JPH0499372A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0499372A
JPH0499372A JP2217512A JP21751290A JPH0499372A JP H0499372 A JPH0499372 A JP H0499372A JP 2217512 A JP2217512 A JP 2217512A JP 21751290 A JP21751290 A JP 21751290A JP H0499372 A JPH0499372 A JP H0499372A
Authority
JP
Japan
Prior art keywords
layer
conductor
semiconductor substrate
dielectric layer
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2217512A
Other languages
Japanese (ja)
Inventor
Masakimi Nakahara
中原 正公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Original Assignee
Kyushu Fujitsu Electronics Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Fujitsu Electronics Ltd, Fujitsu Ltd filed Critical Kyushu Fujitsu Electronics Ltd
Priority to JP2217512A priority Critical patent/JPH0499372A/en
Publication of JPH0499372A publication Critical patent/JPH0499372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To eliminate adverse influence to refreshing characteristic by forming a dielectric layer and a conductor layer by using the side and upper surface of a conductor post protruding on a semiconductor substrate. CONSTITUTION:An SiO2 film is formed as an insulating layer 4 on the entire surface by a CVD method, windows for a capacitor electrode, a bit line contact are then opened in a normal photolithography step, SiO2 of the window opening is removed by anisotropically etching, and a contact hole for exposing a semiconductor substrate 1 is formed. The hole is completely buried by conductor such as polysilicon by a CVD method to cover up to the layer 4, and phosphorus (P<+>) is thermally diffused to reduce the resistance of the polysilicon. The polysilicon is entirely etched by anisotropically etching. Then, the polysilicon remains only in the hole. Thus, a conductor post 5 is formed at the capacitor electrode, and a buried layer 5a is formed at a bit line contact. A DRAM having the post 5, the layers 6, 7 as a storage capacity unit is realized.

Description

【発明の詳細な説明】 〔概要] 半導体装置及びその製造方法に係り、特にダイナミック
・ランダム・アクセス・メモリ及びその製造方法に関し
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a semiconductor device and a manufacturing method thereof, and particularly to a dynamic random access memory and a manufacturing method thereof.

セルが微細化されても大きな電荷蓄積容量を持つ構造及
びその実現方法の提供を目的とし。
The purpose is to provide a structure that has a large charge storage capacity even when cells are miniaturized, and a method for realizing it.

半導体基板に下面を密着する導電体柱と、該導電体柱の
側面及び上面に密着する誘電体層と、該誘電体層に密着
する導電体層とを有し、該導電体柱と該誘電体層と該導
電体層は蓄積容量部をなす半導体装置により構成する。
It has a conductive column whose lower surface is in close contact with the semiconductor substrate, a dielectric layer which is in close contact with the side and top surfaces of the conductive column, and a conductive layer which is in close contact with the dielectric layer, and the conductive column and the dielectric layer are in close contact with the dielectric layer. The body layer and the conductor layer are constituted by a semiconductor device forming a storage capacitor section.

また、半導体基板上に絶縁層を形成する工程と該絶縁層
に該半導体基板を露出するコンタクトホールを形成する
工程と、該コンタクトホールを導電体で埋込んだ後、前
記絶縁層を選択的にエツチングして除去し、前記半導体
基板上に突き出る導電体柱を形成する工程と、該導電体
柱の側面及び上面にFp、を体層を形成する工程と、該
誘電体層上に導電体層を形成する工程とを有し、該導電
体柱と該誘電体層と該導電体層が蓄積容量部となる半導
体装置の製造方法により構成する。
The method also includes a step of forming an insulating layer on the semiconductor substrate, a step of forming a contact hole in the insulating layer to expose the semiconductor substrate, and a step of filling the contact hole with a conductor, and then selectively removing the insulating layer. a process of etching and removal to form a conductor column protruding onto the semiconductor substrate; a process of forming a Fp body layer on the side and top surfaces of the conductor column; and a process of forming a conductor layer on the dielectric layer. A method for manufacturing a semiconductor device in which the conductive pillar, the dielectric layer, and the conductive layer form a storage capacitor section is provided.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置及びその製造方法に係り特にダイナ
ミック・ランダム・アクセス・メモリ(DRAM)及び
その製造方法に関する。
The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to a dynamic random access memory (DRAM) and a method of manufacturing the same.

