設定されることが多い。
By the way, FIG. 5 shows a supercharging characteristic diagram of a supercharged engine. In FIG. 5, the horizontal axis represents the engine speed, and the vertical axis represents the boost pressure. As shown in this characteristic diagram, the supercharging pressure generally reaches the control value P at the rotational speed N or higher, but has a characteristic in a rising region where it does not reach the limit value P at lower rotational speeds. This rotation speed N is approximately 2500
It is often set around (rpm).

一方機関の通常運転において最も多用されるの
は略1500〜3000(rpm)の回転領域であり、上記
過給特性の立上り領域とほぼ同じ回転域である。
On the other hand, in the normal operation of the engine, the rotation range of about 1500 to 3000 (rpm) is most frequently used, which is almost the same rotation range as the rise range of the supercharging characteristics.

即ち、過給機付機関の実用回転域は過給特性の
立上り領域であり、過給による出力の増加が少な
い回転域である。又、この回転域では過給機の応
答遅れが大きいため加速時の立上りが悪く、機関
にはより大きな出力が必要とされる。従つて、上
記過給の立上り領域の出力は機関の加速性に直接
影響し、高出力の過給機付機関の商品性を大きく
左右することになる。
That is, the practical rotation range of a supercharged engine is a rising region of supercharging characteristics, and is a rotation range in which the increase in output due to supercharging is small. In addition, in this rotation range, the response delay of the supercharger is large, so the start-up during acceleration is poor, and a larger output is required from the engine. Therefore, the output in the startup region of supercharging directly affects the acceleration performance of the engine, and greatly influences the marketability of a high-output supercharged engine.

〔発明の概要〕[Summary of the invention]

本発明は上記のように機関が低回転数もしくは
軽負荷にある領域での出力を向上させるとともに
その加速性を改善して機関の商品性を高めようと
するものである。
The present invention aims to improve the engine's output in a region where the engine speed is low or under light load, as described above, and to improve its acceleration performance, thereby increasing the marketability of the engine.

ところで、出力向上のためには前述の通り点火
時期をMBTに近く設定すればよいが、点火時期
をMBTに近づけ過ぎると過大なノツキングが発
生して機関を損傷することがある。しかしながら
機関及び車両の設計によつては上記回転数もしく
は軽負荷にある領域において点火時期を高回転数
もしくは重負荷にある領域の設定に比しMBTに
近づけて出力を向上させた設定が可能である。即
ち、低回転数もしくは軽負荷にある領域では機関
に発生する熱量(以下熱負荷と称する)、気筒内
圧力がそれほど高くないので、この状態において
軽微なノツキングが発生し熱負荷もしくは気筒内
圧力を若干上昇させても機関の損傷には至らな
い。
By the way, in order to improve the output, the ignition timing should be set close to the MBT as described above, but if the ignition timing is set too close to the MBT, excessive knocking may occur and damage the engine. However, depending on the design of the engine and vehicle, it is possible to set the ignition timing closer to MBT in the above rotation speed or light load range than in the high rotation speed or heavy load range to improve output. be. In other words, in a region where the engine speed is low or under light load, the amount of heat generated in the engine (hereinafter referred to as heat load) and the pressure in the cylinder are not so high, so slight knocking occurs in this state, reducing the heat load or the pressure in the cylinder. Even if it is raised slightly, it will not cause damage to the engine.

本発明は上記の点に注目してなされたもので、
機関が低回転数もしくは軽負荷にある領域では軽
微なノツキングの発生を許容することによつて機
関の出力を向上させると共に省熱費をも向上させ
た内燃機関の点火時期制御装置を提供することを
目的とするものである。
The present invention has been made with attention to the above points, and
To provide an ignition timing control device for an internal combustion engine, which improves the output of the engine and also improves the heat saving cost by allowing the occurrence of slight knocking in a region where the engine is at low rotational speed or under light load. The purpose is to

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について図について説明
する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第6図に示す実施例はノツク信号検出部の比較
基準である前記第1図に示したノイズレベル検出
器5の入力を機関回転数に応じて変えることによ
り、第5図に示した回転数N以下の過給特性の立
上り領域でのノツク検出が回転数N以上の領域よ
りも大きいノツク信号を検出するようにしたもの
である。
In the embodiment shown in FIG. 6, the rotation speed shown in FIG. 5 is obtained by changing the input of the noise level detector 5 shown in FIG. A knock signal is detected in a rising region of the supercharging characteristic of N or less than in a region of rotation speed N or more.

