JPH05103938A - Separation of mixture gas by pressure-temperature swing adsorption method - Google Patents

Separation of mixture gas by pressure-temperature swing adsorption method

Info

Publication number
JPH05103938A
JPH05103938A JP3263645A JP26364591A JPH05103938A JP H05103938 A JPH05103938 A JP H05103938A JP 3263645 A JP3263645 A JP 3263645A JP 26364591 A JP26364591 A JP 26364591A JP H05103938 A JPH05103938 A JP H05103938A
Authority
JP
Japan
Prior art keywords
gas
adsorption tower
adsorption
temperature
countercurrent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3263645A
Other languages
Japanese (ja)
Other versions
JP3029895B2 (en
Inventor
Jun Izumi
順 泉
Akinori Yasutake
昭典 安武
Senichi Tsubakisaki
仙市 椿崎
Kazuaki Oshima
一晃 大嶋
Hiroshi Nohara
博 野原
Yasuyoshi Ishizaki
安良 石崎
Kiichiro Ogawa
紀一郎 小川
Kazumi Takeda
和三 武田
Hideo Nawata
秀夫 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3263645A priority Critical patent/JP3029895B2/en
Publication of JPH05103938A publication Critical patent/JPH05103938A/en
Application granted granted Critical
Publication of JP3029895B2 publication Critical patent/JP3029895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To recover an easily adsorptive component in high yield by providing a mixture gas temp. rising cocurrent purge process following an adsorption process, facilitating temp. rising and desorption from the front to the rear of adsorption tower, and desorbing from the adsorvent in the subsequent high-temp. evacuated recovery process and cocurrent purge process. CONSTITUTION:After the pressure of mixture gas is elevated by a blower 2, the gas is introduces into an adsorber 4a packed with activated alumina, etc., to recover from a passage 7. Into an adsorption tower 4b which has completed the adsorption process, a part of cleaned air, etc., flowing out from the passage 7 is heated and introduced. After that, circulation is made with a valve 12a and a valve 12b being respectively open and closed to elevate the temp. of the tower 4b by the temp.-up circulating gas. After an adsorption tower 4c which has completed the temp. rising cocurrent purge process is communicated with a vacuum pump 15, a valve 17c is opened to make a part of the cleaned air to flow countercurrently, and the adsorbent is regenerated. In the next adsorption tower 4d, a part of gas from the evacuated cocurrent purge process is heat-exchanged and cooled, thereby flowed to countercurrent. Thus, mixture gas is separated with good heat efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧力温度スィング吸着
法(以下、PTSA法という)による混合ガスの分離方
法に関し、例えば、SOX /空気、NOX /空気、H2
S/空気、揮発性有機溶媒/空気などの比較的低濃度成
分を分離するのに適した混合ガスの方法に関する。
BACKGROUND OF THE INVENTION This invention is a pressure temperature swing adsorption method (hereinafter, referred to as PTSA method) relates to a process for separating a gas mixture by, for example, SO X / air, NO X / air, H 2
The present invention relates to a mixed gas method suitable for separating relatively low-concentration components such as S / air and volatile organic solvent / air.

【0002】[0002]

【従来の技術】図4は、従来のPTSA法を代表的する
脱湿装置のフローシートである。活性アルミナ27等を
充填した吸着塔28a,28bを用意し、吸着工程にあ
る吸着塔28aのバルブ26a,29aを開放し、温度
35℃相対湿度80%(4.4vol%)の入口空気1
を圧縮機2で4atmまで加圧し、アフタークーラー2
4で35℃に冷却して流路25、バルブ26aを経て吸
着塔28aに導入して水分を吸着分離し、露点−50℃
以下の超乾燥空気をバルブ29a、流路7を経て回収す
る。(吸着工程) 水分吸着帯が出口近くまで移動し、吸着工程を終了した
吸着塔28bはバルブ30bを開放し、流路14を介し
て真空ポンプ15で吸引して減圧し一部の水分を脱離す
る。(ダンプ脱着工程)
2. Description of the Related Art FIG. 4 is a flow sheet of a dehumidifying device that is typical of the conventional PTSA method. Adsorption towers 28a and 28b filled with activated alumina 27 and the like are prepared, valves 26a and 29a of the adsorption tower 28a in the adsorption step are opened, and an inlet air 1 at a temperature of 35 ° C. and a relative humidity of 80% (4.4 vol%) is used.
Compressor 2 to 4 atm and after cooler 2
4, cooled to 35 ° C., introduced into the adsorption tower 28a via the flow path 25 and the valve 26a to adsorb and separate water, and dew point −50 ° C.
The following ultra dry air is collected through the valve 29a and the flow path 7. (Adsorption step) The adsorption column 28b which has moved to the vicinity of the outlet and has completed the adsorption step opens the valve 30b and suctions with the vacuum pump 15 through the flow path 14 to reduce the pressure to remove a part of the moisture. Let go. (Dump desorption process)

