JPH05102536A - Thermoelectric element - Google Patents

Thermoelectric element

Info

Publication number
JPH05102536A
JPH05102536A JP3262372A JP26237291A JPH05102536A JP H05102536 A JPH05102536 A JP H05102536A JP 3262372 A JP3262372 A JP 3262372A JP 26237291 A JP26237291 A JP 26237291A JP H05102536 A JPH05102536 A JP H05102536A
Authority
JP
Japan
Prior art keywords
semiconductor
highly doped
thermoelectric element
heat
doped region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3262372A
Other languages
Japanese (ja)
Inventor
Masakazu Kobayashi
正和 小林
Mitsugi Yamanaka
貢 山中
Kazuhiko Shinohara
和彦 篠原
Keiko Ikoma
圭子 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3262372A priority Critical patent/JPH05102536A/en
Publication of JPH05102536A publication Critical patent/JPH05102536A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the decrease of cooling efficiency and power generation efficiency. CONSTITUTION:Metal films 3, 3' are bonded to both ends of a semiconductor part 1a composed of thin film type matrix semiconductor 1. The semiconductor part 1a and the metal films 3, 3' are formed on a substrate 4. Highly doped regions 2 having dosage higher than the matrix semiconductor 1 are discretely formed in the matrix semiconductor 1. The highly doped regions 2 are so constituted that the area ratio to the matrix semiconductor 1 and the dosage become higher in accordance with the distance further from the metal films 3, 3'.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ペルチエ効果により電
気的に冷却を行う熱電素子、もしくはゼーベック効果に
より熱的に発電を行う熱電素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric element which is electrically cooled by the Peltier effect or a thermoelectric element which is thermally generated by the Seebeck effect.

【0002】[0002]

【従来の技術】熱電素子は、半導体の両端に一方が発熱
部(放熱部)で他方が吸熱部となる金属が接合されてい
るもので、この熱電素子の従来のものとしては、溶融・
焼成などによって製作されたバルク状の半導体、または
このバルク状半導体を改良して板状あるいは膜状の半導
体により構成されるものがある。
2. Description of the Related Art A thermoelectric element is one in which a metal, one of which is a heat generating portion (heat radiating portion) and the other of which is a heat absorbing portion, is joined to both ends of a semiconductor.
There is a bulk semiconductor manufactured by firing or the like, or a bulk semiconductor obtained by improving the bulk semiconductor to be a plate semiconductor or a film semiconductor.

【0003】さらに、上記従来の熱電素子を改良したも
ので、半導体中に金属を分散して半導体の内部抵抗の増
加を抑えた熱電素子がある(特開平2−42773号公
報参照)。
Further, there is a thermoelectric element which is an improvement of the above-mentioned conventional thermoelectric element and which suppresses an increase in internal resistance of the semiconductor by dispersing a metal in the semiconductor (see Japanese Patent Laid-Open No. 4-42773).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の熱電素子各々には、以下に示す問題点がある。バル
ク状半導体により構成される熱電素子では、脆性破壊を
起こしやすく、またTe・Bi等の希少金属が大量に使
用されるため材料コストが高くなり、さらには電極界面
における半導体と金属との接合が困難である。
However, each of the above conventional thermoelectric elements has the following problems. Thermoelectric elements composed of bulk semiconductors are prone to brittle fracture, and rare metals such as Te / Bi are used in large amounts, resulting in high material costs. Have difficulty.

【0005】また、板状あるいは膜状の半導体により構
成される熱電素子では、上記バルク状半導体の熱電素子
におけるような問題点は生じないが、板状あるいは膜状
の薄い半導体ではその内部抵抗が大きいので、ジュール
損が増大すると共に導電性が低くなり、冷却効率及び発
電効率の低下を招く。
Further, in the thermoelectric element composed of the plate-shaped or film-shaped semiconductor, the problem as in the bulk-shaped semiconductor thermoelectric element does not occur, but in the plate-shaped or film-shaped thin semiconductor, its internal resistance is Since it is large, the Joule loss is increased and the conductivity is lowered, and the cooling efficiency and the power generation efficiency are deteriorated.