この第6図において、1〜12は第1図に示し
たのと同一あるいは相当分を示すので、詳しい説
明は省略する。20はアナログゲート3の出力と
ノイズレベル検出器5の入力間に接続される抵
抗、21はノイズレベル検出器5の入力とトラン
ジスタ22のコレクタ間に接続される抵抗、23
はゲートタイミング制御器4の出力から機関回転
数を検出する機関状態検出手段である回転検出器
で上記抵抗20,21及びトランジスタ22とと
もに遅角制御手段を構成しており、検出回転数は
Nである。
In FIG. 6, numerals 1 to 12 indicate the same or equivalent parts as shown in FIG. 1, so a detailed explanation will be omitted. 20 is a resistor connected between the output of the analog gate 3 and the input of the noise level detector 5; 21 is a resistor connected between the input of the noise level detector 5 and the collector of the transistor 22; 23;
A rotation detector is an engine state detection means for detecting the engine rotation speed from the output of the gate timing controller 4, and together with the resistors 20 and 21 and the transistor 22, it constitutes a retard control means, and the detected rotation speed is N. be.

回転検出器23はゲートタイミング制御器4の
出力をもとに機関回転数Nを検出し、トランジス
タ22を回転数N以下においてオフ、回転数N以
上においてオンとすべく駆動する。トランジスタ
22がオフの場合アナログゲート3の出力は抵抗
20を介して100%ノイズレベル検出器5に入力
される。一方、トランジスタ22がオンの場合ト
ランジスタ22のコレクタはアース電位となるの
で、このコレクタに接続される抵抗21の電極は
アース電位となり、アナログゲート3の出力は抵
抗20,21により分割されてノイズレベル検出
器5に入力される。従つて、ノイズレベル検出器
5の入力はアナログゲート3の出力との比率でい
えば回転数N以下では回転数N以上より大きくな
り、このノイズレベル検出器5の出力も同様のレ
ベル比となり回転数N以下では回転数N以上より
大きくなる。これを第4図dの波形でいえば回転
数N以下において同図dの特性イに対する同図d
の特性ロのレベルが大きくなることである。
The rotation detector 23 detects the engine rotation speed N based on the output of the gate timing controller 4, and drives the transistor 22 so as to be turned off when the rotation speed is below N and turned on when the rotation speed is above N. When the transistor 22 is off, the output of the analog gate 3 is input to the 100% noise level detector 5 via the resistor 20. On the other hand, when the transistor 22 is on, the collector of the transistor 22 is at ground potential, so the electrode of the resistor 21 connected to this collector is at ground potential, and the output of the analog gate 3 is divided by the resistors 20 and 21 to the noise level. It is input to the detector 5. Therefore, in terms of the ratio of the input of the noise level detector 5 to the output of the analog gate 3, when the number of revolutions is below N, it is larger than when the number of revolutions is above N. Below the number N, the rotational speed becomes larger than when the number of revolutions is N or more. In terms of the waveform shown in Fig. 4 d, the waveform d in Fig. 4 corresponds to the characteristic A shown in Fig.
The level of characteristic B increases.

比較器6はアナログゲート3の出力とノイズレ
ベル検出器5の出力とのレベル比較よりノツク信
号を検出するので、上述のように回転域によりア
ナログゲート3の出力に対するノイズレベル検出
器5の出力レベルが変わることにより、回転数N
以下で検出されるノツク信号は回転数N以上で検
出のノツク信号より大きいレベルのノツク信号と
なる。
Since the comparator 6 detects the knock signal by comparing the level between the output of the analog gate 3 and the output of the noise level detector 5, the output level of the noise level detector 5 with respect to the output of the analog gate 3 depends on the rotation range as described above. By changing, the rotation speed N
The knock signal detected below becomes a knock signal of a higher level than the detected knock signal when the rotation speed is N or more.