【0003】これに続いて、吸着工程で流路7から回収
される乾燥空気の一部を流路31、減圧弁32,バルブ
34bを介して吸着塔28bに向流で流し、大気圧でパ
ージする。(向流パージ再生工程) その後、バルブ30bを閉じ、バルブ29bを開放し、
乾燥空気を吸着塔28bに導入して4atmまで昇圧し
て吸着工程への移行の準備を完了する。(向流昇圧工
程) 被処理ガスである空気の供給、乾燥空気の回収を連続的
に行うため、図5のシーケンスを採用した。
Subsequently, a part of the dry air recovered from the flow path 7 in the adsorption step is caused to flow countercurrently to the adsorption tower 28b through the flow path 31, the pressure reducing valve 32 and the valve 34b, and purged at atmospheric pressure. To do. (Countercurrent purge regeneration step) After that, the valve 30b is closed and the valve 29b is opened,
Dry air is introduced into the adsorption tower 28b, the pressure is increased to 4 atm, and the preparation for shifting to the adsorption step is completed. (Countercurrent boosting step) The sequence of FIG. 5 was adopted in order to continuously supply the air to be treated and the dry air.

【0004】上記の向流パージ再生工程のパージガス量
Gp(Nm3 /サイクル)と、入口ガス量Go(Nm3
/サイクル)、吸着圧力Pa(atm)、再生圧力Pd
(atm)との間には、圧力スィング吸着法(以下、P
SA法という)の提唱者Skarstromにより、次
の半経験式が導出されている。 Gp≧Go(Pd/Pa) 通常、理論値の20%増でパージすると再生は完了する
といわれているが、吸着時に発生する吸着熱Qaの一部
が乾燥空気とともに流路7から系外に放出されるために
熱損失ΔQaが生じ、再生時に吸着塔内温度がΔQaに
相当する分だけ降下する。即ち、再生時のパージガスが
その分だけ多量に必要となる。この現象は、上記の向流
パージ再生工程においても存在する。このため、流路3
1にヒータ33を設けて、ΔQaに見合う熱損失分を補
充するのが、温度スイィング吸着法の基本構成である。
The purge gas amount Gp (Nm 3 / cycle) and the inlet gas amount Go (Nm 3 ) in the above countercurrent purge regeneration process.
/ Cycle), adsorption pressure Pa (atm), regeneration pressure Pd
(Atm), pressure swing adsorption method (hereinafter, P
The following semi-empirical formula has been derived by Skarstrom, a proponent of the SA method). Gp ≧ Go (Pd / Pa) Normally, it is said that regeneration is completed by purging with 20% increase of the theoretical value, but part of the adsorption heat Qa generated during adsorption is released from the flow path 7 out of the system along with dry air. As a result, heat loss ΔQa occurs, and the temperature in the adsorption tower drops during regeneration by an amount corresponding to ΔQa. That is, a large amount of purge gas is required for regeneration. This phenomenon also exists in the above countercurrent purge regeneration process. Therefore, the flow path 3
The basic configuration of the temperature-swing adsorption method is to provide the heater 33 in 1 to supplement the heat loss corresponding to ΔQa.

【0005】[0005]

【発明が解決しようとする問題点】本発明者等は、上記
のPTSA法の熱損失機構を詳細に検討したところ、吸
着塔前方部の吸着熱が後方部に移動し、前方部が設定温
度より低く、後方部の温度が設定温度より高い形で現
れ、ヒータ33の熱補充が後方部の温度をさらに高く押
し上げることとなり、吸着工程における吸着量の減少を
来し、分離性能の低下につながる。そこで、吸着塔の前
方部をも昇温しようとすると、後方部から熱破過帯を移
動させる必要があり、かなりの熱量を要する。そして、
吸着工程に移る前に吸着塔から熱除去を行わないと、P
TSA法のサイクルを構成することができない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The inventors of the present invention have studied in detail the heat loss mechanism of the PTSA method. As a result, the heat of adsorption in the front part of the adsorption tower moves to the rear part and The temperature of the lower part appears higher than the set temperature, and the heat replenishment of the heater 33 pushes the temperature of the rear part to a higher level, resulting in a decrease in the adsorption amount in the adsorption process and a decrease in the separation performance. .. Therefore, if it is attempted to raise the temperature in the front part of the adsorption tower as well, it is necessary to move the thermal breakthrough zone from the rear part, which requires a considerable amount of heat. And
If heat is not removed from the adsorption tower before moving to the adsorption step, P
The cycle of the TSA method cannot be constructed.

