JPH05102147A - Method for forming amorphous metal and semiconductor device with amorphous metal film - Google Patents

Method for forming amorphous metal and semiconductor device with amorphous metal film

Info

Publication number
JPH05102147A
JPH05102147A JP25942591A JP25942591A JPH05102147A JP H05102147 A JPH05102147 A JP H05102147A JP 25942591 A JP25942591 A JP 25942591A JP 25942591 A JP25942591 A JP 25942591A JP H05102147 A JPH05102147 A JP H05102147A
Authority
JP
Japan
Prior art keywords
amorphous metal
amorphous
forming
sputtering
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25942591A
Other languages
Japanese (ja)
Inventor
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP25942591A priority Critical patent/JPH05102147A/en
Publication of JPH05102147A publication Critical patent/JPH05102147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain an excellent amorphous metal which does net take in any impurity by forming the amorphous metal in such q way that an intermittent sputtering means is used and the degree of vacuum in a reaction chamber is made lower than a specific value and, at the same time, the sputtering means is cooled. CONSTITUTION:By using an intermittent sputtering means and cooling the means, an amorphous metal is formed. In such amorphous metal forming method, the degree of vacuum in a reaction chamber 9, in which the amorphous chamber is formed, is made <=10<-10>Torr. For example, a shutter used as an opening/closing means 2 for performing the intermittent sputtering is provided between a target 4 and semiconductor wafer which is a substrate 1 to be sputtered and the substrate 1, namely, the wafer is cooled to an excessively cooled state by making liquid nitrogen to flow to a susceptor which is a cooling means 3 as a coolant. Then, after the chamber 9 is evacuated to a high vacuum state of <=10<-10>Torr, Al-sputtering is performed by intermittently opening the shutter for 1/100 second at intervals of 1 second, etc., by using a direct current or making magnetron discharges.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アモルファス金属の形
成方法、及びアモルファス金属膜を有する半導体装置に
関する。本発明は、アモルファスアルミニウムの形成方
法、アモルファスアルミニウム膜を有する半導体装置と
して利用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an amorphous metal and a semiconductor device having an amorphous metal film. The present invention can be used as a method for forming amorphous aluminum and as a semiconductor device having an amorphous aluminum film.

【0002】[0002]

【従来の技術】各種の分野において金属が用いられ、例
えば、電子材料(半導体装置等)の分野で金属が配線形
成材料として使用されている。例えば、アルミニウム
(以下、適宜A1と記す)は、半導体装置の良好な配線
材料として長年にわたり多用されている。
2. Description of the Related Art Metals are used in various fields, for example, metals are used as wiring forming materials in the field of electronic materials (semiconductor devices etc.). For example, aluminum (hereinafter appropriately referred to as A1) has been frequently used as a good wiring material for semiconductor devices for many years.

【0003】ところが、電子材料、特に半導体集積回路
については、最近その微細化・高集積化による配線の微
細化に伴い、A1配線についてエレクトロマイグレーシ
ョン、ストレスマイグレーション、A1ボイド(A1中
に生ずる空洞)など、その信頼性が問題になりつつあ
る。
However, with regard to electronic materials, particularly semiconductor integrated circuits, along with the recent miniaturization of wiring due to miniaturization and high integration, electromigration, stress migration, A1 voids (cavities generated in A1), etc. of A1 wiring have occurred. , Its reliability is becoming an issue.

【0004】上記のような問題は,A1がA1の粒界を
拡散するために起こるといわれ、特にボイドは、粒界に
そってA1にスリットが入るためといわれている。いず
れにせよ、A1が多結晶であり、粒界を有することに起
因する。
The above-mentioned problems are said to occur because A1 diffuses in the grain boundaries of A1, and voids are said to occur because slits are formed in A1 along the grain boundaries. In any case, A1 is polycrystalline and has grain boundaries.

【0005】そのためA1を、 単結晶化する。Therefore, A1 is crystallized into a single crystal.

【0006】A1を大粒径化する。 などの対策により、粒界拡散を防止して、信頼性を高め
る手段が考えられている。特に、A1を単結晶化するこ
とにより、上記問題を解決しようとする試みが種々なさ
れている。
The particle size of A1 is increased. By taking measures such as the above, a means for preventing grain boundary diffusion and increasing reliability is considered. In particular, various attempts have been made to solve the above problems by converting A1 into a single crystal.