【0006】さらに、半導体中に金属が分散された熱電
素子では、抵抗の小さい金属中をより多くの電流が流れ
るため半導体の内部抵抗の増加は抑えられるが、発熱部
及び吸熱部である金属と半導体との接合界面におけるペ
ルチエ係数、及びゼーベック係数が小さくなるので、冷
却効率及び発電効率が低下する。
Furthermore, in a thermoelectric element in which a metal is dispersed in a semiconductor, an increase in the internal resistance of the semiconductor can be suppressed because more current flows through the metal having a low resistance, but the metal used as the heat generating part and the heat absorbing part Since the Peltier coefficient and the Seebeck coefficient at the junction interface with the semiconductor become small, the cooling efficiency and the power generation efficiency decrease.

【0007】そこで、本発明は上記問題点に着目してな
されたもので、ペルチエ係数及びゼーベック係数を大き
く保ったまま半導体部の導電性を高め、半導体部の内部
抵抗によるジュール損により冷却効率及び発電効率が低
下することを防止する熱電素子を提供することを目的と
する。
Therefore, the present invention has been made in view of the above-mentioned problems. The conductivity of the semiconductor portion is enhanced while the Peltier coefficient and the Seebeck coefficient are kept large, and the cooling efficiency and the cooling efficiency are improved by the Joule loss due to the internal resistance of the semiconductor portion. An object of the present invention is to provide a thermoelectric element that prevents the power generation efficiency from decreasing.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明は、板状もしくは膜状の母材半導体中に、この母
材半導体より高いドープ量を有する高ドープ領域が離散
状に形成されている半導体部と、上記半導体部の両端に
接合されると共に、いずれか一方が発熱部で、他方が吸
熱部となる金属、もしくは上記母材半導体と異なる半導
体とからなり、上記半導体部の単位面積当りのドープ量
を、上記発熱部及び吸熱部より離れる程高くなるように
構成したことを特徴とする。
In order to achieve the above object, the present invention provides that a highly doped region having a higher doping amount than the base semiconductor is discretely formed in a plate-shaped or film-shaped base semiconductor. And a semiconductor part that is joined to both ends of the semiconductor part and one of which is a heat generating part and the other is a heat absorbing part, or a semiconductor different from the base semiconductor, and a unit of the semiconductor part. It is characterized in that the doping amount per area is configured to increase as the distance from the heat generating portion and the heat absorbing portion increases.

【0009】[0009]

【作用】上記構成によれば、半導体部ではその内部抵抗
が半導体部の単位面積当りのドープ量、すなわち母材半
導体に対する高ドープ領域の面積比及びそのドープ量に
応じて低下すると共に、内部抵抗によるジュール損が減
少する。
According to the above structure, the internal resistance of the semiconductor portion decreases in accordance with the doping amount per unit area of the semiconductor portion, that is, the area ratio of the highly-doped region to the base semiconductor and the doping amount, and the internal resistance increases. The Joule loss due to is reduced.

【0010】また、発熱部及び吸熱部の近傍部分におけ
る高ドープ領域では、ペルチエ効果及びゼーペック効果
がほとんど生じないので、発熱部及び吸熱部と母材半導
体との接合界面におけるペルチエ係数及びゼーベック係
数が大きく保たれると共に、冷却効率及び発電効率が低
下しない。
Further, since the Peltier effect and the Seepeck effect hardly occur in the highly doped region in the vicinity of the heat generating part and the heat absorbing part, the Peltier coefficient and the Seebeck coefficient at the junction interface between the heat generating part and the heat absorbing part and the base material semiconductor are The cooling efficiency and the power generation efficiency do not decrease while being kept large.