【0006】他方、向流パージ再生工程のパージガス量
Gpは、吸着塔内の熱損失と無関係な量であり、ΔQa
に対応した補充は難しい。一見、ΔQa=Gp・Cp・
ΔT(Cpは比熱、ΔTはヒータと吸着塔の温度差)に
おけるΔTを調節すれば良いように思われるが、吸着塔
内の熱破過帯は非常に勾配が急なため、吸着塔後方部の
み温度を上昇させ、前方部までその熱が届かない結果と
なる。したがって、向流パージ再生工程の再生効率が、
ほとんど期待することができず、吸着剤の化学吸着量を
活用することができないという問題があった。
On the other hand, the purge gas amount Gp in the countercurrent purge regeneration step is an amount irrelevant to the heat loss in the adsorption tower, and ΔQa
It is difficult to replenish in accordance with. At first glance, ΔQa = Gp · Cp ·
It seems that ΔT in ΔT (Cp is the specific heat, ΔT is the temperature difference between the heater and the adsorption tower) may be adjusted, but the thermal breakthrough zone in the adsorption tower has a very steep gradient, so the rear part of the adsorption tower Only raising the temperature will result in the heat not reaching the front. Therefore, the regeneration efficiency of the countercurrent purge regeneration process is
There was a problem that the amount of chemisorption of the adsorbent could not be utilized because it could hardly be expected.

【0007】そこで、本発明は、上記の欠点を解消し、
吸着剤の化学吸着量を有効に活用し、かつ、系内の熱回
収を可能にしたPTSA法による混合ガスの分離方法を
提供しようとするものである。
Therefore, the present invention solves the above drawbacks,
An object of the present invention is to provide a method for separating a mixed gas by the PTSA method, which makes effective use of the chemisorption amount of the adsorbent and enables heat recovery in the system.

【0008】[0008]

【問題点を解決するための手段】本発明は、吸着塔に混
合ガスを相対的に低温、高圧で供給して難吸着性ガスを
吸着塔の後方部より回収する吸着工程と、吸着工程終了
後の吸着塔に上記難吸着性ガスの一部を加熱して並流に
導入し、吸着塔の前方部から逐次昇温してパージし、か
つ、該吸着塔を流過するガスを上記昇温並流ガスとして
循環する昇温並流パージ工程と、昇温並流パージ工程終
了後の吸着塔の前方部から減圧して高温低圧状態で易吸
着性ガスを回収する高温減圧回収工程と、高温減圧回収
工程終了後の吸着塔の後方部から吸着工程で回収する難
吸着性ガスを導入して易吸着性ガスをパージする向流パ
ージ工程と、向流パージ工程終了後の吸着塔の後方部か
ら混合ガスの一部を冷却して導入し、かつ、該吸着塔を
流過するガスを上記向流冷却ガスとして循環する向流冷
却工程とを有し、上記昇温並流パージ工程の循環ガスと
上記向流冷却工程の循環ガスを熱交換することを特徴と
する圧力温度スィング吸着法による混合ガスの分離方法
である。
The present invention is directed to an adsorption step of supplying a mixed gas to an adsorption tower at a relatively low temperature and a high pressure to recover a hardly adsorbed gas from the rear part of the adsorption tower, and an adsorption step. A part of the above-mentioned difficult-to-adsorb gas is heated in a subsequent adsorption tower and introduced in parallel flow, the temperature is sequentially raised from the front part of the adsorption tower to purge, and the gas flowing through the adsorption tower is raised to the above-mentioned temperature. A temperature-raising co-current purge step of circulating as a hot co-current gas, and a high-temperature decompression recovery step of decompressing from the front part of the adsorption tower after completion of the temperature co-current purging step to recover the easily adsorbable gas in a high-temperature low-pressure state, After the high-temperature decompression recovery process is completed, the countercurrent purging process for purging the easily adsorbed gas by introducing the difficult-to-adsorb gas from the rear part of the adsorption tower after the end of the adsorption tower after the countercurrent purging process is completed. Part of the mixed gas is cooled and introduced, and the gas flowing through the adsorption tower is A counter-current cooling step of circulating as a counter-current cooling gas, and a pressure-temperature swing adsorption method characterized in that heat is exchanged between the circulation gas of the temperature rising co-current purging step and the circulation gas of the counter-current cooling step. This is a method of separating a mixed gas.

【0009】[0009]

【作用】吸着工程の終了時における易吸着性成分の分布
は、吸着塔前方部で大きく、後方部では非常に小さい。
そして、吸着剤は、吸着圧力が小さく、温度が高いほど
吸着量が小さいので、吸着塔前方部から昇温すると、前
方部に熱破過帯が形成されて後方に移動する。これに対
応して、易吸着性成分も吸着帯を形成して移動する。こ
のとき移動するガス量は、物理吸着量と化学吸着量の合
計に相当する。
The distribution of the easily adsorbable component at the end of the adsorption step is large in the front part of the adsorption tower and very small in the rear part.
Since the adsorbent has a smaller adsorption pressure and a higher temperature, the smaller the adsorption amount. Therefore, when the temperature rises from the front part of the adsorption tower, a thermal breakthrough zone is formed in the front part and moves backward. Correspondingly, the easily adsorbable component also moves by forming an adsorption zone. The amount of gas transferred at this time corresponds to the sum of the physical adsorption amount and the chemical adsorption amount.

