JPH0510316B2 - - Google Patents

Info

Publication number
JPH0510316B2
JPH0510316B2 JP17962486A JP17962486A JPH0510316B2 JP H0510316 B2 JPH0510316 B2 JP H0510316B2 JP 17962486 A JP17962486 A JP 17962486A JP 17962486 A JP17962486 A JP 17962486A JP H0510316 B2 JPH0510316 B2 JP H0510316B2
Authority
JP
Japan
Prior art keywords
growth
crystal
temperature
heater
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17962486A
Other languages
Japanese (ja)
Other versions
JPS6335492A (en
Inventor
Masahiko Kitagawa
Yoshitaka Tomomura
Tomoji Yamagami
Shigeo Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP17962486A priority Critical patent/JPS6335492A/en
Priority to US07/078,564 priority patent/US4869776A/en
Priority to GB8717968A priority patent/GB2194554B/en
Publication of JPS6335492A publication Critical patent/JPS6335492A/en
Publication of JPH0510316B2 publication Critical patent/JPH0510316B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、昇華法またはハロゲン輸送法を用い
た化合物半導体(ZnS,ZnSe,ZnTe,…)のバ
ルク単結晶成長方法に関するものであり、特に
−族化合物半導体結晶の成長に対して有効な技
術である。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for growing bulk single crystals of compound semiconductors (ZnS, ZnSe, ZnTe,...) using a sublimation method or a halogen transport method, and in particular, This is an effective technique for growing -group compound semiconductor crystals.

〈従来技術とその問題点〉 昇華法,ハロゲン輸送法などの気相輸送成長法
では、高温高圧以下の溶融法などに見られる冷却
時の変態点の通過あるいは結晶多形の混入のよう
な問題は避けられるものの、結晶成長の初期状態
に及ぼす固定された温度分布あるいは温度勾配と
輸送を生ぜしめる蒸気流そのものの影響は著しく
大きく、初期結晶の形状や原子配列の完全性を十
分に制御することは容易でない。そのため、初期
の結晶状態を必然的に受け継ぐバルク化後の成長
結晶において、良質な単結晶を再現性良く得るこ
とは困難であつた。このような問題を解決するた
め、従来の成長法では、基本的には第2図に示し
たようなT1〜T2で示される温度分布を用い、ア
ンプル形状の工夫あるいは種結晶部と成長部の分
割による制御などにより乱れの少ない結晶の成長
法が試みられている。図中、15は成長容器、1
6は種結晶、17は原料、18は単結晶、19は
ヒータである。しかし、従来法では、固定した成
長環境(温度分布)での改良を計つているためア
ンプルへの仕込み条件が少しでも異なる場合や少
しでも外部からの擾乱が入る場合には、結晶性の
低い乱れた状態が出現する。しかも、物性制御等
の観点から成長条件(アンプル仕込条件,温度条
件等)を変更すると単結晶成長条件から外れる等
の問題点が残されているが、これらの問題点はい
ずれも結晶成長初期に生ずる乱れを引き継いだ形
態での成長が進行することに最大の原因がある。
<Prior art and its problems> Vapor phase transport growth methods such as sublimation and halogen transport methods have problems such as passing the transformation point during cooling or contamination of crystal polymorphs, which can be seen in melting methods below high temperature and high pressure. Although this can be avoided, the influence of a fixed temperature distribution or the vapor flow itself that causes temperature gradients and transport on the initial state of crystal growth is extremely large, and it is necessary to sufficiently control the shape and atomic arrangement of the initial crystal. is not easy. Therefore, it has been difficult to obtain high-quality single crystals with good reproducibility in crystals grown after bulking, which inevitably inherit the initial crystal state. In order to solve these problems, conventional growth methods basically use the temperature distribution shown by T 1 to T 2 as shown in Figure 2, and modify the shape of the ampoule or adjust the size of the seed crystal and growth. Attempts are being made to grow crystals with less disorder, such as by controlling the growth of crystals by dividing them into parts. In the figure, 15 is a growth container, 1
6 is a seed crystal, 17 is a raw material, 18 is a single crystal, and 19 is a heater. However, in the conventional method, improvements are made in a fixed growth environment (temperature distribution), so if the conditions for filling the ampoule are even slightly different or if there is even a slight disturbance from the outside, the crystallinity may be disordered and the crystallinity may be low. A condition appears. Moreover, there remain problems such as changing the growth conditions (ampule preparation conditions, temperature conditions, etc.) from the viewpoint of physical property control, etc., resulting in deviation from the single crystal growth conditions, but all of these problems occur at the early stage of crystal growth. The biggest cause is that growth continues in a form that inherits the disturbances that occur.