【0011】例えば母材半導体がn型である場合、電流
通電時、母材半導体から高ドープ領域に電流が流れ込む
界面では吸熱が生じると共に、高ドープ領域から母材半
導体に電流が流れ出す界面では発熱が生じる。
For example, when the base material semiconductor is an n-type, heat is generated at the interface where current flows from the base material semiconductor to the highly doped region, and heat is generated at the interface where current flows from the highly doped region to the base material semiconductor when current is applied. Occurs.

【0012】しかし、高ドープ領域は母材半導体に対し
十分小さい領域であり、発熱部及び吸熱部の近傍部分で
はさらに小さいため、高ドープ領域の電流出入界面の温
度差をほぼ無視でき、電流出入界面での発熱量と吸熱量
が一致し、見かけ上、母材半導体と高ドープ領域の電流
出入界面でのペルチエ効果及びゼーベック効果がないと
考えてよい程度になる。
However, the highly-doped region is a region sufficiently smaller than the base material semiconductor, and is even smaller in the vicinity of the heat-generating part and the heat-absorbing part. The calorific value and the endothermic value at the interface match, and it is apparent that there is no Peltier effect or Seebeck effect at the current input / output interface between the base semiconductor and the highly doped region.

【0013】よって、発熱部及び吸熱部と母材半導体と
の接合界面におけるペルチエ係数及びゼーベック係数を
大きく保ったまま、半導体部の単位面積当りのドープ
量、すなわち母材半導体に対する高ドープ領域の面積比
及びそのドープ量に応じて半導体部の内部抵抗が低下す
ると共に、ジュール損が抑制される。
Therefore, while the Peltier coefficient and the Seebeck coefficient at the bonding interface between the heat generating part and the heat absorbing part and the base material semiconductor are kept large, the doping amount per unit area of the semiconductor part, that is, the area of the highly doped region with respect to the base material semiconductor. The internal resistance of the semiconductor portion is reduced according to the ratio and the doping amount thereof, and Joule loss is suppressed.

【0014】[0014]

【実施例】以下に本発明による熱電素子の一実施例を図
面に基づいて詳細に説明する。図1の(a)は、本発明
による熱電素子の一実施例を示す平面図で、(b)は
(a)におけるAA’での断面図である。図1におい
て、本発明による熱電素子は、薄膜形状の母材半導体1
からなる半導体部1aと、この半導体部1aの両端に接
合される金属膜3,3’とから構成されており、この半
導体部1aと金属膜3,3’は、基板4上に薄膜形成さ
れている。上記金属膜3,3’の一方が発熱部、他方が
吸熱部となり、この金属膜3,3’には使用時に電流を
導通、もしくは導出するための端子が接続される。
An embodiment of a thermoelectric element according to the present invention will be described in detail below with reference to the drawings. 1A is a plan view showing an embodiment of a thermoelectric element according to the present invention, and FIG. 1B is a sectional view taken along line AA ′ in FIG. In FIG. 1, a thermoelectric element according to the present invention is a thin film-shaped base material semiconductor 1
And a metal film 3, 3 ′ bonded to both ends of the semiconductor portion 1 a. The semiconductor portion 1 a and the metal films 3, 3 ′ are formed on the substrate 4 as a thin film. ing. One of the metal films 3 and 3 ′ serves as a heat generating portion and the other serves as a heat absorbing portion, and terminals for conducting or leading a current during use are connected to the metal films 3 and 3 ′.

【0015】一方、上記母材半導体1内部には、この母
材半導体1より高いドープ量を有する高ドープ領域2が
離散状に形成されている。さらに、上記高ドープ領域2
は、半導体部1aの単位面積あたりのドープ量が金属膜
3及び3’から離れるに従って、すなわち母材半導体1
に対する高ドープ領域2の面積比及びそのドープ量が半
導体部1aの中央部で高くなるように構成されている。
On the other hand, inside the base material semiconductor 1, highly doped regions 2 having a higher doping amount than the base material semiconductor 1 are discretely formed. Furthermore, the highly doped region 2
Is as the doping amount per unit area of the semiconductor portion 1a is farther from the metal films 3 and 3 ′, that is, the base semiconductor 1
The area ratio of the heavily doped region 2 and the doping amount thereof are higher in the central portion of the semiconductor portion 1a.