【0010】そこで、本発明では、吸着工程に続いて混
合ガスの昇温並流パージ工程を採用することにより、吸
着塔の前方部から後方部にかけて昇温して脱着が容易な
条件にし、その後の高温減圧回収工程及び向流パージ工
程において、吸着剤に物理吸着及び化学吸着している易
吸着性成分を脱離して回収することにより、易吸着性成
分の回収する率を飛躍的に向上させることに成功した。
Therefore, in the present invention, the adsorbing step is followed by a temperature-increasing parallel-current purging step of the mixed gas to raise the temperature from the front part to the rear part of the adsorption tower to make the desorption easy. In the high temperature reduced pressure recovery step and the countercurrent purging step, by desorbing and recovering the easily adsorbable component physically and chemically adsorbed by the adsorbent, the recovery rate of the easily adsorbable component is dramatically improved. Was successful.

【0011】因みに、CO2 のように中程度の吸着性を
有するガスで、物理吸着量/化学吸着量=1/3程度で
あり、H2 O,SO2,H2 S,NO2 ,NH3 などの
強吸着性ガスでは物理吸着量/化学吸着量=1/10に
もなる。したがって、本発明は、物理吸着量のみを利用
するPSA法に比較して、回収されるガス量は上記のガ
スで約4〜11倍に達する。また、昇温並流パージ工程
を採用していない上記従来のPTSA法と比較しても相
当な改善が見込まれる。
By the way, a gas having a moderate adsorptivity, such as CO 2 , has a physical adsorption amount / a chemical adsorption amount of about 1/3, and H 2 O, SO 2 , H 2 S, NO 2 and NH With strongly adsorptive gases such as 3 , the physical adsorption amount / chemical adsorption amount = 1/10. Therefore, according to the present invention, the amount of recovered gas reaches about 4 to 11 times that of the above gas as compared with the PSA method using only the physical adsorption amount. Further, a considerable improvement can be expected even when compared with the above-mentioned conventional PTSA method which does not employ the temperature rising co-current purging process.

【0012】また、向流パージ工程に必要な難吸着性成
分ガス量Gpは、本発明によれば吸着塔の昇温条件にも
よるが、Skarstrom則で示されるGp=Go
(Pd/Pa)の10〜50%に節約され、難吸着性成
分ガスの回収率を向上させ、易吸着性成分ガスの回収濃
度を向上させる。さらに、昇温並流パージ工程の循環ガ
スと向流冷却工程の循環ガスを熱交換することにより、
系内の熱効率を向上させることができる。
According to the present invention, the amount Gp of the hardly adsorbed component gas required for the countercurrent purging step depends on the temperature rising condition of the adsorption tower, but is represented by the Skarstrom law as Gp = Go.
It is saved to 10 to 50% of (Pd / Pa), the recovery rate of the hardly adsorbed component gas is improved, and the recovery concentration of the easily adsorbed component gas is improved. Furthermore, by exchanging heat between the circulating gas in the temperature rising parallel flow purging step and the circulating gas in the countercurrent cooling step,
The thermal efficiency in the system can be improved.

【0013】[0013]

【実施例】【Example】

(実施例1)図1に記載のPTSA装置を用いて、SO
2 /空気系(SO2 1vol%,空気99vol%)の
混合ガスからSO2 を回収した。4つの吸着塔4には、
それぞれ250kgの活性アルミナ5が充填され、吸着
工程にある吸着塔4aのバルブ3a及び6aを開放し、
上記混合ガス1をブロア2で1.05atmに昇圧し、
バルブ3aを経て50℃に設定された吸着塔4aに導入
し、バルブ6a、流路7を経て50ppm以下のSO2
濃度の空気を回収した。そして、SO2 吸着帯が吸着塔
4aの後方部に移動した段階で吸着工程を終了した。
(Example 1) Using the PTSA device shown in FIG.
SO 2 was recovered from a mixed gas of 2 / air system (SO 2 1 vol%, air 99 vol%). In the four adsorption towers 4,
Each of them is filled with 250 kg of activated alumina 5, and the valves 3a and 6a of the adsorption tower 4a in the adsorption step are opened,
The pressure of the mixed gas 1 was increased to 1.05 atm by the blower 2,
It is introduced into the adsorption tower 4a set at 50 ° C. through the valve 3a, and 50 ppm or less of SO 2 is passed through the valve 6a and the flow path 7.
A concentration of air was collected. Then, the adsorption process was terminated when the SO 2 adsorption zone moved to the rear part of the adsorption tower 4a.

【0014】吸着工程を終了した吸着塔4bには、バル
ブ12a、ブースター8、熱交換器23、ヒータ9、流
路10及びバルブ11bを介し、流路7から流出する浄
化空気の一部を100℃又は150℃に加熱して導入
し、その後は、バルブ12aを閉じてバルブ12bを開
放して循環閉鎖系を形成し、昇温循環ガスにより吸着塔
4bの後方部まで昇温した。
In the adsorption tower 4b which has completed the adsorption process, 100 parts of the purified air flowing out from the flow passage 7 is passed through the valve 12a, the booster 8, the heat exchanger 23, the heater 9, the flow passage 10 and the valve 11b. Then, the valve 12a was closed and the valve 12b was opened to form a circulation closed system, and the temperature was increased to the rear part of the adsorption tower 4b by the temperature-increasing circulation gas.

