JPH03214780A - High-frequency element - Google Patents

High-frequency element

Info

Publication number
JPH03214780A
JPH03214780A JP1119990A JP1119990A JPH03214780A JP H03214780 A JPH03214780 A JP H03214780A JP 1119990 A JP1119990 A JP 1119990A JP 1119990 A JP1119990 A JP 1119990A JP H03214780 A JPH03214780 A JP H03214780A
Authority
JP
Japan
Prior art keywords
diamond
semiconductor
layers
layer
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1119990A
Other languages
Japanese (ja)
Inventor
Hiroshi Shiomi
弘 塩見
Yoshiki Nishibayashi
良樹 西林
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1119990A priority Critical patent/JPH03214780A/en
Priority to EP91300268A priority patent/EP0440344A1/en
Publication of JPH03214780A publication Critical patent/JPH03214780A/en
Priority to US07/902,788 priority patent/US5243199A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/864Transit-time diodes, e.g. IMPATT, TRAPATT diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To enable the title high-frequency element capable of high-frequency, high output oscillation and amplification to be manufactured by a method wherein the semiconductor layers to be operation layers are specified to be semiconductor diamond layers. CONSTITUTION:The semiconductor layers 2-5 to be operation layers are specified to be semiconductor diamond layers. Due to the large band gap of 5.5eV in the diamond, the temperature region corresponding to the intrinsic region do not exist at 1400 deg.C and below where the diamond is thermally stabilized. Accordingly, even if the temperature is raised, the carriers in the low doped layer are not increased by the thermal excitation of the carriers so that the charge avalanche due to a backward bias may be caused even at high temperature. That is, the microwaves can be oscillated and amplified even at high temperature. Through these procedures, both high frequency oscillation characteristics and high output characteristics can be enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、大電力高周波の発振及び増幅を目的とする
高周波素子に関する。
The present invention relates to a high-frequency element for the purpose of oscillating and amplifying high-power high-frequency waves.

【従来の技術】[Conventional technology]