【0016】なお、この高ドープ領域2は、例えばイオ
ン注入法などにより母材半導体1内部に形成されるが、
この方法に限定するものではない。
The highly doped region 2 is formed inside the base material semiconductor 1 by, for example, an ion implantation method.
The method is not limited to this.

【0017】次に、上記母材半導体1がn型で、金属膜
3に正電圧を印加して本素子を冷却素子とした場合の作
用について以下に詳述する。
Next, the operation when the base semiconductor 1 is an n-type and a positive voltage is applied to the metal film 3 to make this element a cooling element will be described in detail below.

【0018】まず、金属膜3に正電圧を印加すると、導
通された電流により金属膜3と母材半導体1との接合界
面でペルチエ効果による発熱が生じ、接合界面の温度が
上昇する。
First, when a positive voltage is applied to the metal film 3, heat is generated by the Peltier effect at the bonding interface between the metal film 3 and the base material semiconductor 1 due to the conducted current, and the temperature at the bonding interface rises.

【0019】さらに、電流は母材半導体1中を流れて金
属膜3’に達するが、母材半導体1内部には抵抗の小さ
い高ドープ領域2が離散状に形成されているため、この
高ドープ領域2中をより多くの電流が流れて、半導体部
1aでのジュール損が減少する。
Further, the current flows through the base material semiconductor 1 and reaches the metal film 3 ', but since the highly doped regions 2 having a small resistance are discretely formed inside the base material semiconductor 1, this highly doped region is formed. More current flows in the region 2 and the Joule loss in the semiconductor portion 1a decreases.

【0020】ここで、母材半導体1から高ドープ領域2
に電流が流れ込む界面では吸熱が、高ドープ領域2から
母材半導体1に電流が流れ出す界面では発熱が、それぞ
れ起こる。
Here, from the base material semiconductor 1 to the highly doped region 2
Heat absorption occurs at the interface where the current flows into the substrate, and heat generation occurs at the interface where the current flows from the highly doped region 2 to the base semiconductor 1.

【0021】しかし、高ドープ領域2は母材半導体1に
対し十分小さい領域であるため、高ドープ領域2から母
材半導体1に電流が流れ出す界面で発生した熱は、結晶
格子によって運ばれると共に、母材半導体1から高ドー
プ領域2に電流が流れ込む界面で即座に吸収される。
However, since the highly doped region 2 is a region sufficiently smaller than the base material semiconductor 1, the heat generated at the interface where a current flows from the highly doped region 2 to the base material semiconductor 1 is carried by the crystal lattice and The current is immediately absorbed at the interface where a current flows from the base semiconductor 1 to the highly doped region 2.

【0022】従って、高ドープ領域2の電流出入界面で
の発熱量と吸熱量がほぼ等しくなり、高ドープ領域2の
電流出入界面の温度差が無視できる程度になる。このた
め、高ドープ領域2両端でのゼーベック効果による電圧
発生が抑制される。
Therefore, the amount of heat generation and the amount of heat absorption at the current input / output interface of the highly doped region 2 become substantially equal, and the temperature difference at the current input / output interface of the highly doped region 2 becomes negligible. Therefore, the voltage generation due to the Seebeck effect at both ends of the highly doped region 2 is suppressed.

【0023】さらに、金属膜3及び3’の近傍では、母
材半導体1に対する高ドープ領域2の面積比及びそのド
ープ量が小さいので逆電界による損失が減少する。
Further, in the vicinity of the metal films 3 and 3 ', the area ratio of the heavily doped region 2 to the base material semiconductor 1 and the doping amount thereof are small, so that the loss due to the reverse electric field is reduced.