近年、半導体装1においては高集積化が進められ、メモ
リセルの微細化が要求されている。
In recent years, the semiconductor device 1 has become highly integrated, and there is a demand for miniaturization of memory cells.

DRAMのメモリセルの微細化に伴い、電荷を蓄積する
容量も小さくなるが、できるだけ基板の占有面積は小さ
(して、かつ電荷蓄積容量を太きくする工夫が種々なさ
れている。
As DRAM memory cells become smaller, the capacity for storing charges also decreases, and various efforts are being made to minimize the area occupied by the substrate (and increase the size of the charge storage capacity).

〔従来の技術] 従来の半導体記憶装置においては7大別して二通りの構
造がある。一つはスタック型セルであり他の一つはトレ
ンチ型セルである。
[Prior Art] Conventional semiconductor memory devices are classified into seven types, and there are two types of structures. One is a stack type cell and the other is a trench type cell.

第3図はスタック型セルの断面図であり、1は拡散層1
aを含む半導体基板、2はゲート酸化膜。
FIG. 3 is a cross-sectional view of a stacked cell, and 1 is a diffusion layer 1.
2 is a semiconductor substrate including a, and 2 is a gate oxide film.

3はゲート電極、4.8は絶縁層、9はAI配線。3 is a gate electrode, 4.8 is an insulating layer, and 9 is an AI wiring.

II、 12はキャパシタ電極、 13はキャパシタ絶
縁膜を表す。
II, 12 represents a capacitor electrode, and 13 represents a capacitor insulating film.

スタック型セルは、容量をかせぐためにトランスファー
ゲート(ゲート電極3)の段差を利用し。
Stacked cells use the step difference in the transfer gate (gate electrode 3) to increase capacitance.

キャパシタ電ill 12とキャパシタ絶縁膜13との
接触面積を広げているが、容量の大幅な増加は望めない
Although the contact area between the capacitor electric field 12 and the capacitor insulating film 13 is increased, a significant increase in capacitance cannot be expected.

第4図はトレンチ型セルの断面図であり、符号は第3図
と共通であり、さらに、 14.15はキャパシタ電極
116はキャパシタ絶縁膜を表す。
FIG. 4 is a cross-sectional view of a trench type cell, and the reference numerals are the same as those in FIG.

トレンチ型セルでは、キャパシタ電極14.15とキャ
パシタ絶縁膜16との接触面積を広げるために半導体基
板1を深くエツチングするが、その際多数の格子欠陥や
界面準位が発生し、リフレッシュ特性へ悪影響を及ぼす
In a trench type cell, the semiconductor substrate 1 is deeply etched to widen the contact area between the capacitor electrodes 14, 15 and the capacitor insulating film 16, but this creates a large number of lattice defects and interface states, which adversely affects refresh characteristics. effect.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、格子欠陥や界面準位の発生をなくしかつ容量
の大幅な増加をもたらすDRAMのセル構造、及びその
製造方法を提供することを目的とする。
An object of the present invention is to provide a DRAM cell structure that eliminates the occurrence of lattice defects and interface states and provides a significant increase in capacity, and a method for manufacturing the same.

〔課題を解決するための手段] 第1図は本発明の半導体装置の断面図、第2図(a)〜
(i)は実施例を説明するための工程順断面図を示し、
1は半導体基板、 laは拡散層、2はゲート酸化膜、
3はゲート電極、4は絶縁膜、5は導電体柱でキャパシ
タ電極、 5aは埋込み層、6は誘電体層、7は導電体
層でキャパシタ電極、8は絶縁層、9はA1配線、 1
0は保護層を表す。
[Means for Solving the Problems] FIG. 1 is a cross-sectional view of a semiconductor device of the present invention, and FIGS.
(i) shows a step-by-step sectional view for explaining the example,
1 is a semiconductor substrate, la is a diffusion layer, 2 is a gate oxide film,
3 is a gate electrode, 4 is an insulating film, 5 is a conductor pillar and is a capacitor electrode, 5a is a buried layer, 6 is a dielectric layer, 7 is a conductor layer and is a capacitor electrode, 8 is an insulating layer, 9 is an A1 wiring, 1
0 represents a protective layer.