〈発明の目的〉 本発明は斯る点に鑑みてなされたもので、
ZnS,ZnSe等の−族化合物半導体の気相バ
ルク単結晶成長に際して、任意の時間、空間の間
で成長の初期状態を制御する、即ち種結晶から伸
長した初期結晶を局所的に高温に加熱することに
より過飽和度の変化及び流れの影響等を緩和する
ことにより、種結晶から伸長し径が大となる以前
に乱れの少ない高品位結晶とし、引き続くバルク
結晶化においてより良質な単結晶成長の進行を可
能にする方法を提供すること並びに任意の時間,
空間における初期結晶成長制御のための極限され
た部分の加熱を実現させるための装置上の基本的
構成(二重ヒーター法)を提供することにある。
<Object of the invention> The present invention has been made in view of the above points, and
During vapor phase bulk single crystal growth of - group compound semiconductors such as ZnS and ZnSe, the initial state of growth is controlled at any time and space, that is, the initial crystal elongated from the seed crystal is locally heated to a high temperature. By alleviating changes in supersaturation degree and the effects of flow, a high-quality crystal with less turbulence can be obtained before it elongates from the seed crystal and grows in diameter, resulting in better quality single crystal growth in the subsequent bulk crystallization. to provide a method that allows for, and at any time,
The object of this invention is to provide a basic configuration (double heater method) on an apparatus for realizing heating in a limited area for controlling initial crystal growth in space.

〈発明の概要〉 本発明の結晶成長方法の特徴は、結晶成長領域
(通常の成長においては一定のあるいは傾斜の付
与された低温領域)中に高温部分を創出すること
により、その高温部分を通過して成長する結晶の
品質を制御することにある。即ち、より詳しく記
述すると、結晶の成長が低温部で生じるような本
発明の対象とする気相成長法では、種結晶上への
成長は低温域での過飽和度により進行するため、
過飽和度の時間的、空間的変化に依存して結晶化
状態が大きく影響を受け、単結晶化,骸晶化,樹
枝状結晶化等のいずれかあるいはこれらが混在し
た結晶成長が進行し易い。特に蒸気流が存在する
条件下では結晶表面の過飽和度は温度差、温度勾
配だけでなく流れの時間的、空間的変化・不均一
さに依存する。このような成長装置内の不安常性
は成長法の原理から成長開始初期の過渡的状況下
で特に著しく、そのため、結晶成長初期の状態制
御が特に重要となる。
<Summary of the Invention> The feature of the crystal growth method of the present invention is that by creating a high-temperature region in a crystal growth region (a constant or sloped low-temperature region in normal growth), The goal is to control the quality of the growing crystals. That is, to describe in more detail, in the vapor phase growth method targeted by the present invention in which crystal growth occurs in a low temperature region, growth on the seed crystal proceeds depending on the degree of supersaturation in the low temperature region.
The crystallization state is greatly influenced by temporal and spatial changes in the degree of supersaturation, and crystal growth is likely to proceed as one or a mixture of single crystallization, skeleton crystallization, dendrite crystallization, etc. In particular, under conditions where vapor flow exists, the degree of supersaturation on the crystal surface depends not only on temperature differences and temperature gradients, but also on temporal and spatial changes and non-uniformity of the flow. Due to the principle of the growth method, such instability within the growth apparatus is particularly significant under transient conditions at the beginning of growth, and therefore, control of the conditions at the beginning of crystal growth is particularly important.

本発明は成長初期の乱れ(径大化以前に生じ、
以後成長終了まで引き継がれる)を、成長初期に
伸長する極くわずかの領域中において、設定され
た単結晶成長温度よりも高い温度に設定すること
により可能となる過飽和度制御(緩和と時間的、
空間的一様化)によつて減少させることにより、
種結晶からの良質結晶の安定な伸長の進行を可能
とすることを特徴の1つとする。
The present invention is characterized by disturbances in the early stage of growth (occurring before diameter enlargement,
supersaturation degree control (relaxation and temporal,
spatial uniformity).
One of the features is that it enables stable elongation of high-quality crystals from seed crystals.