【0024】このようにして、母材半導体1を流れてき
た電流は、金属膜3’と母材半導体1の接合界面でペル
チエ効果によって吸熱し、冷却効果を生じて対象物を冷
却する。
In this way, the electric current flowing through the base material semiconductor 1 absorbs heat by the Peltier effect at the bonding interface between the metal film 3 ′ and the base material semiconductor 1 and produces a cooling effect to cool the object.

【0025】以上の構成、作用からなる本発明による熱
電素子では、母材半導体1内部に高ドープ領域2を離散
状に形成することによって、母材半導体1と金属膜3,
3’との接合界面におけるペルチエ係数が低下すること
なく、半導体部1aのジュール損が低減し、冷却効率を
向上することができる。
In the thermoelectric element according to the present invention having the above-described structure and operation, the base semiconductor 1 and the metal film 3 are formed by forming the highly doped regions 2 in a discrete manner inside the base semiconductor 1.
It is possible to reduce the Joule loss of the semiconductor portion 1a and improve the cooling efficiency without lowering the Peltier coefficient at the bonding interface with 3 '.

【0026】特にその効果は、半導体部1aの単位面積
当りのドープ量が、発熱部及び吸熱部である金属膜3及
び3’から離れた部分で高くなるように構成することに
より顕著になる。
Particularly, the effect becomes remarkable when the doping amount per unit area of the semiconductor portion 1a is increased in the portions apart from the metal films 3 and 3'which are the heat generating portion and the heat absorbing portion.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
による熱電素子では、半導体部の板状もしくは膜状とし
た母材半導体中に、この母材半導体より高いドープ量を
有する高ドープ領域が離散状に形成されているので、発
熱部及び吸熱部と母材半導体との接合界面におけるペル
チエ係数及びゼーベック係数が低下することなく、半導
体部におけるジュール損が著しく低くなる。
As is apparent from the above description, in the thermoelectric element according to the present invention, a highly doped region having a higher doping amount than the base semiconductor is formed in the plate-shaped or film-shaped base semiconductor of the semiconductor portion. Are discretely formed, the Joule loss in the semiconductor portion is significantly reduced without lowering the Peltier coefficient and the Seebeck coefficient at the bonding interface between the heat generating portion and the heat absorbing portion and the base semiconductor.

【0028】特に、半導体部の単位面積当りのドープ量
が発熱部及び吸熱部より離れる程高くなるので、吸熱部
のジュール損による温度上昇が低下すると共に、冷却効
率もしくは発電効率が向上し、高効率の熱電素子を実現
できる。
In particular, since the doping amount per unit area of the semiconductor portion increases as the distance from the heat generating portion and the heat absorbing portion increases, the temperature rise due to Joule loss of the heat absorbing portion decreases, and the cooling efficiency or power generation efficiency improves, which is high. An efficient thermoelectric element can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明による熱電素子の一実施例を
示す平面図で、(b)は(a)におけるAA’での断面
図。
1A is a plan view showing an embodiment of a thermoelectric element according to the present invention, and FIG. 1B is a sectional view taken along the line AA ′ in FIG.

【符号の説明】[Explanation of symbols]

1 母材半導体 1a 半導体部 2 高ドープ領域 3,3’ 金属膜 4 基板 1 Base Material Semiconductor 1a Semiconductor Part 2 Highly Doped Region 3, 3'Metal Film 4 Substrate