また、同一強度のノツキングであつても回転数
N以下でノツキングが発生した場合は、回転数N
以上でノツキングが発生した場合に比してノツキ
ングの強度が小さいものとして検出される。
In addition, even if the knocking is of the same intensity, if the knocking occurs at a rotational speed N or less, the rotational speed N
In the above manner, the knocking intensity is detected to be smaller than that in the case where knocking occurs.

以上の結果、回転数N以下で検出されるノツク
信号数、即ち比較器6の出力は軽微なノツク信号
の分だけ少なくなり、重度のノツク信号に対して
のみノツク検出パルスを出力するため積分器7の
出力は全体として小さくなり、移相器8での移相
量が小さくなつて点火時期の遅角量も少なくな
り、点火時期は進角側に設定されて機関出力は向
上する。このとき機関には軽微のノツキングが発
生しているが、熱負荷、また気筒内圧力が低いの
でこのノツキングにより機関が損傷することはな
い。なお、上記第6図ではノイズレベル検出器5
の入力を機関回転数に応じて変えることにより比
較器6の2種の入力比率を変えているが、ノイズ
レベル検出器5の出力を同様の方法で機関回転数
に応じて変えても同じであることは自明である。
As a result of the above, the number of knock signals detected below the rotation speed N, that is, the output of the comparator 6, decreases by the amount of minor knock signals, and the integrator outputs knock detection pulses only for severe knock signals. 7 becomes smaller as a whole, the amount of phase shift in the phase shifter 8 becomes smaller, the amount of retardation of the ignition timing also becomes smaller, the ignition timing is set to the advanced side, and the engine output increases. At this time, slight knocking occurs in the engine, but since the heat load and the cylinder pressure are low, this knocking will not damage the engine. In addition, in FIG. 6 above, the noise level detector 5
The two input ratios of the comparator 6 are changed by changing the input of the noise level detector 5 according to the engine speed, but the same result can be obtained by changing the output of the noise level detector 5 according to the engine speed in the same way. One thing is obvious.

第7図に示す実施例は、アナログゲート3から
比較器6に入力の信号伝達比を回転域に応じて変
えることにより、比較器6の他方の入力であるノ
イズレベル検出器5の出力とのレベル比を変え、
回転数N以下での遅角量を小さくするものであ
る。
In the embodiment shown in FIG. 7, by changing the signal transmission ratio of the input from the analog gate 3 to the comparator 6 according to the rotation range, the output of the noise level detector 5, which is the other input of the comparator 6, is Change the level ratio,
This is to reduce the amount of retardation at rotational speed N or less.

この第7図において、1〜12は前述の第1図
に示したものと同一あるいは相当部分であるので
説明を省略する。25はアナログゲート3の出力
と比較器6の入力間に接続される抵抗、26は抵
抗25と接続の比較器6の入力とトランジスタ2
7のコレクタ間に接続される抵抗、28はゲート
タイミング制御器4の出力から機関回転数を検出
する機関状態検出手段である回転検出器で上記抵
抗25,26及びトランジスタ27とともに遅角
制御手段を構成しており、検出回転数はNであ
る。
In FIG. 7, numerals 1 to 12 are the same or equivalent parts as shown in FIG. 1 described above, and therefore their explanation will be omitted. 25 is a resistor connected between the output of analog gate 3 and the input of comparator 6; 26 is a resistor 25 and the input of comparator 6 connected to transistor 2;
A resistor 28 is connected between the collectors of the gate timing controller 4, and a rotation detector is an engine state detecting means for detecting the engine speed from the output of the gate timing controller 4. The detected rotational speed is N.