大電力、高周波を発振し増幅する高周波素子としてイン
バットダイオード、或はバリットダイオードがある。 インバットダイオードの代表的な例は、第1図に示すよ
うにn”  (又はp1)型半導体領域とp(又はn)
型半導体領域とp″ (又はn”)型− 1 − 半導体領域とが、それらの順に積層され、両端の半導体
領域のそれぞれに電極を形成した構造を持つダイオード
である。 n“ (又p+)型半導体領域側を正(又は負)とする
逆バイアス電圧を印加せしめた場合、p(又はn)型領
域の近傍に電荷なだれが生じ負性抵抗領域が発生するの
で、これに基づきマイクロ波発振が得られるというもの
である。また金属と半導体領域との間のショットキー接
合を利用した素子もある。 一方、バリットダイオードは金属とp(又はn)型半導
体領域と金属がそれ等の順に積層された構造を持つ。金
属と半導体層との間はショットキー接合になっている。 インバットダイオードと同様電極間に逆バイアスを印加
せしめた場合、半導体領域に少数キャリアが注入され、
これに基づきマイクロ波発振が得られるというものであ
る。またpn接合を利用した素子もある。 いずれの素子も材料はSt1GaAs等でありこれ以−
2− の材料が使われることは少ない。 以上の高周波素子ではマイクロ波発振の動作時、多量の
熱が半導体領域に発生する。このためマイクロ波発振の
動作時に発生する熱を効率的に外部に放散できなければ
、安定した発振が困難となる。 このため素子の様々な冷却方法が工夫されている。最も
一般的な方法としては、熱容量の大きな材料をヒートシ
ンクとして素子全体を挟む構造をとることにより、内部
に発生する熱をヒートシンク材に伝導する。 しかし、従来のS{或はGaAs等の半導体材料で素子
を形成した場合、これらの半導体材料は比較的熱伝導率
が低いため、内部で発生した熱が速やかにヒートシンク
材に伝導しない。 このため大電力を投入すると、素子が過熱され破壊され
るに至る。このため発振出力が低く制限されていた。 さらに素子とヒートシンクの接合に関しても、その接合
面で無視できない熱抵抗が形成される。 ヒートシンクによっても、素子の熱放散が十分に行われ
ないため、素子の発振出力が制限されるという難点は解
決されない。 また半導体材料固有の絶縁破壊電圧及び半導体内のキャ
リア移動度の制約から素子の出力並びに最大周波数にも
制限があった− St、GaAsともに絶縁破壊電圧が低い。これが低い
と大きい電圧を掛けることができない。このため高出力
の発振を得ることができない。 また飽和電子移動度についてもS1もGaAsも1×1
07cm/s程度で数百GHzの高出力の発振には充分
でない。 本発明は、このような難点を解決し高周波、高出力の発
振及び増幅が可能な素子を提供する事を目的とする。
A high-frequency element that oscillates and amplifies high-power, high-frequency waves is an invat diode or a barit diode. A typical example of an invat diode is an n'' (or p1) type semiconductor region and a p (or n) type semiconductor region, as shown in Figure 1.
The diode has a structure in which a p″ (or n″) type semiconductor region and a p″ (or n″) type −1− semiconductor region are stacked in that order, and electrodes are formed on each of the semiconductor regions at both ends. When a reverse bias voltage is applied that makes the n" (or p+) type semiconductor region side positive (or negative), a charge avalanche occurs near the p (or n) type region and a negative resistance region is generated. Based on this, microwave oscillation can be obtained.There are also devices that utilize a Schottky junction between a metal and a semiconductor region.On the other hand, a ballit diode is a device that uses a Schottky junction between a metal and a p (or n) type semiconductor region and a metal. are stacked in that order.A Schottky junction is formed between the metal and the semiconductor layer.When a reverse bias is applied between the electrodes, similar to an invat diode, minority carriers are generated in the semiconductor region. injected,
Based on this, microwave oscillation can be obtained. There are also elements that utilize pn junctions. The material of both elements is St1GaAs, etc.
2- Materials are rarely used. In the above-described high-frequency element, a large amount of heat is generated in the semiconductor region during microwave oscillation operation. Therefore, unless the heat generated during microwave oscillation is efficiently dissipated to the outside, stable oscillation becomes difficult. For this reason, various methods of cooling the device have been devised. The most common method is to use a material with a large heat capacity as a heat sink and sandwich the entire element between them, so that the heat generated inside is conducted to the heat sink material. However, when an element is formed using a conventional semiconductor material such as S{ or GaAs, these semiconductor materials have relatively low thermal conductivity, so the heat generated inside the device is not quickly conducted to the heat sink material. For this reason, if a large amount of power is applied, the element will overheat and be destroyed. For this reason, the oscillation output has been limited to a low level. Furthermore, regarding the bonding between the element and the heat sink, a non-negligible thermal resistance is formed at the bonding surface. Even with a heat sink, the problem of limiting the oscillation output of the device cannot be solved because heat dissipation from the device is not sufficient. Furthermore, there are limits to the output and maximum frequency of the device due to the dielectric breakdown voltage inherent to the semiconductor material and the carrier mobility within the semiconductor. Both St and GaAs have low dielectric breakdown voltages. If this is low, a large voltage cannot be applied. For this reason, high output oscillation cannot be obtained. Also, regarding the saturation electron mobility, both S1 and GaAs are 1×1
0.7 cm/s, which is not sufficient for high-output oscillation of several hundred GHz. An object of the present invention is to solve these difficulties and provide an element capable of high-frequency, high-output oscillation and amplification.

【課題を解決するための手段】[Means to solve the problem]