【0007】しかし、単結晶A1を得ようとすると、 (a)単結晶上にA1をエピタキシャル成長させなけれ
ばならないため、実用的ではない。
However, in order to obtain the single crystal A1, (a) it is not practical because A1 must be epitaxially grown on the single crystal.

【0008】(b)単結晶に近い結晶状態にするには、
充分な前処理が必要となり、従来と形成プロセスが大き
く異なる。などの問題がある。
(B) To obtain a crystal state close to a single crystal,
Sufficient pretreatment is required, and the forming process is significantly different from the conventional one. There are problems such as.

【0009】よって本発明者は、従来追求されていた単
結晶化とは全く逆に、発想を転換して、アモルファス
(非晶質)金属を用いることにより、前記した問題点を
解決するに至った。
Therefore, the present inventor has solved the above-mentioned problems by completely changing the idea and using an amorphous metal, contrary to the single crystallization which has been pursued conventionally. It was

【0010】アモルファス金属、例えばアモルファスA
1は、単結晶と同様に、粒界が存在しないと考えられ、
よってこれにより信頼性を高めることができる。
Amorphous metal such as amorphous A
No. 1 is considered to have no grain boundary, like the single crystal,
Therefore, reliability can be improved by this.

【0011】[0011]

【発明が解決しようとする課題】しかし、アモルファス
金属を得ることは、アモルファスの単一金属にせよアモ
ルファスの合金にせよ、決して容易ではない。例えば、
円筒状の冷却部材を回転させて、これに溶融状態のA1
を吹き付け急令しつつ巻き取ることによりアモルファス
A1を得る技術が提案されているが、これは大がかりな
装置を要し、かつ、この手法により半導体装置等の電子
材料上に成膜を行なうことは現実的には不可能と考えら
れる。しかし、従来のスパッタ法を用いると、どうして
も結晶化が進行し、多結晶アルミニウム等の結晶金属し
か形成できない。
However, it is not easy to obtain an amorphous metal, whether it is an amorphous single metal or an amorphous alloy. For example,
By rotating the cylindrical cooling member, the molten A1
A technique has been proposed in which amorphous A1 is obtained by spraying and winding the film while urgently blowing it, but this requires a large-scale device, and this method does not form a film on an electronic material such as a semiconductor device. It is considered impossible in reality. However, when the conventional sputtering method is used, crystallization inevitably progresses, and only a crystalline metal such as polycrystalline aluminum can be formed.

【0012】特開昭61−208848号公報には、半
導体装置の電気線材料に非晶質の単一金属または非晶質
の合金を用いる技術が提案されているが、その製法につ
いては気体あるいは液体を結晶化開始曲線を切らないよ
うな速度で(臨界冷却速度以上で)冷却すると述べられ
ているのみであり、要するに結晶化しない内に冷却して
しまえばよいという原理的なことを開示するのみで、必
ずしも具体的ではない。かつ冷却手段のみであるとその
制御が困難であるなど、必ずしも良好にアモルファス金
属が得られるとは考えにくい。
Japanese Unexamined Patent Publication No. 61-208848 proposes a technique of using an amorphous single metal or an amorphous alloy as an electric wire material of a semiconductor device. It is only stated that the liquid is cooled at a rate (not less than the critical cooling rate) so as not to cut the crystallization initiation curve, and in short, the principle that the liquid should be cooled before it is crystallized is disclosed. Only, not necessarily specific. In addition, it is difficult to control the amorphous metal only with the cooling means.

【0013】又、特開昭63−142833号公報に
は、A1層を急速加熱後冷却して,A1層の表面と側壁
のみを非晶質化する技術が開示されているが、これも煩
雑で制御が容易でなく、良好にアモルファス金属が得ら
れるものではないと考えられる。
Further, Japanese Patent Laid-Open No. 63-142833 discloses a technique of rapidly heating the A1 layer and then cooling it to amorphize only the surface and sidewalls of the A1 layer, but this is also complicated. It is considered that the control is not easy and that an amorphous metal cannot be obtained well.