【0015】昇温並流パージ工程を終了した吸着塔4c
は、バルブ13cを開放して流路14を介して真空ポン
プ15に連通し、再生圧力である0.05atmの高真
空まで吸引した後、バルブ17cを開放することによ
り、吸着塔4aから流路7に流出する浄化空気の一部
を、流路7、減圧バルブ16を介して吸着塔4cに向流
に流し、吸着剤を再生した。その後、バルブ13cを閉
じて吸着塔4cを昇圧した。
Adsorption tower 4c which has finished the temperature rising parallel flow purging step
Is opened from the adsorption tower 4a by opening the valve 13c and communicating with the vacuum pump 15 via the flow path 14 to suck up to a high vacuum of 0.05 atm which is the regeneration pressure, and then opening the valve 17c. A part of the purified air flowing out to 7 was caused to flow countercurrently to the adsorption tower 4c via the flow path 7 and the pressure reducing valve 16 to regenerate the adsorbent. Then, the valve 13c was closed and the adsorption tower 4c was pressurized.

【0016】減圧向流パージ昇圧工程を終了した吸着塔
4dは、初めにバルブ22cを開放し、減圧向流パージ
昇圧工程からのガスの一部を、ブースター19で熱交換
器23、クーラ18、流路20、バルブ21dを介して
吸着塔4dに向流に流し、次いで、バルブ22cを閉じ
てバルブ22dを開放して循環系を形成し、冷却循環ガ
スで吸着塔4dを向流冷却した。向流冷却工程を終了す
ると、吸着工程に戻された。熱交換器23では、昇温並
流パージ工程の循環ガスと向流冷却工程の循環ガスとの
間で熱交換して熱回収を行った。上記のSO2 /空気系
混合ガスから濃縮SO2 を連続的に回収するためのシー
ケンスを図2に示し、昇温並流パージ工程の各再生温度
に対する、各ステップの所要時間(秒)を図3に示し
た。
In the adsorption tower 4d which has completed the pressure reducing countercurrent purge pressure increasing step, the valve 22c is first opened, and a part of the gas from the pressure reducing countercurrent purge pressure increasing step is boosted by the heat exchanger 23, the cooler 18, and the booster 19. The adsorption tower 4d was allowed to flow countercurrently through the flow path 20 and the valve 21d, then the valve 22c was closed and the valve 22d was opened to form a circulation system, and the adsorption tower 4d was countercurrently cooled with the cooling circulation gas. When the countercurrent cooling process was completed, the process was returned to the adsorption process. In the heat exchanger 23, heat was recovered by exchanging heat between the circulating gas in the temperature rising parallel flow purging step and the circulating gas in the countercurrent cooling step. A sequence for continuously recovering concentrated SO 2 from the SO 2 / air mixed gas is shown in FIG. 2, and the time required for each step (second) for each regeneration temperature in the temperature-rising cocurrent purge process is shown. Shown in 3.

【0017】表1は、吸着工程の吸着塔から流出するガ
ス中のSO2 濃度を50ppmまで減少させるための再
生温度50℃、100℃、並びに、150℃と、サイ
クルタイム(分)、1時間平均の原料空気のガス量
(Nm3 /h)、1塔1サイクルにおける処理ガス量
(Nm3 /h)、向流パージ率(%)(Skarst
rom則から求める向流パージ量Gp=Go(Pd/P
a)と実際に向流パージに使用したパージ量Gp’の比
を次式のとおりパージ率Rとした。〔R=Gp’/Gp
=(Gp’Pa/GoPd)〕、原料空気ガス量10
00Nm3 /h当たりのブロワ及びブースターの消費電
力の合計(KW)、原料空気ガス量1000Nm3
h当たりの真空ポンプの消費電力(KW)、原料空気
ガス量1000Nm3 /h当たりのヒータ及びクーラに
必要な熱量(kcal/h)、回収SO2 濃度(vo
l%)の関係を示した。なお、従来のPTSA法では、
向流パージによる昇温ガス量が少ないために実施するこ
とができないので、50℃で吸着、50℃で再生を行っ
たPSA法の例を参考のために併記した。
Table 1 shows regeneration temperatures of 50 ° C., 100 ° C., and 150 ° C. for reducing the SO 2 concentration in the gas flowing out of the adsorption tower in the adsorption step to 50 ppm, and a cycle time (minute) of 1 hour. Average amount of raw air gas (Nm 3 / h), amount of treated gas in one cycle of one column (Nm 3 / h), countercurrent purge rate (%) (Skarst
Countercurrent purge amount Gp = Go (Pd / P
The ratio of a) to the purge amount Gp ′ actually used for countercurrent purging was defined as the purge rate R according to the following equation. [R = Gp '/ Gp
= (Gp'Pa / GoPd)], raw air gas amount 10
Nm 3 / blower and power sum of the booster per h (KW), the feed air gas amount 1000 Nm 3 /
Power consumption of vacuum pump per h (KW), amount of heat required for heater and cooler per 1000 Nm 3 / h of raw air gas (kcal / h), concentration of recovered SO 2 (vo
1%). In the conventional PTSA method,
Since it cannot be carried out due to the small amount of gas heated by countercurrent purging, an example of the PSA method in which adsorption was carried out at 50 ° C. and regeneration was carried out at 50 ° C. was also shown for reference.