本発明の高周波素子は、電荷なだれを利用する金属層及
び半導体層を有する高周波素子において、動作層となる
半導体層が半導体ダイヤモンド層である事を特徴とする
ものである。 先に述べた本発明の目的は、金属層及び半導体層を有す
る高周波素子において、動作層となる半導体層がp型又
はn型の半導体ダイヤモンド層で構成することによって
達成される。 本発明の高周波素子は、放熱効果の点および格子整合の
点から天然又は人工合成されたダイヤモンドからなる基
板を有することが望ましい。 この基板は絶縁性である
ことが好ましいが、第一層がn型(又はp型)半導体ダ
イヤモンドである場合p型(又はn型)半導体ダイヤモ
ンド基板であっても良い。 構造はインバットダイオード、バリットダイオード等任
意である。 第1図に示すようなインバットダイオードとして作るこ
ともできる。この場合はn1層、低ドープ層、n層、p
層というように積層する。勿論両端には電極をつける。 そして電圧を逆バイアスの方向に印加する。 第4図に示すように、バリットダイオードとして作るこ
ともできる。この場合は半導体ダイヤモー5− ンド層を電極で挟む構造とし、一方の電極との結合をシ
ロットキー接合とする。この接合を逆バイアスする方向
に電圧を印加する。 半導体ダイヤモンド層としては、p型にするためには例
えばBをドーピングする。n型にするためには例えばP
をドーピングする。
The high frequency device of the present invention is a high frequency device having a metal layer and a semiconductor layer that utilizes charge avalanche, and is characterized in that the semiconductor layer serving as an active layer is a semiconductor diamond layer. The above-mentioned object of the present invention is achieved in a high frequency device having a metal layer and a semiconductor layer, in which the semiconductor layer serving as the active layer is composed of a p-type or n-type semiconductor diamond layer. The high frequency element of the present invention preferably has a substrate made of natural or artificially synthesized diamond from the viewpoint of heat dissipation effect and lattice matching. This substrate is preferably insulating, but may be a p-type (or n-type) semiconductor diamond substrate if the first layer is an n-type (or p-type) semiconductor diamond. The structure may be arbitrary, such as an invat diode or a barit diode. It can also be made as an invat diode as shown in FIG. In this case, the n1 layer, lightly doped layer, n layer, p
Stacked in layers. Of course, attach electrodes to both ends. Then, a voltage is applied in the reverse bias direction. It can also be made as a barit diode, as shown in FIG. In this case, the structure is such that the semiconductor diamond layer is sandwiched between electrodes, and the connection to one electrode is made by a Sirotto key junction. A voltage is applied in a direction that reverse biases this junction. The semiconductor diamond layer is doped with, for example, B in order to make it p-type. For example, to make it n-type, P
to dope.

【作   用】[For production]