【0014】そのため、本発明者は上記問題点を解決し
て、容易に良好なアモルファス金属が得られるアモルフ
ァス金属の形成方法、また、信頼性が高く容易に形成で
きるアモルファス金属膜を有する半導体装置を提供し、
また、良質なアモルファス金属膜を容易に得ることがで
きるアモルファス金属の形成装置を提供する手段として
間欠スパッタ手段を用い、かつ冷却して、アモルファス
金属を形成するアモルファス金属の形成方法を既に提案
した(特願平3−89581号)。しかし、アモルファ
ス膜は不純物を取り込み易く、折角、前記のような目的
で、アモルファス膜を形成しても、その機能を充分に発
揮させることができなかった。
Therefore, the present inventor has solved the above problems and provided a method for forming an amorphous metal which can easily obtain a good amorphous metal, and a semiconductor device having an amorphous metal film which is highly reliable and can be easily formed. Offer to,
Further, as a means for providing an amorphous metal forming apparatus capable of easily obtaining a good quality amorphous metal film, an intermittent metal sputtering method is used and a method of forming an amorphous metal by cooling is already proposed ( Japanese Patent Application No. 3-89581). However, the amorphous film easily takes in impurities, and even if the amorphous film is formed for the above-mentioned purpose, its function could not be sufficiently exhibited.

【0015】そこで本発明は、上記問題点を解決して、
不純物の取込みの少ないアモルファス金属膜を形成する
手段と、前記手段にて形成したアモルファス金属膜を用
いた半導体装置を提供することを目的とする。
Therefore, the present invention solves the above problems by
It is an object of the present invention to provide a means for forming an amorphous metal film with less incorporation of impurities and a semiconductor device using the amorphous metal film formed by the means.

【0016】[0016]

【課題を解決するための手段】上記問題点に鑑み、本発
明者は鋭意努力した結果、次のような結論に達した。
In view of the above problems, the present inventor has made diligent efforts and, as a result, reached the following conclusion.

【0017】即ち、間欠スパッタと冷却によりアモルフ
ァス金属膜を形成しようとした場合、その反応ガスの残
留ガス(例えばN2,CO等)や残留ガス中の不純物
(例えば水)がアモルファス金属中に取り込まれ易いの
は、その到達真空度が不充分なためであるとの結論に達
した。とりわけ、アモルファス金属膜は、従来半導体集
積回路の配線に用いられている多結晶膜に比べて、結晶
を構成しないため、不純物が取り込まれ易い。
That is, when an amorphous metal film is to be formed by intermittent sputtering and cooling, residual gas (for example, N 2 , CO, etc.) of the reaction gas and impurities (for example, water) in the residual gas are taken into the amorphous metal. It was concluded that the reason why they are easily damaged is that the ultimate vacuum is insufficient. In particular, since the amorphous metal film does not form a crystal as compared with a polycrystalline film which is conventionally used for wiring of a semiconductor integrated circuit, impurities are easily taken in.

【0018】従って、従来のスパッタ装置よりも高い到
達真空度(10-10Torr以下)が必要で、それにより残
留ガス及びその中に含まれる不純物分圧を下げ、良好な
アモルファス金属膜を得んとするものである。そこで上
記課題は本発明によれば、間欠スパッタ手段を用い、か
つ、冷却してアモスファス金属を形成するアモルファス
金属の形成方法において、前記アモルファス金属を形成
する前の反応室の真空度を10-10Torr以下の高真空と
することを特徴とするアモルファス金属の形成方法によ
って解決される。
Therefore, a higher ultimate vacuum (10 -10 Torr or less) is required than that of the conventional sputtering apparatus, thereby reducing the residual gas and the partial pressure of impurities contained therein, and obtaining a good amorphous metal film. It is what Therefore, according to the present invention, in the method for forming an amorphous metal in which an intermittent sputtering means is used and which is cooled to form an amosphas metal, the degree of vacuum of the reaction chamber before forming the amorphous metal is 10 −10. The problem is solved by a method of forming an amorphous metal, which is characterized in that a high vacuum of Torr or less is set.

【0019】[0019]

【作用】本発明によれば、反応室9内の圧力を10-10
Torr以下の高真空にして、残留ガス及びその中に含ま
れている不純物分圧を充分に下げているのでアモルファ
ス金属膜中取り込まれることなく良好なアモルファス膜
が形成できる。
According to the present invention, the pressure in the reaction chamber 9 is set to 10 -10.
Since the residual gas and the partial pressure of impurities contained in the residual gas are sufficiently lowered by applying a high vacuum equal to or lower than Torr, a good amorphous film can be formed without being taken into the amorphous metal film.

【0020】[0020]

【実施例】以下本発明の実施例について、図面を参照し
て説明する。但し当然のことではあるが、本発明は以下
の実施例により限定されるものではない。
Embodiments of the present invention will be described below with reference to the drawings. However, as a matter of course, the present invention is not limited to the following examples.