上記課題は、半導体基板1に下面を密着する導電体柱5
と、該導電体柱5の側面及び上面に密着する誘電体層6
と、該誘電体層6に密着する導電体層7とを存し、該導
電体柱5と該誘電体層6と該導電体層7は蓄積容量部を
なす半導体装置によって解決される。
The above problem is solved by the conductor pillar 5 whose lower surface is in close contact with the semiconductor substrate 1.
and a dielectric layer 6 that is in close contact with the side and top surfaces of the conductor pillar 5.
and a conductor layer 7 that is in close contact with the dielectric layer 6, and the conductor column 5, the dielectric layer 6, and the conductor layer 7 form a storage capacitor section.

また、半導体基板1上に絶縁層4を形成する工程と、該
絶縁層4に該半導体基板lを露出するコンタクトホール
を形成する工程と、該コンタクトホールを導電体で埋込
んだ後、前記絶縁層4を選択的にエツチングして除去し
、前記半導体基板1上に突き出る導電体柱5を形成する
工程と、該導電体柱5の側面及び上面に誘電体層6を形
成する工程と1該誘電体層6上に導電体層7を形成する
工程とを有し、該導電体柱5と該誘電体層6と該導電体
層7が蓄積容量部となる半導体装置の製造方法によって
解決される。
Further, the process includes a step of forming an insulating layer 4 on the semiconductor substrate 1, a step of forming a contact hole exposing the semiconductor substrate l in the insulating layer 4, and a step of filling the contact hole with a conductor, and then filling the insulating layer 4 with a conductor. A step of selectively etching and removing the layer 4 to form a conductor column 5 protruding above the semiconductor substrate 1; and a step of forming a dielectric layer 6 on the side and top surfaces of the conductor column 5. The present invention is solved by a method for manufacturing a semiconductor device, which includes a step of forming a conductor layer 7 on a dielectric layer 6, and in which the conductor pillar 5, the dielectric layer 6, and the conductor layer 7 form a storage capacitor section. Ru.

〔作用〕[Effect]

本発明では第1図に示すように半導体基板1上に突き出
る導電体柱5の側面と上面を利用して。
In the present invention, as shown in FIG. 1, the side and top surfaces of conductor pillars 5 protruding above semiconductor substrate 1 are utilized.

誘電体層6及び導電体層7を形成し、キャパシタを構成
する。従って、導電体柱5の高さを高く形成することに
よりキャパシタ電極の面積を広げ。
A dielectric layer 6 and a conductor layer 7 are formed to constitute a capacitor. Therefore, by increasing the height of the conductor pillars 5, the area of the capacitor electrode can be increased.

キャパシタ容量の増加を図ることができる。It is possible to increase the capacitor capacity.

この構造はトレンチ形成の場合と違って半導体基板lに
格子欠陥を生したり界面準位を生したりすることがない
から、リフレッシュ特性に悪影響を及ぼすことがない。
Unlike the case of trench formation, this structure does not create lattice defects or interface states in the semiconductor substrate l, so it does not adversely affect refresh characteristics.

〔実施例] 以下、第2図(a)〜(i)を参照しながら1本発明の
実施例について説明する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 2(a) to (i).

第2図(a)参照 通常の方法により、半導体基板にMOSFETを形成す
る。即ち、半導体基板1に通常の方法により、ゲート酸
化膜2.ゲート電極3.拡散層1aを形成する。半導体
基板1は1例えばP型St基板にN型拡散層を形成した
ものである。N型Si基板にP型拡散層を形成したもの
でもよい。
Referring to FIG. 2(a), a MOSFET is formed on a semiconductor substrate by a conventional method. That is, a gate oxide film 2. is formed on a semiconductor substrate 1 by a conventional method. Gate electrode 3. A diffusion layer 1a is formed. The semiconductor substrate 1 is, for example, a P-type St substrate on which an N-type diffusion layer is formed. A P-type diffusion layer may be formed on an N-type Si substrate.