ダイヤモンド履を動作層とするダイオードに逆バイアス
電圧を印加する。動作の原理はSi、GaAsダイオー
ドの場合と同じである。例えばインバットダイオードの
場合は、p+層とn層の間に大電圧が印加されるので電
荷なだれが起きる。これが低ドープ層をドリフトする。 電荷なだれの遅れと、走行の遅れにより負性抵抗が生ず
る。高周波領域でのマイクロ波発振が可能になる。 動作層にシロットキー接合を用いた場合は、金属電極と
半導体ダイヤモンド層の間に大電圧が掛かり電荷なだれ
が生じマイクロ波の発振、増幅がなされる。 このような発振増幅作用は従来のものと同じで一〇一 ある。バリットダイオードの場合は、接合障壁を越えて
流れる電荷によって、マイクロ波の発振、増幅がなされ
る。 次にSt1GaAsダイオードとの違いについて説明す
る。 ダイヤモンドは、バンドギャップが5.5eVと大きい
ため(St  1.1eV , GaAs  1.4e
V ) 、真性領域に相当する温度領域は、ダイヤモン
ドが熱的に安定な1400゜C以下には存在しない。こ
のため温度を上げても低ドーピング層のキャリャが熱的
に励起されて増えるということがなく、逆バイアスによ
る電荷なだれが高温でも生ずる。つまり高温でもマイク
ロ波の発振増幅ができるのである。 またダイヤモンドは化学的にも非常に安定である。 従って、ダイヤモンドを作製したデバイスは高温での動
作が可能となり、耐環境性の優れたものとなる。 また、ダイヤモンドの熱伝導率は20 ( W/cm・
゜K)とS1の10倍以上であり、放熱性にも優れてい
るさらに、ダイヤモンドは、キャリアの移動度が大きい
(電子移動度: 2000 Cm2/ V・秒、ホール
移動度: 2100 cm2/ V・秒、300゜K)
、飽和電子移動度が大きい(2X107cm/s ) 
N誘電率が小さい(K=5.5 ) 、破壊電界が大き
い(E=5X108V/cm)などの特徴を有しており
、高周波で大電力用のデバイスを作製する事ができる。 マイクロ波素子の高周波における発振出力のパワーは、
絶縁破壊電圧と飽和電子移動度の積の2乗に比例する。 ダイヤモンドの絶縁破壊電圧が、Sl、GaAsの約1
0倍、飽和電子移動度が約2倍であるので、出力パワー
は約400倍になりうる。 マイクロ波素子の低周波に於ける発振出力のパワーは熱
伝導度に比例する。ダイヤモンドの熱伝導度はSl、G
aAsなとの約10倍であるので低周波における出力パ
ワーも約IO倍大きくなる。 更に、ダイヤモンドは、不純物を含まないと絶縁体であ
るという特徴も有しているため、素子を作製する際、基
板として用いるダイヤモンドと動作層のダイヤモンドと
を電気的に完全に分離できるという利点がある。
A reverse bias voltage is applied to a diode whose active layer is a diamond shoe. The principle of operation is the same as for Si and GaAs diodes. For example, in the case of an invat diode, a large voltage is applied between the p+ layer and the n layer, causing a charge avalanche. This causes the lightly doped layer to drift. Negative resistance occurs due to the delay in charge avalanche and the delay in travel. Microwave oscillation in the high frequency range becomes possible. When a Sirotchi junction is used in the active layer, a large voltage is applied between the metal electrode and the semiconductor diamond layer, causing a charge avalanche, which oscillates and amplifies microwaves. This type of oscillation amplification effect is the same as the conventional one. In the case of a bullet diode, microwave oscillation and amplification are performed by electric charge flowing across the junction barrier. Next, the difference from the St1GaAs diode will be explained. Diamond has a large band gap of 5.5eV (St 1.1eV, GaAs 1.4e
V), the temperature range corresponding to the intrinsic range does not exist below 1400°C, where diamond is thermally stable. Therefore, even if the temperature is raised, carriers in the low doping layer are not thermally excited and increase, and a charge avalanche due to reverse bias occurs even at high temperatures. In other words, microwave oscillation can be amplified even at high temperatures. Diamond is also chemically very stable. Therefore, devices made of diamond can operate at high temperatures and have excellent environmental resistance. Also, the thermal conductivity of diamond is 20 (W/cm・
°K) is more than 10 times that of S1, and has excellent heat dissipation properties.Furthermore, diamond has high carrier mobility (electron mobility: 2000 cm2/V・sec, hole mobility: 2100 cm2/V・Seconds, 300°K)
, high saturated electron mobility (2X107cm/s)
It has characteristics such as a small N dielectric constant (K = 5.5) and a large breakdown electric field (E = 5 x 108 V/cm), making it possible to fabricate high-frequency, high-power devices. The power of the oscillation output at high frequency of the microwave element is
It is proportional to the square of the product of breakdown voltage and saturated electron mobility. The dielectric breakdown voltage of diamond is about 1 that of Sl and GaAs.
Since the saturated electron mobility is about 0 times and about 2 times, the output power can be about 400 times. The power of the oscillation output at low frequency of a microwave element is proportional to the thermal conductivity. The thermal conductivity of diamond is Sl, G
Since it is about 10 times that of aAs, the output power at low frequencies is also about IO times larger. Furthermore, diamond has the characteristic that it is an insulator unless it contains impurities, so when manufacturing devices, it has the advantage that the diamond used as the substrate and the diamond in the active layer can be completely electrically separated. be.

Claims (1)

【特許請求の範囲】[Claims] 多数キャリアの電荷なだれを利用するか、または少数キ
ャリアの注入を利用する、金属層及動作層を含む半導体
層を有する高周波素子において、動作層となる半導体層
が半導体ダイヤモンド層である事を特徴とする高周波素
子。
A high-frequency device that utilizes charge avalanche of majority carriers or injection of minority carriers and has a semiconductor layer including a metal layer and an active layer, characterized in that the semiconductor layer serving as the active layer is a semiconductor diamond layer. High frequency element.
JP1119990A 1990-01-19 1990-01-19 High-frequency element Pending JPH03214780A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1119990A JPH03214780A (en) 1990-01-19 1990-01-19 High-frequency element
EP91300268A EP0440344A1 (en) 1990-01-19 1991-01-15 High frequency device
US07/902,788 US5243199A (en) 1990-01-19 1992-06-24 High frequency device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119990A JPH03214780A (en) 1990-01-19 1990-01-19 High-frequency element