【0021】実施例1 図1に示すのは、請求項1の説明に係るアモルファス金
属の形成装置を具体化した構成図であり、具体的には反
応室内の圧力を10-10Torrまで引けるターボ分子ポン
プ(図示せず)を従来装置に付加した。
Example 1 FIG. 1 is a structural diagram embodying the apparatus for forming an amorphous metal according to the first aspect of the present invention. Specifically, a turbo capable of pulling the pressure in the reaction chamber up to 10 −10 Torr. A molecular pump (not shown) was added to the conventional device.

【0022】本実施例では、この装置を用いて、請求項
1の発明のアモルファス金属の形成方法を、アモルファ
スアルミニウムの形成方法として具体化した。また、本
実施例で得られるのは、基体1である半導体基板(ウェ
ハー)にアモルファスアルミニウム(Al)膜が形成さ
れたもので、これは請求項2の発明が具体化されたもの
である。
In this embodiment, the method for forming an amorphous metal according to the first aspect of the present invention is embodied as a method for forming amorphous aluminum using this apparatus. In addition, what is obtained in this embodiment is an amorphous aluminum (Al) film formed on the semiconductor substrate (wafer) which is the base 1, which is the embodiment of the invention of claim 2.

【0023】本実施例のアモルファス金属形成装置10
は、図1に示すように、通常のスパッタ装置と異なり、
間欠的に開閉しうるシャッターをターゲット4と被スパ
ッタ基体1である半導体ウェハーとの間に設置して、こ
れをスパッタを間欠的に行なうための開閉手段2とし
た。基体1であるウェハーを載置するとともに、これを
0℃以下に冷却しうる冷却サセプターを有し、これが基
体1の冷却手段3を構成している。
Amorphous metal forming apparatus 10 of this embodiment
As shown in FIG. 1, is different from a normal sputtering device,
A shutter that can be opened and closed intermittently was installed between the target 4 and the semiconductor wafer that is the substrate 1 to be sputtered, and this served as the opening / closing means 2 for intermittently performing sputtering. A wafer, which is the substrate 1, is placed, and a cooling susceptor that can cool the wafer to 0 ° C. or less is provided, which constitutes the cooling means 3 for the substrate 1.

【0024】このような装置を用い、まず、反応室(チ
ェンバー)9内の圧力を10-10Torrの高真空まで引き
保持して、残留ガスやその中に含まれる不純物を排気
(Evac)した後、通常のDCやマグネトロン放電を
用いてA1をスパッタする。本実施例では、開閉手段2
であるシャッターの開は1/100secで、またその間
隔は1秒とした。また基体1であるウェハーは冷却手段
3であるサセプターに液体窒素(Liq.N2)を冷媒と
して流すことにより、過冷却状態に冷却した。
Using such an apparatus, first, the pressure in the reaction chamber (chamber) 9 was kept at a high vacuum of 10 -10 Torr, and residual gas and impurities contained therein were exhausted (Evac). After that, A1 is sputtered using normal DC or magnetron discharge. In this embodiment, the opening / closing means 2
The shutter was opened for 1/100 sec, and the interval was 1 sec. The wafer as the substrate 1 was cooled to a supercooled state by flowing liquid nitrogen (Liq.N 2 ) as a coolant through the susceptor as the cooling means 3.

【0025】このようにして形成すると、A1粒子は運
動エネルギーをもって基体1に到達するが、運動エネル
ギーが熱エネルギーに変わったとしても冷却手段3によ
りすぐ冷却され、しかも、間欠的なスパッタであるの
で、次のA1粒子が飛んでくるまで時間があり、よって
多結晶成長できずにアモルファス化する。
When formed in this manner, the A1 particles reach the substrate 1 with kinetic energy, but even if the kinetic energy is changed to thermal energy, it is immediately cooled by the cooling means 3, and the sputtering is intermittent. However, there is a time until the next A1 particle flies, so that the polycrystalline cannot grow and becomes amorphous.

【0026】上記により、良質のアモルファスA1が形
成され、特にこの例では半導体装置の配線膜を構成する
アモルファスA1膜が不純物の取り込みなく良好に成膜
された。得られたアモルファスA1配線膜を試験したと
ころ、エレクトロマイグレーションやストレスマイグレ
ーションが抑制された信頼性の高いものであった。
As described above, the high-quality amorphous A1 was formed, and particularly, in this example, the amorphous A1 film forming the wiring film of the semiconductor device was well formed without taking in impurities. When the obtained amorphous A1 wiring film was tested, electromigration and stress migration were suppressed and the reliability was high.