ゲート電極3の高さは2例えば0.3μmである。The height of the gate electrode 3 is, for example, 0.3 μm.

第2図(b)参照 全面に絶縁層4として、CVD法により厚さ0.5μm
のSiO□膜を形成し9その後通常のフォトリソグラフ
工程によりレジストにキャパシタ電極部、ビット線コン
タクト部の窓開きを行い。
Refer to Fig. 2(b) An insulating layer 4 is formed on the entire surface with a thickness of 0.5 μm by CVD method.
A SiO□ film is formed, and then a window for the capacitor electrode part and the bit line contact part is opened in the resist by a normal photolithography process.

異方性エツチングにより窓開き部の5in2を除去し、
半導体基板lを露出するのコンタクトホールを形成する
。その後、レジストを除去する。
5in2 of the window opening was removed by anisotropic etching,
A contact hole is formed to expose the semiconductor substrate l. After that, the resist is removed.

第2図(c)参照 CVD法により、コンタクトホールを導電体。See Figure 2(c) The contact hole is made into a conductor using the CVD method.

例えばポυSiで完全に埋込み、絶縁層4の上まで覆う
ようにし、ポリSiの抵抗を下げるため。
For example, it is completely buried with polySi to cover the top of the insulating layer 4 to lower the resistance of polySi.

りん(P゛)を熱拡散させる。Heat diffuses phosphorus (P゛).

第2図(d)参照 異方性エツチングにより、ポリSiを全面エツチングす
る。すると、ポリSiはコンタクトホール内にのみ残る
。これにより、キャパシタ電極部に導電体柱5.ビット
線コンタクト部に埋込み層5aが形成される。
The entire surface of the poly-Si is etched by anisotropic etching as shown in FIG. 2(d). Then, poly-Si remains only in the contact hole. As a result, the conductor pillar 5. A buried layer 5a is formed in the bit line contact portion.

第2図(e)参照 異方性エンチングにより、絶縁層4(7)SiO□を選
択的にエツチングする。エツチング量は、ゲート電極3
の上面が現れるくらいまでとする。
Referring to FIG. 2(e), the insulating layer 4 (7) SiO□ is selectively etched by anisotropic etching. The etching amount is the gate electrode 3
until the top of the surface is visible.

第2図(f)参照 キャパシタ絶縁膜として熱酸化により5in2を形成し
、導電体柱5と埋込み層5aの表面に厚さ約100人の
誘電体層6を形成する。
Referring to FIG. 2(f), a capacitor insulating film having a thickness of 5 in 2 is formed by thermal oxidation, and a dielectric layer 6 having a thickness of about 100 mm is formed on the surfaces of the conductor pillars 5 and the buried layer 5a.

その後2 フォトリソグラフ工程によりビット線コンタ
クト部に窓開けを行い、異方性エツチングにより埋込み
層5a上面のSiO□を除去する。
After that, a window is opened in the bit line contact portion by a 2 photolithography process, and SiO□ on the upper surface of the buried layer 5a is removed by anisotropic etching.

第2図(g)参照 キャパシタ電極として全面にポリSiをCVD法により
成長させ、厚さ30ooλ程度の導電体層7を形成する
Refer to FIG. 2(g) As a capacitor electrode, poly-Si is grown on the entire surface by the CVD method to form a conductive layer 7 having a thickness of about 3000λ.

その後、フォトリソグラフ工程によりビット線コンタク
ト部に窓開けを行い、異方性エツチングによりポリSi
を除去する。
After that, a window is opened in the bit line contact area using a photolithography process, and poly-Si is etched using anisotropic etching.
remove.

第2図(h)参照 全面にPSGを成長させ、絶縁層8を形成する。See Figure 2 (h) PSG is grown on the entire surface to form an insulating layer 8.

その後、フォトリソグラフ工程によりビット線コンタク
ト部に窓開けを行い、PSGをエツチングして除去する
Thereafter, a window is formed in the bit line contact portion by a photolithography process, and the PSG is etched and removed.