さらに、本発明においては、上部温度分布の実
現の為に、狭帯ヒーターを案内し、加熱炉構造全
体として2重ヒータとすることが特徴となつてい
る。即ち、第1のヒータは高温部および低温部の
全体の温度分布を安定度高く十分に精度高く設定
するために用い、第2のヒーターは、任意の位置
に移動可能で、任意の時間に任意の温度に加熱可
能な狭幅帯ヒーターとして第1のヒーターの温度
分布に重畳して設定される。
Furthermore, the present invention is characterized in that a narrow band heater is guided in order to achieve upper temperature distribution, and the entire heating furnace structure is made up of double heaters. That is, the first heater is used to set the overall temperature distribution of the high-temperature section and the low-temperature section with high stability and sufficiently high accuracy, and the second heater is movable to any position and can be set at any time at any time. The narrow band heater is set to overlap with the temperature distribution of the first heater as a narrow band heater capable of heating to a temperature of .

上記のような概略構成をさらに具体的に説明す
ると、成長装置中で第1ヒータにより、原料
(高)温度と成長(低)温度の2段温度分布に設
定された条件下で種結晶からの成長初期の結晶先
端が一定長まで伸長した時点で、結晶先端部位の
位置する限られた領域を第2ヒータにより加熱
し、先端部分の結晶表面の温度差(原料温度に対
する差)を制御することにより結晶の均質化、良
質化を計り、加熱された状態でさらに特定の設定
長まで伸長させ、その位置より、第1ヒータのみ
による径大化の成長を進行させる。
To explain the above-mentioned schematic configuration in more detail, the first heater in the growth apparatus controls the growth of seed crystals under conditions set to a two-stage temperature distribution of raw material (high) temperature and growth (low) temperature. When the crystal tip at the initial stage of growth has extended to a certain length, a limited area where the crystal tip is located is heated by a second heater to control the temperature difference (difference with respect to the raw material temperature) on the crystal surface at the tip. This aims to homogenize and improve the quality of the crystal, and while it is heated, it is further elongated to a specific set length, and from that position, growth to increase in diameter is proceeded using only the first heater.

〈実施例〉 ZnS,ZnSeの沃素輸送法による単結晶成長法
を例として本発明の成長法と成長炉の一実施例に
ついて説明する。
<Example> An example of the growth method and growth furnace of the present invention will be described using a single crystal growth method of ZnS and ZnSe by the iodine transport method as an example.