【0027】図1中、符号5は液体窒素(Liq.N2
の流れを示し、6は排気(真空引き)系を示す。また、
本実施例における開閉手段2は、図2に平面図で示すよ
うに、カメラのシャッターのように、複数の羽21,2
2・・・が重ね合わせられて全体として閉状態となり得
る構成をとっており、この羽21,22・・・が開い
て、開状態となることができる。但し、その他適宜の構
造をとってよいことは言うまでもない。
In FIG. 1, reference numeral 5 is liquid nitrogen (Liq.N 2 ).
6 shows an exhaust (vacuum) system. Also,
As shown in the plan view of FIG. 2, the opening / closing means 2 in this embodiment has a plurality of wings 21, 2 like a shutter of a camera.
.. are overlapped and can be closed as a whole, and the wings 21, 22 ... Can be opened to be in an open state. However, it goes without saying that other appropriate structures may be adopted.

【0028】[0028]

【発明の効果】上記詳述したように、本出願の請求項1
の発明によれば不純物の取込みのない良好なアモルファ
ス金属が容易に得られるアモルファス金属の形成方法が
提供でき、請求項2の発明によれば信頼性が高く容易に
形成できるアモルファス金属膜を有する半導体装置が提
供できる。
As described in detail above, claim 1 of the present application
According to the invention of claim 1, there can be provided a method for forming an amorphous metal which can easily obtain a good amorphous metal free of impurities. According to the invention of claim 2, a semiconductor having an amorphous metal film which is highly reliable and can be easily formed. A device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のアモルファス金属形成装置の構成図
である。
FIG. 1 is a configuration diagram of an amorphous metal forming apparatus according to a first embodiment.

【図2】アモルファス金属形成装置の開閉手段の一例を
示す平面図である。
FIG. 2 is a plan view showing an example of opening / closing means of the amorphous metal forming apparatus.

【符号の説明】[Explanation of symbols]

1 基体(半導体ウェハー) 2 開閉手段(シャッター) 3 冷却手段(冷却サセプター) 9 反応室(チャンバー) 10 アモルファス金属(アモルファスA1)形成装置 1 Base (Semiconductor Wafer) 2 Opening / Closing Means (Shutter) 3 Cooling Means (Cooling Susceptor) 9 Reaction Chamber (Chamber) 10 Amorphous Metal (Amorphous A1) Forming Device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 間欠スパッタ手段を用い、かつ冷却し
て、アモルファス金属を形成するアモルファス金属の形
成方法において、 前記アモルファス金属を形成する反応室内の真空度を1
-10Torr以下とすることを特徴とするアモルファス金
属の形成方法。
1. A method for forming an amorphous metal, wherein an amorphous metal is formed by using intermittent sputtering means and cooling, wherein the degree of vacuum in a reaction chamber for forming the amorphous metal is 1
A method for forming an amorphous metal, which is set to 0 -10 Torr or less.
【請求項2】 予め、スパッタ室内の真空度を10-10
Torr以下に保持し、その後、間欠スパッタ手段を用
い、かつ冷却して形成したアモルファス金属膜を有する
半導体装置。
2. The degree of vacuum in the sputtering chamber is set to 10 −10 in advance.
A semiconductor device having an amorphous metal film which is formed by keeping the temperature below Torr and then using an intermittent sputtering means and cooling.
JP25942591A 1991-10-07 1991-10-07 Method for forming amorphous metal and semiconductor device with amorphous metal film Pending JPH05102147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25942591A JPH05102147A (en) 1991-10-07 1991-10-07 Method for forming amorphous metal and semiconductor device with amorphous metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25942591A JPH05102147A (en) 1991-10-07 1991-10-07 Method for forming amorphous metal and semiconductor device with amorphous metal film

Publications (1)

Publication Number Publication Date
JPH05102147A true JPH05102147A (en) 1993-04-23

Family

ID=17333924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25942591A Pending JPH05102147A (en) 1991-10-07 1991-10-07 Method for forming amorphous metal and semiconductor device with amorphous metal film

Country Status (1)