第2図(i)参照 ビット線用配線材としてPVD法によりAIを成長させ
2それをパターニングしてAI配線9を形成し、その上
に保護膜10としてPSG、SiN等をCVD法により
成長させる。
Refer to FIG. 2(i) As a wiring material for a bit line, AI is grown by the PVD method 2 It is patterned to form an AI wiring 9, and PSG, SiN, etc. is grown on it as a protective film 10 by a CVD method. .

かくして、導電体柱5.誘電体層6.導電体層7を蓄積
容量部とするDRAMが実現する。
Thus, the conductor column 5. Dielectric layer 6. A DRAM in which the conductor layer 7 serves as a storage capacitor section is realized.

誘電体層6の材料は5in2に替えてそれより誘電率の
高いSiNを用いてもよい。
As the material of the dielectric layer 6, SiN having a higher dielectric constant may be used instead of 5in2.

なお、導電体層7は導電体柱5の上のみに誘電体層6を
介して形成すれば蓄積容量部としての機能を果たすこと
ができるが5表面の凹凸をなるべく小さくする目的で全
面に形成している。
Note that if the conductor layer 7 is formed only on the conductor column 5 via the dielectric layer 6, it can function as a storage capacitor section, but it may be formed over the entire surface in order to minimize the unevenness of the surface of the conductor column 5. are doing.

〔発明の効果〕〔Effect of the invention〕

以上説明したように9本発明によれば、トレンチ型で問
題となるリフレッシュ特性への悪影響のない、かつキャ
パシタ容量の大きいDRAMを提供することができる。
As described above, according to the present invention, it is possible to provide a DRAM that does not have an adverse effect on the refresh characteristics, which is a problem with the trench type, and has a large capacitor capacity.

本発明はDRAMの高密度化に寄与するところが大きい
The present invention greatly contributes to increasing the density of DRAM.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装置の断面図 第2図(a)〜(i)は実施例を説明するための工程順
断面図。 第3図はスタック型セルの断面図 第4図はトレンチ型セルの断面図 である。 図において。 lは半導体基板。 1aは拡散層。 2はゲート酸化膜。 3はゲート電極。 4は絶縁層であってSiO□ 5は導電体柱であってキャパシタ電極。 5aは埋込み層。 6は誘電体層。 7は導電体層であってキャパシタ電極。 8は絶縁層であってPSG。 9はAI配線。 10は保護層。 11、12.14.15はキャパシタ電極。 13、16はキャパシタ絶縁膜 慕 1 図 更#イ列Σ啄明13たhの1稈)l頃断面図射2図(ブ
の1) 実務例!説明T:5月澱の工打順断面図案2配(’fi
t’)2) Xり・ソフ型セルの断面図 佑3図 第4図
FIG. 1 is a cross-sectional view of a semiconductor device of the present invention. FIGS. 2(a) to (i) are cross-sectional views in the order of steps for explaining an embodiment. FIG. 3 is a sectional view of a stack type cell, and FIG. 4 is a sectional view of a trench type cell. In fig. l is a semiconductor substrate. 1a is a diffusion layer. 2 is the gate oxide film. 3 is the gate electrode. 4 is an insulating layer, SiO□ 5 is a conductor column, and is a capacitor electrode. 5a is a buried layer. 6 is a dielectric layer. 7 is a conductor layer, which is a capacitor electrode. 8 is an insulating layer, which is PSG. 9 is AI wiring. 10 is a protective layer. 11, 12, 14, and 15 are capacitor electrodes. 13 and 16 are capacitor insulating films. Explanation T: May lees hammering order cross-sectional design 2 layouts ('fi
t') 2) Cross-sectional view of X-ri/soft type cell Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 〔1〕半導体基板(1)に下面を密着する導電体柱(5
)と、該導電体柱(5)の側面及び上面に密着する誘電
体層(6)と、該誘電体層(6)に密着する導電体層(
7)とを有し、 該導電体柱(5)と該誘電体層(6)と該導電体層(7
)は蓄積容量部をなすことを特徴とする半導体装置。 〔2〕半導体基板(1)上に絶縁層(4)を形成する工
程と、 該絶縁層(4)に該半導体基板(1)を露出するコンタ
クトホールを形成する工程と、 該コンタクトホールを導電体で埋込んだ後、前記絶縁層
(4)を選択的にエッチングして除去し、前記半導体基
板(1)上に突き出る導電体柱(5)を形成する工程と
、 該導電体柱(5)の側面及び上面に誘電体層(6)を形
成する工程と、 該誘電体層(6)上に導電体層(7)を形成する工程と
を有し、 該導電体柱(5)と該誘電体層(6)と該導電体層(7
)が蓄積容量部となることを特徴とする半導体装置の製
造方法。
[Scope of Claims] [1] Conductor pillar (5) whose lower surface is in close contact with the semiconductor substrate (1)
), a dielectric layer (6) in close contact with the side and top surfaces of the conductive pillar (5), and a conductive layer (6) in close contact with the dielectric layer (6).
7), the conductor column (5), the dielectric layer (6), and the conductor layer (7).
) is a semiconductor device characterized by forming a storage capacitor section. [2] A step of forming an insulating layer (4) on the semiconductor substrate (1), a step of forming a contact hole exposing the semiconductor substrate (1) in the insulating layer (4), and a step of making the contact hole conductive. a step of selectively etching and removing the insulating layer (4) to form a conductive column (5) protruding above the semiconductor substrate (1); ) a step of forming a dielectric layer (6) on the side and top surfaces of the conductor column (5), and a step of forming a conductor layer (7) on the dielectric layer (6); The dielectric layer (6) and the conductor layer (7)
) is a storage capacitor portion.
JP2217512A 1990-08-17 1990-08-17 Semiconductor device and manufacture thereof Pending JPH0499372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2217512A JPH0499372A (en) 1990-08-17 1990-08-17 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2217512A JPH0499372A (en) 1990-08-17 1990-08-17 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0499372A true JPH0499372A (en) 1992-03-31