第1図は本発明の一実施例の説明に供する沃素
輸送法を用いる結晶成長装置の構成図である。成
長装置は加熱部分として第1ヒータ8が容器本体
外周囲に巻回されており、ヒータ8と容器の間に
は上下動可能な環状の第2ヒータ9が垂設されて
いる。尚、成長容器本体は石英アンプル1から構
成されており、上部に種結晶2、バルク単結晶7
等が配置され、下方には原料3が収容されてい
る。石英アンプル1は直径30mmφ、長さ数100mm
の円筒中空体であり、種結晶2には上部よりヒー
トシンク4が接触している。第2ヒータ9は駆動
系10に連結され、駆動系10によつて上下方向
に駆動される。種結晶2は石英アンプル1の壁上
面に空いた成長孔より成長空間を臨んでおり、こ
の部分より結晶が成長する。石英アンプル1の底
部にZnS,ZnSeの単結晶成長用原料3を充填し、
加熱炉内にて第1ヒータ8で原料温度T1、成長
温度T2を持つ温度分布を付与して加熱すること
により成長が開始される。即ち、温度T1に加熱
された原料3が沃素を輸送媒体として蒸気とな
り、種結晶2迄運ばれて析出する。種結晶2から
成長を始めた結晶が約5mm程度の小結晶5に伸長
した時点で狭帯環状の第2ヒータ9を動作させ上
記温度分布に重畳して温度T3(T3>T2)を付与
する。これによつて小結晶5部分の温度がT3
加熱される。さらに10〜15mm長となるまで小結晶
5を成長させる。成長した小結晶5は温度T3
加熱されることによつて熱エネルギーを得て結晶
配列の不整合や欠陥が拡散、格子整合化等の原子
運動によつて消減する。成長時の不安定性は成長
初期の小結晶が10〜15mm以上となつた位置でほぼ
解消され、この位置より第2ヒータ9による加熱
を緩和もしくは停止し、第1ヒータ8を主体とし
た成長温度T2でのZnS又はZnSe単結晶の成長を
進行させる。このような加熱法により伸長しつつ
あ結晶中への欠陥の発生が阻止され高品質結晶7
成長する。
FIG. 1 is a block diagram of a crystal growth apparatus using an iodine transport method, which is used to explain one embodiment of the present invention. In the growth apparatus, a first heater 8 is wound around the outer circumference of the container body as a heating part, and an annular second heater 9 that is movable up and down is vertically provided between the heater 8 and the container. The main body of the growth container consists of a quartz ampoule 1, with a seed crystal 2 and a bulk single crystal 7 on the top.
etc. are arranged, and the raw material 3 is stored below. Quartz ampoule 1 has a diameter of 30 mmφ and a length of several 100 mm.
The heat sink 4 is in contact with the seed crystal 2 from above. The second heater 9 is connected to a drive system 10 and driven in the vertical direction by the drive system 10. The seed crystal 2 faces the growth space through a growth hole formed on the upper surface of the wall of the quartz ampoule 1, and the crystal grows from this portion. The bottom of the quartz ampoule 1 is filled with raw materials 3 for single crystal growth of ZnS and ZnSe,
Growth is started in the heating furnace by heating with the first heater 8 while providing a temperature distribution having a raw material temperature T 1 and a growth temperature T 2 . That is, the raw material 3 heated to a temperature T 1 becomes vapor using iodine as a transport medium, and is transported to the seed crystal 2 and precipitated. When the crystal that started growing from the seed crystal 2 has grown into a small crystal 5 of about 5 mm, the narrow-band annular second heater 9 is operated to superimpose the temperature distribution on the above temperature distribution, and the temperature is increased to T 3 (T 3 > T 2 ). Grant. This heats up the temperature of the 5 portions of the small crystals to T3 . Further, the small crystal 5 is grown until the length becomes 10 to 15 mm. The grown small crystal 5 is heated to a temperature T 3 to obtain thermal energy, and mismatches and defects in the crystal arrangement are eliminated by atomic motion such as diffusion and lattice matching. The instability during growth is almost eliminated at the position where the small crystals at the initial stage of growth are 10 to 15 mm or more, and from this position the heating by the second heater 9 is eased or stopped, and the growth temperature mainly controlled by the first heater 8 is reduced. Proceed to grow ZnS or ZnSe single crystals at T2 . This heating method prevents defects from forming in the elongating crystal, resulting in high-quality crystals7.
grow up.

第2ヒータ9は上下方向に可動であり、成長初
期のみならず結晶長大化の任意の時点において結
晶の任意の部分を局部的に加熱制御できる為、偶
発的形状変化の生じた場合にも、成長途中でのそ
の場制御により単結晶の再成長を行なうことが可
能である。
The second heater 9 is movable in the vertical direction, and can locally control heating of any part of the crystal not only at the initial stage of growth but also at any point in the lengthening of the crystal, so even if an accidental change in shape occurs, It is possible to re-grow a single crystal by in-situ control during growth.

〈発明の効果〉 以上説明したように、本発明によれば、種結晶
からの結晶伸長時に結晶性を制御して成長させる
ことができるため極めて高品質のバルク単結晶を
再現性良く成長させることが可能となる。しかも
上述したようなヒータ構造のため、成長初期状態
が大幅に異なつても制御・再成長が可能であり、
成長結晶の再結晶、回復作用によつて極めて高い
生産性を有する高品位のバルク結晶の成長技術を
確立することができる。
<Effects of the Invention> As explained above, according to the present invention, crystallinity can be controlled and grown during crystal elongation from a seed crystal, so that extremely high quality bulk single crystals can be grown with good reproducibility. becomes possible. Moreover, because of the heater structure described above, it is possible to control and re-grow even if the initial growth state is significantly different.
By recrystallizing and restoring the grown crystal, it is possible to establish a technology for growing high-quality bulk crystals with extremely high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明に供する成長
装置の構成概略図である。第2図は従来の成長法
を説明する成長装置の概略図である。 1:成長容器、2:種結晶、3:原料、4:ヒ
ートシンク、5:小結晶、6:小結晶成長位置、
7:単結晶、8:第1ヒータ、9:第2ヒータ、
10:駆動系。
FIG. 1 is a schematic diagram of the structure of a growth apparatus used to explain one embodiment of the present invention. FIG. 2 is a schematic diagram of a growth apparatus for explaining a conventional growth method. 1: growth container, 2: seed crystal, 3: raw material, 4: heat sink, 5: small crystal, 6: small crystal growth position,
7: single crystal, 8: first heater, 9: second heater,
10: Drive system.