回転検出器28はゲートタイミング制御器4の
出力をもとに機関回転数Nを検出し、トランジス
タ27を回転数N以下においてオン、回転数N以
上においてオフとすべく駆動する。トランジスタ
27がオンの場合アナログゲート3の出力は抵抗
25,26により分割されて比較器6に入力され
る。一方、トランジスタ27がオフの場合アナロ
グゲート3の出力は抵抗25を介して100%比較
器6に入力される。従つて、比較器6の入力はア
ナログゲート3の出力との比率でいえば回転数N
以下では回転数N以上より小さくなる。これを第
4図dの波形でいえば回転数N以下において同図
dの特性ロに対する同図dの特性イのレベルが小
さくなることである。
The rotation detector 28 detects the engine rotation speed N based on the output of the gate timing controller 4, and drives the transistor 27 to be turned on when the rotation speed is N or less and turned off when the rotation speed is N or more. When transistor 27 is on, the output of analog gate 3 is divided by resistors 25 and 26 and input to comparator 6. On the other hand, when the transistor 27 is off, the output of the analog gate 3 is input to the 100% comparator 6 via the resistor 25. Therefore, the input of the comparator 6 is the rotational speed N in terms of the ratio to the output of the analog gate 3.
Below, the rotational speed becomes smaller than N or more. In terms of the waveform in FIG. 4d, this means that the level of characteristic A in FIG. 4d becomes smaller with respect to characteristic B in FIG.

以上の結果、上記比較器6の入力と、この比較
器6の他方の入力であるノイズレベル検出器5の
出力とのレベル比は機関回転数により変わり、回
転数N以下では回転数N以上の場合に比し、より
大きなノツキング信号を検出するようになり、積
分器7の出力は全体として小さくなり、移相器8
での移相量も小さくなつて点火時期の遅角量は小
さくなる。
As a result of the above, the level ratio between the input of the comparator 6 and the output of the noise level detector 5, which is the other input of the comparator 6, changes depending on the engine speed. A larger knocking signal is detected than in the case where the output of the integrator 7 becomes smaller as a whole, and the
The amount of phase shift at is also reduced, and the amount of retardation of the ignition timing is also reduced.

以上、第6図および第7図に示したそれぞれの
実施例においては過給の立上り回転を検出して各
種パラメータを制御するようにしたが、これに限
らず機関の吸気管圧を検出し、その検出信号から
過給圧を求めて制限値であるかどうかを判定する
ことにより上記各種パラメータを制御しても同様
の制御が可能である。又、上記各実施例は過給器
付機関の場合について説明したが、過給機をもた
ない通常の機関についても適用でき、この場合負
荷領域を全負荷領域と部分負荷領域に分け、ある
いは機関回転数に応じて制御するようにすればよ
いことは前述と同様である。さらに上記実施例で
はアナログ機器をもつて構成した場合を述べた遅
角制御手段20〜23;25〜28をコンピユー
タを用いて構成し、その時々の機関の負荷あるい
は回転数に応じて制御をするようにすれば、上述
の実施例よりも更に細かい制御が可能となる。
As described above, in each of the embodiments shown in FIGS. 6 and 7, various parameters are controlled by detecting the startup rotation of supercharging, but the invention is not limited to this. Similar control is also possible by controlling the various parameters described above by determining the boost pressure from the detection signal and determining whether it is at the limit value. In addition, although each of the above embodiments has been explained in the case of a supercharged engine, it can also be applied to a normal engine without a supercharger, in which case the load range is divided into a full load range and a partial load range, or As described above, the control may be performed in accordance with the engine speed. Further, in the above embodiment, the retard control means 20 to 23; 25 to 28, which are constructed using analog equipment, are constructed using a computer, and are controlled according to the load or rotational speed of the engine at the time. By doing so, more fine control than in the above-mentioned embodiment becomes possible.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、機関の取付け
た加速度センサの出力からノツキングの発生に伴
ない生じるノツク信号成分を選択出力し、この選
択出力信号と、これを基に作つた比較基準電圧信
号との電圧比較からノツク信号を検出し、このノ
ツク信号を積分して遅角制御電圧を発生し、点火
時期を遅角制御してノツキングを抑制する点火時
期制御装置において、比較基準電圧信号、あるい
はこれと比較される選択出力信号を負荷あるいは
回転数に応じて制御するようにしたことにより部
分負荷領域の出力を向上させることができ、特に
高出力である過給機付機関の過給圧立上り領域で
は出力向上により加速時の過給機の応答遅れを改
善でき、優れた加速性にすべく出力の向上が得ら
れるという優れた効果が得られるものである。
As described above, according to the present invention, the knock signal component that occurs when knocking occurs is selectively outputted from the output of the acceleration sensor attached to the engine, and the selected output signal and the comparison reference voltage created based on this selected output signal are used. In an ignition timing control device that detects a knock signal from a voltage comparison with a signal, integrates this knock signal to generate a retard control voltage, and retards the ignition timing to suppress knocking, a comparison reference voltage signal, Alternatively, by controlling the selected output signal compared with this according to the load or rotation speed, the output in the partial load region can be improved, and the supercharging pressure of a supercharged engine with particularly high output can be improved. In the start-up region, the response delay of the supercharger during acceleration can be improved by improving the output, and an excellent effect can be obtained in that the output can be improved for excellent acceleration performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の内燃機関の点火時期制御装置の
構成図、第2図は加速度センサからの出力信号の
波形図、第3図は機関にノツキングがない時の第
1図装置の各部信号の波形図、第4図は機関にノ
ツキングがある時の第1図装置の各部信号の波形
図、第5図は過給機の機関回転数・過給圧特性
図、第6図および第7図は本発明の実施例による
内燃機関の点火時期制御装置の構成図である。 図中、1は加速度センサ、2は周波数フイル
タ、3はアナログゲート、4はゲートタイミング
制御器、5はノイズレベル検出器、6は比較器、
7は積分器、8は移相器、9は回転信号発生器、
10は波形整形回路、11はスイツチング回路、
12は点火コイル、20,21,25,26は抵
抗、22,27はトランジスタ、23,28は回
転検出器を示す。なお、図中同一符号は同一部分
である。
Figure 1 is a configuration diagram of a conventional ignition timing control device for an internal combustion engine, Figure 2 is a waveform diagram of an output signal from an acceleration sensor, and Figure 3 is a diagram of the signals of each part of the device in Figure 1 when there is no knocking in the engine. Waveform diagram, Figure 4 is a waveform diagram of various signals of the equipment shown in Figure 1 when the engine is knocking, Figure 5 is a graph of the engine speed and supercharging pressure characteristics of the turbocharger, Figures 6 and 7. 1 is a configuration diagram of an ignition timing control device for an internal combustion engine according to an embodiment of the present invention. In the figure, 1 is an acceleration sensor, 2 is a frequency filter, 3 is an analog gate, 4 is a gate timing controller, 5 is a noise level detector, 6 is a comparator,
7 is an integrator, 8 is a phase shifter, 9 is a rotation signal generator,
10 is a waveform shaping circuit, 11 is a switching circuit,
12 is an ignition coil; 20, 21, 25, and 26 are resistors; 22, 27 are transistors; and 23, 28 are rotation detectors. Note that the same reference numerals in the drawings indicate the same parts.