Family

ID=16705394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2217512A Pending JPH0499372A (en) 1990-08-17 1990-08-17 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0499372A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003166A1 (en) * 1999-06-29 2001-01-11 Infineon Technologies Ag Method for producing an electrode
US7579553B2 (en) * 2000-07-27 2009-08-25 Fujitsu Limited Front-and-back electrically conductive substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003166A1 (en) * 1999-06-29 2001-01-11 Infineon Technologies Ag Method for producing an electrode
US7579553B2 (en) * 2000-07-27 2009-08-25 Fujitsu Limited Front-and-back electrically conductive substrate

Similar Documents

Publication Publication Date Title
KR950006473B1 (en) Semiconductor memory device and manufacturing method thereof
JP2608363B2 (en) Semiconductor memory device and method of manufacturing the same
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
US6025227A (en) Capacitor over bit line structure using a straight bit line shape
JPH10313100A (en) Dram cell device and manufacture thereof
US5606189A (en) Dynamic RAM trench capacitor device with contact strap
JPH09266292A (en) Semiconductor device and its manufacturing method
JPH03109764A (en) Mos-type semiconductor device
JPH0750772B2 (en) Semiconductor device and manufacturing method thereof
JPH0499372A (en) Semiconductor device and manufacture thereof
JP3120462B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP3149930B2 (en) Semiconductor device and method of manufacturing the same
US5879988A (en) Capacitor of a DRAM cell and method of making same
JPH02260454A (en) Manufacture of memory device
JP2715012B2 (en) Semiconductor memory device and method of manufacturing the same
US6232240B1 (en) Method for fabricating a capacitor
JPH01265556A (en) Semiconductor memory and manufacture thereof
JP3048417B2 (en) Method for manufacturing semiconductor device
JPH03148860A (en) Semiconductor memory and manufacture thereof
US5750431A (en) Method for fabricating a stacked capacitor
JPH0223657A (en) Semiconductor memory device
JPH07202023A (en) Semiconductor storage device and its manufacture
JP3004280B2 (en) Semiconductor memory cell
JP2969789B2 (en) Method for manufacturing semiconductor memory device
JPS61289657A (en) Semiconductor storage device