Claims (1)

【特許請求の範囲】 1 昇華法またはハロゲン輸送法を用いた化合物
半導体結晶の成長方法において、結晶成長開始部
位に位置する狭領域の温度を成長温度より高く制
御設定することにより成長初期結晶の結晶性を制
御することを特徴とする化合物半導体結晶の成長
方法。 2 結晶成長領域と、原料領域を含む全温度分布
を設定する第1のヒータと、結晶成長開始部位に
位置する狭領域の温度を制御する第2のヒータと
を用いて温度制御する特許請求の範囲第1項記載
の化合物半導体結晶の成長方法。
[Claims] 1. In a method for growing a compound semiconductor crystal using a sublimation method or a halogen transport method, the temperature of a narrow region located at a crystal growth initiation site is controlled to be higher than the growth temperature, so that the crystal of the initially grown crystal is controlled to be higher than the growth temperature. A method for growing compound semiconductor crystals characterized by controlling properties. 2. Temperature control using a first heater that sets the entire temperature distribution including the crystal growth region and the raw material region, and a second heater that controls the temperature of a narrow region located at the crystal growth start site A method for growing a compound semiconductor crystal according to scope 1.
JP17962486A 1986-07-29 1986-07-29 Growth of compound semiconductor crystal Granted JPS6335492A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP17962486A JPS6335492A (en) 1986-07-29 1986-07-29 Growth of compound semiconductor crystal
US07/078,564 US4869776A (en) 1986-07-29 1987-07-28 Method for the growth of a compound semiconductor crystal
GB8717968A GB2194554B (en) 1986-07-29 1987-07-29 A method for the growth of a compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17962486A JPS6335492A (en) 1986-07-29 1986-07-29 Growth of compound semiconductor crystal

Publications (2)

Publication Number Publication Date
JPS6335492A JPS6335492A (en) 1988-02-16
JPH0510316B2 true JPH0510316B2 (en) 1993-02-09

Family

ID=16069019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17962486A Granted JPS6335492A (en) 1986-07-29 1986-07-29 Growth of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS6335492A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670002B2 (en) * 2004-07-20 2011-04-13 学校法人早稲田大学 Method for producing nitride single crystal
JP5272390B2 (en) 2007-11-29 2013-08-28 豊田合成株式会社 Group III nitride semiconductor manufacturing method, group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp

Also Published As

Publication number Publication date
JPS6335492A (en) 1988-02-16

Similar Documents

Publication Publication Date Title
JPH0510316B2 (en)
JPH08750B2 (en) Single crystal growth method and apparatus using high-pressure synthesizer
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH04160095A (en) Method for growing compound semiconductor single crystal
JPS62153192A (en) Method for growing crystal of compound semiconductor
JPH07133185A (en) Production of single crystal
JPH01126294A (en) Production of single crystal
JPS62148389A (en) Method for growing single crystal
JP2004339053A (en) Method for producing optical fluoride crystal
JPH0234592A (en) Growing method for compound semiconductor single crystal
JP2645491B2 (en) Method for growing compound semiconductor single crystal
JPH024126Y2 (en)
JPS62207799A (en) Method and device for producing iii-v compound semiconductor single crystal
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPH05319973A (en) Single crystal production unit
JPS62187193A (en) Method and device for growing single crystal
JPS6011297A (en) Method and device for controlling growth of crystal
JPS59116189A (en) Method for controlling shape of single crystal
JPS6127975Y2 (en)
JPS63112487A (en) Crystal growth method for compound semiconductor and apparatus
JPS60255690A (en) Production of semiconductor crystal
JPH0559873B2 (en)
JPH0459694A (en) Production of compound semiconductor single crystal
JPS63270392A (en) Production of compound semiconductor crystal