Claims (1)

【特許請求の範囲】 1 内燃機関の振動加速度を検出する加速度セン
サ1と、 この加速度センサの出力に基づいてノツキング
を検出するノツキング検出手段2,3と、 ノツキング判定のための基準レベルロを設定す
る基準レベル設定手段5と、 このノツキング検出手段の検出値を基準レベル
と比較して点火時期の遅角量を設定する遅角量設
定手段6,7と、 この遅角量設定手段の出力に応じて基準点火時
期を遅角制御する点火時期制御手段8,11とを
備えた内燃機関の点火時期制御装置において、 内燃機関の回転数又は負荷が所定値以下である
ことを検出する機関状態検出手段23;28と、 上記機関状態検出手段の出力により、上記基準
レベルを高くするか、又は上記検出値のレベルを
低くする遅角制御手段20〜23;25〜28と
を備え、 内燃機関の回転数又は負荷が所定値以下である
とき、この遅角制御手段により上記遅角量設定手
段において遅角量を小さくすることを特徴とする
内燃機関の点火時期制御装置。 2 上記内燃機関が過給機付内燃機関であつて、
上記機関状態検出手段により検出した回転数の所
定値は過給圧が所定の制御値Pに達するまでの立
上がり領域の上限Nに設定したことを特徴とする
特許請求の範囲第1項記載の内燃機関の点火時期
制御装置。
[Scope of Claims] 1. An acceleration sensor 1 for detecting vibration acceleration of an internal combustion engine; knocking detection means 2 and 3 for detecting knocking based on the output of the acceleration sensor; and setting a reference level low for knocking determination. a reference level setting means 5; a retardation amount setting means 6, 7 for setting an ignition timing retardation amount by comparing the detection value of the knocking detection means with a reference level; In the ignition timing control device for an internal combustion engine, the ignition timing control device includes ignition timing control means 8 and 11 for retarding the reference ignition timing based on the engine state detection means for detecting that the rotation speed or load of the internal combustion engine is below a predetermined value. 23; 28; and retard control means 20-23; 25-28 for increasing the reference level or lowering the level of the detected value according to the output of the engine state detecting means, the rotation of the internal combustion engine An ignition timing control device for an internal combustion engine, characterized in that when the number or load is below a predetermined value, the retard control means reduces the retard amount in the retard amount setting means. 2 The above internal combustion engine is a supercharged internal combustion engine,
The internal combustion engine according to claim 1, wherein the predetermined value of the rotational speed detected by the engine state detection means is set to the upper limit N of a rising region until the boost pressure reaches a predetermined control value P. Engine ignition timing control device.
JP58171469A 1983-09-16 1983-09-16 Ignition-timing controller for internal-combustion engine Granted JPS6062664A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58171469A JPS6062664A (en) 1983-09-16 1983-09-16 Ignition-timing controller for internal-combustion engine
US06/647,652 US4607602A (en) 1983-09-16 1984-09-06 Ignition timing control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58171469A JPS6062664A (en) 1983-09-16 1983-09-16 Ignition-timing controller for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS6062664A JPS6062664A (en) 1985-04-10
JPH0510507B2 true JPH0510507B2 (en) 1993-02-09

Family

ID=15923682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58171469A Granted JPS6062664A (en) 1983-09-16 1983-09-16 Ignition-timing controller for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6062664A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459529A (en) * 1977-10-20 1979-05-14 Nippon Denso Co Ltd Ignition timing controller for engine
JPS5623566A (en) * 1979-08-01 1981-03-05 Nippon Denso Co Ltd Method of controlling ignition time
JPS5636305A (en) * 1979-08-31 1981-04-09 Kawasaki Steel Corp Oil film bearing for rolling roll
JPS56115860A (en) * 1980-02-18 1981-09-11 Nissan Motor Co Ltd Knocking controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459529A (en) * 1977-10-20 1979-05-14 Nippon Denso Co Ltd Ignition timing controller for engine
JPS5623566A (en) * 1979-08-01 1981-03-05 Nippon Denso Co Ltd Method of controlling ignition time
JPS5636305A (en) * 1979-08-31 1981-04-09 Kawasaki Steel Corp Oil film bearing for rolling roll
JPS56115860A (en) * 1980-02-18 1981-09-11 Nissan Motor Co Ltd Knocking controller

Also Published As

Publication number Publication date
JPS6062664A (en) 1985-04-10

Similar Documents

Publication Publication Date Title
US4382429A (en) Spark timing system for spark ignition internal combustion engine
JPH0637867B2 (en) Knocking prevention device for internal combustion engine
JPS58122364A (en) Knocking control device
US4380981A (en) Knocking control system for use with spark ignition internal combustion engine
US4440129A (en) Ignition timing control system for internal combustion engine
US4607602A (en) Ignition timing control apparatus for internal combustion engine
US4606316A (en) Ignition timing control system for internal combustion engine
JPS6044510B2 (en) Engine ignition timing control device
JPS6093178A (en) Ignition timing controller of internal-combustion engine
US4523567A (en) Ignition timing control system for internal-combustion engine
JPH0510507B2 (en)
US4530328A (en) Ignition timing controller for internal combustion engine
JPS6122141B2 (en)
JPS6252143B2 (en)
JPS632029B2 (en)
JPS6020584B2 (en) Internal combustion engine ignition timing control device
JPS6098170A (en) Ignition timing control device in internal-combustion engine
JPH0510508B2 (en)
JPH0248703Y2 (en)
JPS601271Y2 (en) Knocking control device
JPS633557B2 (en)
JPH0361030B2 (en)
JPS6048629B2 (en) Engine ignition timing control device
JPS61261671A (en) Control device for ignition timing in internal combustion engine
JPS58210369A (en) Ignition timing control device in internal-combustion engine