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年11月26日[Submission date] November 26, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】さらに、半導体中に金属が分散された熱電
素子では、抵抗の小さい金属中をより多くの電流が流れ
るため半導体の内部抵抗の増加は抑えられるが、ペルチ
エ係数、及びゼーベック係数が小さくなるので、冷却効
率及び発電効率が低下する。また、p型の素子が得られ
ないという欠点があった。
Furthermore, in a thermoelectric element in which a metal is dispersed in a semiconductor, an increase in internal resistance of the semiconductor can be suppressed because more current flows through the metal having a low resistance, but the Peltier coefficient and the Seebeck coefficient become small. Therefore, cooling efficiency and power generation efficiency decrease. Further, there is a drawback that a p-type element cannot be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生駒 圭子 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiko Ikoma 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 板状もしくは膜状の母材半導体中に、こ
の母材半導体より高いドープ量を有する高ドープ領域が
離散状に形成されている半導体部と、 上記半導体部の両端に接合されると共に、いずれか一方
が発熱部で、他方が吸熱部となる金属、もしくは上記母
材半導体と異なる半導体と、 からなり、上記半導体部の単位面積当りのドープ量を、
上記発熱部及び吸熱部より離れる程高くなるように構成
したことを特徴とする熱電素子。
1. A semiconductor part in which highly doped regions having a higher doping amount than the base semiconductor are discretely formed in a plate-shaped or film-shaped base semiconductor, and the semiconductor part is joined to both ends of the semiconductor part. In addition, either one is a heat generating part and the other is a metal serving as a heat absorbing part, or a semiconductor different from the base semiconductor, and the doping amount per unit area of the semiconductor part is
A thermoelectric element characterized in that the higher the distance from the heat generating portion and the heat absorbing portion, the higher the temperature.
JP3262372A 1991-10-09 1991-10-09 Thermoelectric element Withdrawn JPH05102536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3262372A JPH05102536A (en) 1991-10-09 1991-10-09 Thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3262372A JPH05102536A (en) 1991-10-09 1991-10-09 Thermoelectric element

Publications (1)

Publication Number Publication Date
JPH05102536A true JPH05102536A (en) 1993-04-23

Family

ID=17374839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3262372A Withdrawn JPH05102536A (en) 1991-10-09 1991-10-09 Thermoelectric element

Country Status (1)

Country Link
JP (1) JPH05102536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614109B2 (en) * 2000-02-04 2003-09-02 International Business Machines Corporation Method and apparatus for thermal management of integrated circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614109B2 (en) * 2000-02-04 2003-09-02 International Business Machines Corporation Method and apparatus for thermal management of integrated circuits
US6893902B2 (en) 2000-02-04 2005-05-17 International Business Machines Corporation Method and apparatus for thermal management of integrated circuits

Similar Documents

Publication Publication Date Title
US6893902B2 (en) Method and apparatus for thermal management of integrated circuits
EP1961051B1 (en) Method for creating thermoelectric tunnelling device
US3635037A (en) Peltier-effect heat pump
JPH0722549A (en) Electronically cooled semiconductor device
US8166769B2 (en) Self-cooled vertical electronic component
US7825324B2 (en) Spreading thermoelectric coolers
US6774450B2 (en) Semiconductor device with thermoelectric heat dissipating element
US3590339A (en) Gate controlled switch transistor drive integrated circuit (thytran)
US3359137A (en) Solar cell configuration
US9202771B2 (en) Semiconductor chip structure
JPH05102536A (en) Thermoelectric element
JPH0430586A (en) Thermoelectric device
JPH11214598A (en) Method of cooling large scale integrated circuit (lsi) chip
JPH02103969A (en) Thermoelectric apparatus
JPH0669549A (en) Thermoelectric device
WO2019240719A1 (en) Thermoelectric cooling element
US6479882B2 (en) Current-limiting device
JPH03214780A (en) High-frequency element
JPS6182450A (en) Package for semiconductor device
US3460996A (en) Thermoelectric lead telluride base compositions and devices utilizing them
JP5453296B2 (en) Semiconductor device
JPH02155281A (en) Thermoelectric device
JP2019029504A (en) Thermoelectric conversion device
JPH02130878A (en) Thermoelectric device
JPH0629580A (en) Thermo module

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107