【0018】表1から明らかなように、再生温度の上昇
により処理ガス量が増大し、向流パージ率の低減による
真空ポンプの消費電力を低下させることができ、回収S
2 濃度を向上させることができた。したがって、再生
温度が高いほど効率が良いが、100℃を上回ると熱エ
ネルギーの費用が上昇するので、隣接プラントを含めた
熱管理が必要となる。
As is clear from Table 1, the amount of processing gas increases due to the rise in the regeneration temperature, and the power consumption of the vacuum pump can be reduced due to the reduction in the countercurrent purge ratio.
It was possible to improve the O 2 concentration. Therefore, the higher the regeneration temperature is, the higher the efficiency is, but if the temperature exceeds 100 ° C., the cost of heat energy increases, so that heat management including the adjacent plant is required.

【0019】[0019]

【表1】 [Table 1]

【0020】(実施例2)図1のPTSA装置及び図3
のシーケンスを用いて、塩化メチレン/空気系(塩化メ
チレン:1000ppm)の混合ガスから塩化メチレン
を回収した。実施例1の操作条件との相違は、吸着温度
が25℃、再生温度が25℃、75℃、並びに、125
℃である点を除いて実施例1と同じ条件で実施した。表
2は、表1と同様に、実験結果を示したもので、吸着工
程の吸着塔から流出するガス中の塩化メチレン濃度を5
0ppmまで減少させるための再生温度と操作条件との
関係を示した。なお、実施例1と比較して吸着剤単位量
当たりの処理ガス量が3倍のため、一定ガス量当たりの
吸着剤量は1/3となる。このため吸着剤の昇温に必要
な熱量もほぼ1/3となる。このように、本発明のPT
SA法は、吸着量の大きなガスで、低濃度で大容量処理
に適した方法であることが分かる。
(Embodiment 2) PTSA device of FIG. 1 and FIG.
Was used to recover methylene chloride from a mixed gas of the methylene chloride / air system (methylene chloride: 1000 ppm). The difference from the operating conditions of Example 1 is that the adsorption temperature is 25 ° C, the regeneration temperature is 25 ° C, 75 ° C, and 125 ° C.
It carried out on the same conditions as Example 1 except the point of being ° C. Similar to Table 1, Table 2 shows the experimental results, in which the concentration of methylene chloride in the gas flowing out from the adsorption tower in the adsorption step was 5%.
The relationship between the regeneration temperature and the operating conditions for reducing to 0 ppm is shown. Since the amount of processing gas per unit amount of adsorbent is three times that in Example 1, the amount of adsorbent per constant amount of gas is 1/3. Therefore, the amount of heat required to raise the temperature of the adsorbent is also about 1/3. Thus, the PT of the present invention
It can be seen that the SA method is a method with a large adsorption amount and a low concentration and is suitable for large-volume processing.

【0021】[0021]

【表2】 [Table 2]

【0022】(実施例3)図1のPTSA装置及び図3
のシーケンスを用いて、CO2 /空気系(CO2 濃度:
10vol%)の混合ガスから回収率90%でCO2
回収した。実施例1の操作条件との相違は、吸着剤とし
てCa−Xゼオライト(シリカ/アルミナ比2.5)を
使用した点を除いて実施例1と同じ条件で実施した。結
果は表3に示した。この実施例は比較的高濃度のガス分
離であるため、並流昇温工程では入口から吸着塔の1/
4のみを昇温することに止めた。吸着塔全体を昇温する
と表3の約4倍となり、経済性を失う。しかし、並流昇
温工程を採用するため、比較的小さな入熱、吸着剤使用
量、真空ポンプの消費電力、回収CO2 濃度などについ
て相当に改善された。
(Embodiment 3) PTSA device of FIG. 1 and FIG.
CO 2 / air system (CO 2 concentration:
CO 2 was recovered from the mixed gas (10 vol%) at a recovery rate of 90%. The difference from the operating conditions of Example 1 was carried out under the same conditions as Example 1 except that Ca-X zeolite (silica / alumina ratio 2.5) was used as the adsorbent. The results are shown in Table 3. In this example, gas separation with a relatively high concentration was performed, so in the parallel flow temperature raising step,
Only the temperature of 4 was stopped. When the temperature of the entire adsorption tower is raised, it becomes about four times as high as that in Table 3, and the economy is lost. However, since the co-current heating process is adopted, the heat input, the amount of adsorbent used, the power consumption of the vacuum pump, the concentration of recovered CO 2 and the like have been considerably improved.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【発明の効果】本発明は、上記の構成を採用することに
より、吸着剤の化学吸着量を有効に活用し、かつ、系内
の熱回収を可能にし、吸着量の大きなガスで、低濃度で
大容量処理に適したガス分離方法の提供を可能にした。
EFFECTS OF THE INVENTION The present invention, by adopting the above-mentioned constitution, makes effective use of the chemisorption amount of the adsorbent, enables heat recovery in the system, is a gas with a large adsorption amount, and has a low concentration. It has become possible to provide a gas separation method suitable for large-volume processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のPTSA法を実施するための装置のフ
ローシートである。
FIG. 1 is a flow sheet of an apparatus for carrying out the PTSA method of the present invention.