Country Link
JP (1) JPH05102147A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110198033A1 (en) * 2010-02-16 2011-08-18 Canon Anelva Corporation Shutter device and vacuum processing apparatus
JP2013136834A (en) * 2011-11-28 2013-07-11 National Institute For Materials Science Shutter device for vapor deposition and deposition apparatus using the same
JP2015115358A (en) * 2013-12-09 2015-06-22 昭和電工株式会社 Semiconductor element manufacturing method
US20160322205A1 (en) * 2011-10-19 2016-11-03 Advanced Micro-Fabrication Equipment Inc, Shanghai Icp source design for plasma uniformity and efficiency enhancement
JP2020145437A (en) * 2015-10-13 2020-09-10 アモルフィックス・インコーポレイテッド Amorphous metal thin film nonlinear resistor
US11069799B2 (en) 2016-07-07 2021-07-20 Amorphyx, Incorporated Amorphous metal hot electron transistor
US11183585B2 (en) 2018-03-30 2021-11-23 Amorphyx, Incorporated Amorphous metal thin film transistors
CN116779412A (en) * 2023-08-25 2023-09-19 江苏鲁汶仪器股份有限公司 Ion source baffle device and ion beam etching machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110198033A1 (en) * 2010-02-16 2011-08-18 Canon Anelva Corporation Shutter device and vacuum processing apparatus
US20160322205A1 (en) * 2011-10-19 2016-11-03 Advanced Micro-Fabrication Equipment Inc, Shanghai Icp source design for plasma uniformity and efficiency enhancement
JP2013136834A (en) * 2011-11-28 2013-07-11 National Institute For Materials Science Shutter device for vapor deposition and deposition apparatus using the same
JP2015115358A (en) * 2013-12-09 2015-06-22 昭和電工株式会社 Semiconductor element manufacturing method
JP2020145437A (en) * 2015-10-13 2020-09-10 アモルフィックス・インコーポレイテッド Amorphous metal thin film nonlinear resistor
US10971392B2 (en) 2015-10-13 2021-04-06 Amorphyx, Inc. Amorphous metal thin film nonlinear resistor
US11610809B2 (en) 2015-10-13 2023-03-21 Amorphyx, Incorporated Amorphous metal thin film nonlinear resistor
US11069799B2 (en) 2016-07-07 2021-07-20 Amorphyx, Incorporated Amorphous metal hot electron transistor
US11183585B2 (en) 2018-03-30 2021-11-23 Amorphyx, Incorporated Amorphous metal thin film transistors
CN116779412A (en) * 2023-08-25 2023-09-19 江苏鲁汶仪器股份有限公司 Ion source baffle device and ion beam etching machine
CN116779412B (en) * 2023-08-25 2023-11-24 江苏鲁汶仪器股份有限公司 Ion source baffle device and ion beam etching machine

Similar Documents

Publication Publication Date Title
US5665659A (en) Method for forming metal layer of a semiconductor device
EP0134645B1 (en) Method of forming thin film
JPH02218125A (en) Method of selectively accumulating heat resistant metals or semiconductor substrate
US4352239A (en) Process for suppressing electromigration in conducting lines formed on integrated circuits by control of crystalline boundary orientation
US5227337A (en) Interconnection forming method
JPH05102147A (en) Method for forming amorphous metal and semiconductor device with amorphous metal film
JP3033331B2 (en) Manufacturing method of thin film wiring
US5814556A (en) Method of filling a contact hole in a semiconductor substrate with a metal
JPH05186868A (en) Method and device for forming amorphous metal and semiconductor device having amorphous metal film
US6638856B1 (en) Method of depositing metal onto a substrate
JPH0453132A (en) Metal thin film formation method
JPH02185025A (en) Manufacture of semiconductor device
US6099639A (en) Method for solid-state formation of diamond
JPH10172923A (en) Forming mehtod for metallic wiring for semiconductor device
US20040144977A1 (en) Semiconductor wafer with a thin epitaxial silicon layer, and production process
JPS63290269A (en) Sputtering device
JPH09232311A (en) Manufacture of semiconductor device
JPH025521A (en) Manufacture of semiconductor device
JPH03262127A (en) Manufacture of semiconductor device
KR0140639B1 (en) Mechod of forming silicide
KR19980081058A (en) Method and apparatus for preventing initial wafer failure
JP2771636B2 (en) Selective epitaxial growth method
JP2000164705A (en) Formation of wiring and semiconductor integrated circuit device
KR20030001744A (en) method for deposition of WNx film and W film
JP2961840B2 (en) Manufacturing method of Al wiring structure