Publications (1)

Publication Number Publication Date
JPH03214780A true JPH03214780A (en) 1991-09-19

Family

ID=11771372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119990A Pending JPH03214780A (en) 1990-01-19 1990-01-19 High-frequency element

Country Status (2)

Country Link
EP (1) EP0440344A1 (en)
JP (1) JPH03214780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517096A (en) * 1998-05-28 2002-06-11 エービービー エービー Switching element
CN112382670A (en) * 2020-10-10 2021-02-19 西安电子科技大学 Avalanche diode based on high-purity intrinsic monocrystalline diamond and preparation method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3138705B1 (en) * 1999-08-31 2001-02-26 工業技術院長 Diamond pn junction diode and method of manufacturing the same
DE10344609B3 (en) 2003-09-25 2005-07-21 Infineon Technologies Ag RF diode
JP5273635B2 (en) * 2006-08-25 2013-08-28 独立行政法人産業技術総合研究所 High-efficiency indirect transition type semiconductor ultraviolet light-emitting device
CN112382669B (en) * 2020-10-10 2022-05-24 西安电子科技大学 Pseudo-vertical diamond avalanche diode and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3718684A1 (en) * 1987-06-04 1988-12-22 Licentia Gmbh SEMICONDUCTOR BODY

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517096A (en) * 1998-05-28 2002-06-11 エービービー エービー Switching element
JP4925508B2 (en) * 1998-05-28 2012-04-25 エレメント シックス リミテッド Switching element
CN112382670A (en) * 2020-10-10 2021-02-19 西安电子科技大学 Avalanche diode based on high-purity intrinsic monocrystalline diamond and preparation method
CN112382670B (en) * 2020-10-10 2022-05-24 西安电子科技大学 Avalanche diode based on high-purity intrinsic monocrystalline diamond and preparation method

Also Published As

Publication number Publication date
EP0440344A1 (en) 1991-08-07

Similar Documents

Publication Publication Date Title
Chen et al. High-power microwave 0.25-μm gate doped-channel GaN/AlGaN heterostructure field effect transistor
Chung et al. AlGaN/GaN HFET power amplifier integrated with microstrip antenna for RF front-end applications
US20010048120A1 (en) Heterojunction bipolar transistor composed of emitter layer which includes orderly structured layer and disorderly structured layer
JPH03214780A (en) High-frequency element
US3381187A (en) High-frequency field-effect triode device
JP2000058819A (en) Semiconductor device for power
KR102323197B1 (en) method for manufacturing semiconductor device
US4291320A (en) Heterojunction IMPATT diode
Kanaya et al. Fundamental oscillation up to 1.31 THz in thin-well resonant tunneling diodes
JP2000299386A (en) Semiconductor circuit device and manufacturing method therefor
JP3913716B2 (en) Semiconductor device
US3965437A (en) Avalanche semiconductor amplifier
US3518749A (en) Method of making gunn-effect devices
US3986142A (en) Avalanche semiconductor amplifier
CN105321993B (en) A kind of semiconductor devices and preparation method thereof
CN117712124B (en) High-performance CMOS device based on 4H-SiC substrate
Kim et al. Design and fabrication of planar GaAs Gunn diodes
Trew et al. High Frequency, High Temperature Field-Effect Transistors Fabricated From Wide Band Gap Semiconductors
US6252250B1 (en) High power impatt diode
Negoro et al. K-band AlGaN/GaN MIS-HFET on Si with high output power over 10 W
KR101877427B1 (en) Semiconductor device
Tseng et al. Enhanced Thermal Performance of InGaP/GaAs Collector-Up HBTs With a Miniaturized Backside Heat-Dissipation Structure
Ghione et al. RF and microwave semiconductor technologies
US7902919B2 (en) Current amplifying element and current amplification method
JPS62122175A (en) Semiconductor device