【図2】図1の装置を実施するためのシーケンスを図示
したものである。
2 illustrates a sequence for implementing the apparatus of FIG.

【図3】図2のシーケンスにおいて、昇温並流パージ工
程の各再生温度に対する各ステップの所要時間(秒)を
図示したものである。
FIG. 3 is a diagram illustrating required time (seconds) of each step for each regeneration temperature in the temperature-rising parallel flow purge step in the sequence of FIG. 2.

【図4】従来のPTSA法を実施するための装置のフロ
ーシートである。
FIG. 4 is a flow sheet of an apparatus for performing a conventional PTSA method.

【図5】図3の装置を実施するためのシーケンスを図示
したものである。
5 illustrates a sequence for implementing the apparatus of FIG.

フロントページの続き (72)発明者 大嶋 一晃 長崎市飽の浦1番1号 三菱重工業株式会 社長崎造船所内 (72)発明者 野原 博 長崎市飽の浦1番1号 三菱重工業株式会 社長崎造船所内 (72)発明者 石崎 安良 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 小川 紀一郎 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 武田 和三 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 縄田 秀夫 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内Front Page Continuation (72) Inventor Kazuaki Oshima 1-1, Atsunoura, Nagasaki-shi, Mitsubishi Heavy Industries Ltd. President, Saki Shipyard (72) Inventor Hiroshi Nohara 1-1, Atsunoura, Nagasaki-shi President, Mitsubishi Heavy Industries Ltd. Saki Shipyard (72) ) Inventor Akira Ishizaki 2-5-1, Marunouchi, Chiyoda-ku, Tokyo San Sankyo Heavy Industries Co., Ltd. (72) Inventor Kiichiro Ogawa 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Invention Kazushi Takeda 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Hideo Nawata 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吸着塔に混合ガスを相対的に低温、高圧
で供給して難吸着性ガスを吸着塔の後方部より回収する
吸着工程と、吸着工程終了後の吸着塔に上記難吸着性ガ
スの一部を加熱して並流に導入し、吸着塔の前方部から
逐次昇温してパージし、かつ、該吸着塔を流過するガス
を上記昇温並流ガスとして循環する昇温並流パージ工程
と、昇温並流パージ工程終了後の吸着塔の前方部から減
圧して高温低圧状態で易吸着性ガスを回収する高温減圧
回収工程と、高温減圧回収工程終了後の吸着塔の後方部
から吸着工程で回収する難吸着性ガスを導入して易吸着
性ガスをパージする向流パージ工程と、向流パージ工程
終了後の吸着塔の後方部から混合ガスの一部を冷却して
導入し、かつ、該吸着塔を流過するガスを上記向流冷却
ガスとして循環する向流冷却工程とを有し、上記昇温並
流パージ工程の循環ガスと上記向流冷却工程の循環ガス
を熱交換することを特徴とする圧力温度スィング吸着法
による混合ガスの分離方法。
1. An adsorption step of supplying a mixed gas to an adsorption tower at a relatively low temperature and a high pressure to recover the hardly adsorbed gas from a rear portion of the adsorption tower, and the adsorption tower having the above-mentioned hardly adsorbed property after the adsorption step. A part of the gas is heated and introduced in parallel flow, the temperature is sequentially raised from the front part of the adsorption tower for purging, and the gas flowing through the adsorption tower is circulated as the above-mentioned temperature rise parallel flow gas. Co-current purge step, high temperature decompression recovery step of decompressing from the front part of the adsorption tower after temperature rise co-current purge step to recover easily adsorbable gas in high temperature and low pressure state, and adsorption tower after completion of high temperature decompression recovery step Of the mixed gas from the rear part of the adsorption tower after the countercurrent purging process and the countercurrent purging process where the easily adsorbed gas is purged by introducing the difficult-to-adsorb gas from the rear part of the adsorption process. Gas introduced into the adsorption tower and flowing through the adsorption tower is circulated as the countercurrent cooling gas. A method for separating a mixed gas by a pressure temperature swing adsorption method, which comprises a countercurrent cooling step, and heat-exchanges the circulating gas in the temperature rising cocurrent purging step and the circulating gas in the countercurrent cooling step.
JP3263645A 1991-10-11 1991-10-11 Separation method of mixed gas by pressure temperature swing adsorption method Expired - Fee Related JP3029895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3263645A JP3029895B2 (en) 1991-10-11 1991-10-11 Separation method of mixed gas by pressure temperature swing adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3263645A JP3029895B2 (en) 1991-10-11 1991-10-11 Separation method of mixed gas by pressure temperature swing adsorption method

Publications (2)

Publication Number Publication Date
JPH05103938A true JPH05103938A (en) 1993-04-27
JP3029895B2 JP3029895B2 (en) 2000-04-10

Family

ID=17392360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3263645A Expired - Fee Related JP3029895B2 (en) 1991-10-11 1991-10-11 Separation method of mixed gas by pressure temperature swing adsorption method

Country Status (1)

Country Link
JP (1) JP3029895B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647891A (en) * 1995-09-22 1997-07-15 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for heated, pressure-swing high pressure air dehydration
KR20030052909A (en) * 2001-12-21 2003-06-27 재단법인 포항산업과학연구원 Moisture Removal Method Use Air Pretreatment Adsorber with Vacuum and Temperature Swing Adsorption
WO2006013695A1 (en) 2004-08-03 2006-02-09 Murata Manufacturing Co., Ltd. Carbon dioxide absorbing material, and method and apparatus for separating carbon dioxide using the same
CN100395375C (en) * 2006-10-10 2008-06-18 沈阳铝镁设计研究院 Air feeding technique and equipment for transporting alumina in fume cleaning of aluminum cell
JP2010042331A (en) * 2008-08-11 2010-02-25 Kyuchaku Gijutsu Kogyo Kk Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method
KR100949525B1 (en) * 2009-05-20 2010-03-25 서강대학교산학협력단 Moving bed adsorption system for gas separation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736316B2 (en) * 2009-10-05 2015-06-17 株式会社久米設計 Laminated rubber body mounting structure and structure including the mounting structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647891A (en) * 1995-09-22 1997-07-15 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for heated, pressure-swing high pressure air dehydration
KR20030052909A (en) * 2001-12-21 2003-06-27 재단법인 포항산업과학연구원 Moisture Removal Method Use Air Pretreatment Adsorber with Vacuum and Temperature Swing Adsorption
WO2006013695A1 (en) 2004-08-03 2006-02-09 Murata Manufacturing Co., Ltd. Carbon dioxide absorbing material, and method and apparatus for separating carbon dioxide using the same
EP1852179A1 (en) * 2004-08-03 2007-11-07 Murata Manufacturing Co., Ltd. Carbon dioxide absorbing material, and method and apparatus for separating carbon dioxide using the same
EP1852179A4 (en) * 2004-08-03 2008-05-28 Murata Manufacturing Co Carbon dioxide absorbing material, and method and apparatus for separating carbon dioxide using the same
US7670410B2 (en) 2004-08-03 2010-03-02 Murata Manufacturing Co., Ltd. Carbon-dioxide-gas absorber, method for separating carbon-dioxide-gas using carbon-dioxide-gas absorber, and apparatus for separating carbon-dioxide-gas including carbon-dioxide-gas absorber
CN100395375C (en) * 2006-10-10 2008-06-18 沈阳铝镁设计研究院 Air feeding technique and equipment for transporting alumina in fume cleaning of aluminum cell
JP2010042331A (en) * 2008-08-11 2010-02-25 Kyuchaku Gijutsu Kogyo Kk Ballast water treatment apparatus loaded with an ozone producing device using pressure swing adsorption method
KR100949525B1 (en) * 2009-05-20 2010-03-25 서강대학교산학협력단 Moving bed adsorption system for gas separation

Also Published As

Publication number Publication date
JP3029895B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
KR100192697B1 (en) Purification of gases using solid absorbents
JP5298292B2 (en) A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.
JPS59184707A (en) Pressure swing adsorption for medical oxygen generator
JPS63283721A (en) Regeneration of dryer and apparatus therefore
JP2003175311A (en) Thermal swing adsorption method and adsorption unit and apparatus therefor
JP2010172804A5 (en)
KR101146710B1 (en) Apparatus and method for recovering carbon dioxide from flue gas using temperature swing adsorption
US5183484A (en) Process for removal of water in raw material mixed gas
JPH0867506A (en) Method of separating nitrogen from oxygen
EP2364766B1 (en) Method for the removal of moist in a gas stream
CN118338947A (en) Using CO2Vacuum temperature swing adsorption process suitable for carbon capture by using product gas as heat transfer medium to regenerate adsorbent
JPH05103938A (en) Separation of mixture gas by pressure-temperature swing adsorption method
JP2008161743A (en) Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent
JPS6297637A (en) Method and apparatus for oxidizing carbonaceous material
CN111093800B (en) Temperature swing adsorption process
CN111093801B (en) Temperature swing adsorption process
JPS621766B2 (en)
JP4313882B2 (en) Method for removing organic impurities in methanol decomposition gas by closed TSA method
JP2013017930A (en) Method for improving voc recovery rate in low-temperature liquefied voc recovery method by moisture removal and cold heat recovery using adsorbent
JPH0620508B2 (en) Dehumidification method of pressurized air
JPS607919A (en) Separating and removing method of carbon dioxide in mixed gas containing carbon monoxide by adsorption
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPH06254395A (en) Method for regenerating adsorbent in pressure swing adsorption for recovering co2
JP3405565B2 (en) Gas separation method
JPH0360524B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees