JPH0499010A - Forming method for rare earth alloy thin film magnet - Google Patents

Forming method for rare earth alloy thin film magnet

Info

Publication number
JPH0499010A
JPH0499010A JP19105290A JP19105290A JPH0499010A JP H0499010 A JPH0499010 A JP H0499010A JP 19105290 A JP19105290 A JP 19105290A JP 19105290 A JP19105290 A JP 19105290A JP H0499010 A JPH0499010 A JP H0499010A
Authority
JP
Japan
Prior art keywords
rare earth
earth alloy
film
thin film
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19105290A
Other languages
Japanese (ja)
Other versions
JP3106484B2 (en
Inventor
Shinji Yamashita
山下 慎次
Mitsuaki Ikeda
満昭 池田
Jiro Yamazaki
山崎 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP02191052A priority Critical patent/JP3106484B2/en
Publication of JPH0499010A publication Critical patent/JPH0499010A/en
Application granted granted Critical
Publication of JP3106484B2 publication Critical patent/JP3106484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To form a film having high energy product and intensive anisotropy in the film thickness direction only by sputtering, by a method wherein basic composition is rare earth element Re, boron B, and iron Fe, and the film is formed by sputtering in a specified relational range of the film forming speed (mum/min) and the substrate temperature ( deg.C). CONSTITUTION:In the forming method wherein basic composition is rare earth element Re, boron B, and iron Fe, the X-axis is set as the film formation speed (mum/min), and the Y-axis is set as the substrate temperature ( deg.C). Sputtering is performed in the range surrounded by the following; a line connecting (0.05, 420) and (1.0, 0.600), Y=700, X=0.05, and X=1.0. The composition is as follows; rare earth alloy Nd is 11-18at%, B is 8-15at%, and residual part is Fe, or a part of Fe is substituted by Co of 2-16at% and Al of 0.5-5at%. Further the composition of the following is used; rare earth alloy Pr is 11-18at%, B is 8-15at%, Cu is 1-5at%, and resisdual part is Fe, or a part of Fe is substituted by Cu of 2-16at%, and Al of 0.5-5at%.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は磁気記録媒体や高性能小型モータ等に用いら
れる強磁性薄膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a ferromagnetic thin film used in magnetic recording media, high-performance small motors, and the like.

[従来の技術] 大きな保磁力と最大エネルギ積(BH)1.8を有する
Nd−Fe−B系磁石は機器の小型化に貢献するためそ
の利用が進められている。
[Prior Art] Nd-Fe-B magnets, which have a large coercive force and a maximum energy product (BH) of 1.8, are being used more and more because they contribute to the miniaturization of devices.

しかし、この磁石は形成と加工性が困難なため薄肉化や
特殊形状での使用ができない。そのため液体急冷法、ス
パッタリング法、スプレー法等により、任意の形状の薄
膜を形成する研究が行われている。たとえば、J、Va
c、Sci、Tecbnol、A6 (3)(1988
)1668−1674や本発明者らによる特開昭63−
84005に示されている。
However, this magnet is difficult to form and process, so it cannot be used in thin walls or in special shapes. For this reason, research is being conducted to form thin films of arbitrary shapes using liquid quenching methods, sputtering methods, spray methods, and the like. For example, J, Va
c, Sci, Tecbnol, A6 (3) (1988
) 1668-1674 and Japanese Unexamined Patent Application Publication No. 1983-1989 by the present inventors.
84005.

[発明が解決しようとする課題] 止ころが、前者では面内方向に異方性を持つ磁気特性の
好ましくない膜かあるいは膜厚方向に異方性を持つもの
が得られても、面内方向の成分がかなり残っている膜し
か得られておらず、高密度の磁気記録やアクチュエータ
に応用することができなかった。
[Problems to be Solved by the Invention] In the former case, even if a film with unfavorable magnetic properties having anisotropy in the in-plane direction or a film with anisotropy in the thickness direction is obtained, Only films with a significant amount of directional component remaining could be obtained, and could not be applied to high-density magnetic recording or actuators.

また、後者の膜では、膜厚方向に異方性を持つもので面
内方向の成分が少なく特性はよいが、スパッタリングの
あとアニールを施さねばならず、製品の製造工程が複雑
であった。
In addition, the latter film has anisotropy in the film thickness direction and has good properties with a small amount of components in the in-plane direction, but it requires annealing after sputtering, making the manufacturing process of the product complicated.

そこで、本発明は高エネルギ積を有し、しかも膜厚方向
に強い異方性を有する膜をスパッタリングしただけで形
成する薄膜磁石の形成方法を提供することを目的とする
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for forming a thin film magnet by simply sputtering a film having a high energy product and strong anisotropy in the film thickness direction.

「課題を解決するための手段] 上記課題を解決するため、希土類元素Reとほう素Bと
鉄Feを基本組成とする希土類合金薄膜磁石の形成方法
において、X軸を膜形成速度(μm/min ) 、 
Y軸を基板温度(℃)としたとき(0,05,420>
、 (1,0,600)を結ぶ直線とY=700とX=
 o、 05およびX = 1.0で囲まれる範囲でス
パッタリングにより形成する。
"Means for Solving the Problems" In order to solve the above problems, in a method for forming a rare earth alloy thin film magnet whose basic composition is rare earth element Re, boron B, and iron Fe, the X axis is the film formation rate (μm/min). ),
When the Y axis is the substrate temperature (℃) (0,05,420>
, the straight line connecting (1,0,600) and Y=700 and X=
It is formed by sputtering in the range surrounded by o, 05 and X = 1.0.

また、前記希土類合金がNd11〜18原子%、B8〜
15原子%、残部がFeの組成であるかまたはこの組成
のFeの一部をCo2〜16原子%およびAI  0.
5〜5原子%で置換した組成にしている。さらに、前記
希土類合金がPr11〜18原子%、B8〜15原子%
、Cu1〜5原子%、残部がFeの組成であるかまたは
この組成のFeの一部をCo2〜16原子%およびA1
0.5〜5原子%で置換した組成にしている。
Further, the rare earth alloy includes Nd11 to 18 atomic%, B8 to
15 atom %, the balance being Fe, or a part of the Fe of this composition is combined with Co2 to 16 atom % and AI 0.
The composition has a substitution ratio of 5 to 5 atomic %. Furthermore, the rare earth alloy contains 11 to 18 atomic % of Pr and 8 to 15 atomic % of B.
, Cu 1 to 5 atomic %, the balance being Fe, or a part of the Fe of this composition is Co2 to 16 atomic % and A1
The composition has a substitution ratio of 0.5 to 5 atomic %.

[作用コ 上記手段により、Nd−Fe−B系磁石の主な相である
正方晶Nd2Fe14B相またはPrzFe 、、B相
の磁化容易軸であるC軸が膜厚方向に成長するため、膜
厚方向の異方性が強く、エネルギ積が大きな膜が得られ
る。
[Operation] By the above means, the C axis, which is the axis of easy magnetization of the tetragonal Nd2Fe14B phase or the PrzFe B phase, which is the main phase of the Nd-Fe-B magnet, grows in the film thickness direction. A film with strong anisotropy and a large energy product can be obtained.

[実施例] 以下図面を参照しながら、実施例により本発明を具体的
に説明する。
[Example] The present invention will be specifically described below with reference to the drawings.

第1図は本発明の垂直磁化膜を形成するための多極マグ
ネトロンスパッタリング装置の断面図である。真空容器
1の中にターゲット2を設け、これと対向させて40吐
の間隔を置き基板3を基板取付台4に配置している。
FIG. 1 is a sectional view of a multipolar magnetron sputtering apparatus for forming a perpendicularly magnetized film of the present invention. A target 2 is provided in a vacuum container 1, and a substrate 3 is placed on a substrate mount 4 facing the target 2 at an interval of 40 mm.

基板はヒータ6によって加熱することができ、基板の温
度をヒータ電源13によってコントロールするようにし
である。ターゲット2と基板3の間にはスパッタリング
初期に飛散する粒子が基板に付着するのを防ぐためシャ
ッタ5を配設しており、ターゲット2にはターゲット電
源7によって直流電圧または高周波電圧を印加できるよ
うにしである。ターゲットの近傍にはフィラメント8と
アノード電極10を配置しフィラメント電源9によりフ
ィラメントを加熱し熱電子を発生させてアノード電極1
0へ集めるようにしており、フィラメント電源9とアノ
ード電源11によりターゲット電流は任意に変えられる
のでターゲット電圧とターゲット電流は独立に変えるこ
とが可能である。
The substrate can be heated by a heater 6, and the temperature of the substrate is controlled by a heater power source 13. A shutter 5 is provided between the target 2 and the substrate 3 in order to prevent particles scattered during the initial stage of sputtering from adhering to the substrate, and a DC voltage or high frequency voltage can be applied to the target 2 by a target power source 7. It's Nishide. A filament 8 and an anode electrode 10 are arranged near the target, and the filament is heated by a filament power source 9 to generate thermoelectrons and the anode electrode 1 is heated.
Since the target current can be changed arbitrarily by the filament power source 9 and the anode power source 11, the target voltage and target current can be changed independently.

(1)Nd−Fe−B系合金薄膜磁石 ターゲット2は薄膜中のNdが15原子%、Bが15原
子%、Coが10原子%、AIが7原子%、残部がFe
の原料を溶解鋳造したものを用いた。このターゲットを
スパッタリング電極に取り付け、基板3を基板台4に設
置した後、真空容器内を排気系14により2X10−@
Torr以下に排気する。ヒータ電源13を調整しなが
ら基板を500℃に加熱しておき、フィラメント電源9
を調整してフィラメント8を加熱した後、アルゴンガス
導入バルブ12を開いてアルゴンガスを導入し、圧力が
8X10−’Torrになるように調整した。アノード
電源を調整してターゲット電流を0.5Aにした後、シ
ャッタ5を閉じたままターゲット電源7により直流電圧
300Vを印加して30分間予備スパッタリングを行い
、ターゲット表面の酸化物等を除去し、シャッタを開い
て60分間スパッタリングを行い、約5μmの厚さの膜
を形成した。この後、再び真空容器内を2×10−’T
 o r r以下に排気し、基板温度が室温になるまで
冷却した。 第2図は本発明の直流磁化特性を示す一例
である。膜厚方向に測定した磁気特性であり、膜厚方向
に異方性をもち、最大エネルギ積が10MGOeを超え
た薄膜磁石が得られた。
(1) Nd-Fe-B alloy thin film magnet target 2 contains 15 at% of Nd, 15 at% of B, 10 at% of Co, 7 at% of AI, and the balance is Fe.
The raw material was melted and cast. After attaching this target to the sputtering electrode and placing the substrate 3 on the substrate stand 4, the inside of the vacuum container is pumped through the exhaust system 14 to 2X10-@
Exhaust to below Torr. The substrate is heated to 500°C while adjusting the heater power supply 13, and the filament power supply 9
After heating the filament 8 by adjusting the temperature, the argon gas introduction valve 12 was opened to introduce argon gas, and the pressure was adjusted to 8×10 −′ Torr. After adjusting the anode power source and setting the target current to 0.5 A, preliminary sputtering was performed for 30 minutes by applying a DC voltage of 300 V from the target power source 7 while keeping the shutter 5 closed, to remove oxides etc. on the target surface. The shutter was opened and sputtering was performed for 60 minutes to form a film with a thickness of about 5 μm. After this, the inside of the vacuum container was heated again to 2×10-'T.
The temperature of the substrate was evacuated to below o r r, and the substrate was cooled to room temperature. FIG. 2 is an example showing the DC magnetization characteristics of the present invention. The magnetic properties were measured in the film thickness direction, and a thin film magnet was obtained that had anisotropy in the film thickness direction and had a maximum energy product exceeding 10 MGOe.

さらに、基板温度と膜形成速度の作製条件を種々変えて
製膜した。その結果、成膜時の温度が低すぎると膜は十
分に結晶化せず保磁力が小さくなり、また700℃を超
えると常磁性相が成長して飽和磁化が減少したり、角型
比が低下することがわかった。
Furthermore, films were formed by varying the manufacturing conditions such as substrate temperature and film formation rate. As a result, if the temperature during film formation is too low, the film will not be sufficiently crystallized and the coercive force will be small, and if the temperature exceeds 700°C, a paramagnetic phase will grow, the saturation magnetization will decrease, and the squareness ratio will decrease. was found to decrease.

また、第1表に種々の合金組成で薄膜を作製し、磁気特
性を測定した結果を示す。この結果からα−Fe相やそ
の他の常磁性相が結晶化して保磁力の低下や飽和磁化の
低下がおこらないようにNd11〜18原子%、B8〜
15原子%の組成で成膜しなければならないことがわか
った。
Furthermore, Table 1 shows the results of measuring the magnetic properties of thin films made with various alloy compositions. From this result, Nd 11-18 atomic%, B8-
It was found that the film must be formed with a composition of 15 atomic %.

第3図に最大エネルギ積が10MGOeを超えた場合の
基板温度と膜形成速度の関係を示す。
FIG. 3 shows the relationship between substrate temperature and film formation rate when the maximum energy product exceeds 10 MGOe.

この作製条件の範囲では磁気特性は保磁力5KOe以上
、最大エネルギ積10MGOe以上、膜厚方向の角型比
0.9以上であった。
Within this range of manufacturing conditions, the magnetic properties were a coercive force of 5 KOe or more, a maximum energy product of 10 MGOe or more, and a squareness ratio in the film thickness direction of 0.9 or more.

第1表 (2) P r−F e−B系合金薄膜磁石つぎに、タ
ーゲット2を薄膜中のPrが15原子%、Bが15原子
%、COが10原子%、AIが7原子%、残部がFeの
原料を溶解鋳造したものを用いて、前述と同じく基板温
度、膜形成速度の条件で作製した。磁気特性を測定した
ところ、膜厚方向に異方性をもち、最大エネルギ積が1
0MGOeを超えた薄膜磁石が得られた。
Table 1 (2) Pr-F e-B alloy thin film magnet Next, the target 2 was prepared such that Pr in the thin film was 15 at%, B was 15 at%, CO was 10 at%, AI was 7 at%, Using a melt-casting material with the remainder being Fe, it was produced under the same substrate temperature and film formation speed conditions as described above. When we measured the magnetic properties, we found that the film has anisotropy in the thickness direction, and the maximum energy product is 1.
A thin film magnet exceeding 0 MGOe was obtained.

さらに、第2表にこの系の合金組成を種々変えて薄膜を
作製し、磁気特性を測定した結果を示す。
Furthermore, Table 2 shows the results of measuring the magnetic properties of thin films made with various alloy compositions of this system.

Pr11〜18原子%、B8〜15原子%、Cu1〜5
原子%の組成で成膜しなければ優れた特性は得られない
ことがわかった。
Pr11-18 at%, B8-15 at%, Cu1-5
It was found that excellent properties could not be obtained unless the film was formed with a composition of atomic percent.

最大エネルギ積が10MGOeを超える場合の基板温度
と膜形成速度の関係は第3図と同じであり、この場合の
磁気特性も前述と同様に保磁力5KOe以上、膜厚方向
の角型比0.9以上であった。
The relationship between substrate temperature and film formation rate when the maximum energy product exceeds 10 MGOe is the same as that shown in FIG. 3, and the magnetic properties in this case are the same as described above, with a coercive force of 5 KOe or more and a squareness ratio in the film thickness direction of 0. It was 9 or more.

以下7行余白。Below are 7 lines of blank space.

第2表 〔発明の効果〕 以上説明したように本発明によれば、基板温度と膜形成
速度を最適の範囲に設定して行ったので、最大エネルギ
ー積(BH)、、、が10MGOe以上の垂直磁化膜が
得られる効果があり、このため磁気を利用した装置を高
性能化、小型化することができる効果がある。
Table 2 [Effects of the Invention] As explained above, according to the present invention, the substrate temperature and film formation rate are set in the optimum ranges, so that the maximum energy product (BH) is 10 MGOe or more. This has the effect of obtaining a perpendicularly magnetized film, and therefore has the effect of making it possible to improve the performance and downsize of devices that utilize magnetism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の垂直磁化膜を形成するために使用した
多極マグネトロンスパッタリング装置の断面図、第2図
は本発明の代表的な垂直磁化膜の直流磁化特性の一例を
示す図、第3図は本発明の基板温度と膜形成速度の関係
を示す図である。 図において2はターゲット、3は基板、5はシャッタで
ある。 特許出願人 株式会社 安用電機製作所箋ス図 外iJ5石a界(koe) 第 1(!1 1、真空容器 2、ターゲット 3、基 板 4、基板取付台 5 シヤツク ロ ヒー9 ターゲットを源  13.ヒータ電源 クイ5メ)ト    14.排気系 フィラメント電源 アノード;檀 アノード電源 アルづシガス堺大パルプ 冨 3 目 Ill形成蓮麿(、ml、−・)
FIG. 1 is a cross-sectional view of a multipolar magnetron sputtering apparatus used to form the perpendicularly magnetized film of the present invention, FIG. FIG. 3 is a diagram showing the relationship between substrate temperature and film formation rate according to the present invention. In the figure, 2 is a target, 3 is a substrate, and 5 is a shutter. Patent applicant Anyo Electric Manufacturing Co., Ltd. IJ5 stone a world (koe) 1st (!1 1, Vacuum vessel 2, Target 3, Substrate 4, Substrate mounting base 5 Shock Heater 9 Target source 13. Heater power supply key 5) 14. Exhaust system filament power supply anode; Dan anode power supply Alzu Shigas Sakai large pulp 3 eyes Ill formation Renmaro (, ml, -.)

Claims (1)

【特許請求の範囲】 1 希土類元素Reとほう素Bと鉄Feを基本組成とす
る希土類合金薄膜磁石の形成方法において、X軸を膜形
成速度(μm/min),Y軸を基板温度(℃)とした
とき(0.05,420),(1.0,600)を結ぶ
直線とY=700とX=0.05およびX=1.0で囲
まれる範囲でスパッタリング法により形成することを特
徴とする希土類合金薄膜磁石の形成方法。 2 前記希土類合金がNd11〜18原子%、B8〜1
5原子%、残部がFeの組成またはこの組成のFeの一
部をCo2〜16原子%およびAl0.5〜5原子%で
置換した組成であることを特徴とする請求項1記載の希
土類合金薄膜磁石の形成方法。 3 前記希土類合金がPr11〜18原子%、B8〜1
5原子%、Cu1〜5原子%、残部がFeの組成かまた
はこの組成のFeの一部をCo2〜16原子%およびA
l0.5〜5原子%で置換した組成であることを特徴と
する請求項1記載の希土類合金薄膜磁石の形成方法。
[Claims] 1. In a method for forming a rare earth alloy thin film magnet whose basic composition is rare earth element Re, boron B, and iron Fe, the X axis represents the film formation rate (μm/min), and the Y axis represents the substrate temperature (°C). ), it is assumed to be formed by sputtering in the range surrounded by the straight line connecting (0.05,420) and (1.0,600) and Y=700, X=0.05, and X=1.0. Characteristic method for forming rare earth alloy thin film magnets. 2 The rare earth alloy contains Nd 11 to 18 atomic% and B8 to 1
2. The rare earth alloy thin film according to claim 1, wherein the rare earth alloy thin film has a composition in which the remainder is Fe or a part of Fe in this composition is replaced with Co2 to 16 atom% and Al 0.5 to 5 atom%. How to form magnets. 3 The rare earth alloy contains Pr11-18 atomic%, B8-1
5 at%, Cu 1 to 5 at%, the balance being Fe, or a part of the Fe of this composition to Co2 to 16 at% and A
2. The method for forming a rare earth alloy thin film magnet according to claim 1, wherein the composition is substituted with l0.5 to 5 atomic %.
JP02191052A 1990-07-18 1990-07-18 Method of forming rare earth alloy thin film magnet Expired - Fee Related JP3106484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02191052A JP3106484B2 (en) 1990-07-18 1990-07-18 Method of forming rare earth alloy thin film magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02191052A JP3106484B2 (en) 1990-07-18 1990-07-18 Method of forming rare earth alloy thin film magnet

Publications (2)

Publication Number Publication Date
JPH0499010A true JPH0499010A (en) 1992-03-31
JP3106484B2 JP3106484B2 (en) 2000-11-06

Family

ID=16268095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02191052A Expired - Fee Related JP3106484B2 (en) 1990-07-18 1990-07-18 Method of forming rare earth alloy thin film magnet

Country Status (1)

Country Link
JP (1) JP3106484B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676998A (en) * 1994-09-09 1997-10-14 Mitsubishi Denki Kabushiki Kaisha Thin film magnet, cylindrical ferromagnetic thin film and production method thereof
WO2014115375A1 (en) * 2013-01-28 2014-07-31 Jx日鉱日石金属株式会社 Sputtering target for rare-earth magnet and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101963123B1 (en) * 2017-03-20 2019-07-31 주식회사 포미스 Receiving element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676998A (en) * 1994-09-09 1997-10-14 Mitsubishi Denki Kabushiki Kaisha Thin film magnet, cylindrical ferromagnetic thin film and production method thereof
USRE36517E (en) * 1994-09-09 2000-01-18 Mitsubishi Denki Kabushiki Kaisha Thin film magnet, cylindrical ferromagnetic thin film and production method thereof
WO2014115375A1 (en) * 2013-01-28 2014-07-31 Jx日鉱日石金属株式会社 Sputtering target for rare-earth magnet and production method therefor

Also Published As

Publication number Publication date
JP3106484B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
JP4698581B2 (en) R-Fe-B thin film magnet and method for producing the same
JPS6274048A (en) Permanent magnet material and its production
US4369075A (en) Method of manufacturing permanent magnet alloys
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
US4484995A (en) Thermally controlled sputtering of high anisotropy magnetic material
JPH0499010A (en) Forming method for rare earth alloy thin film magnet
EP0288637A2 (en) Permanent magnet and method of making the same
US6034450A (en) Stepping motor and method of manufacturing hard magnetic alloy therefor
JPH01119009A (en) Formation of ferromagnetic thin film
JPH04219912A (en) Formation of rare-earth thin film magnet
KR100826661B1 (en) R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
JP2860910B2 (en) Manufacturing method of rare earth permanent magnet
JPH01110715A (en) Formation of ferromagnetic thin film
JPH04143221A (en) Production of permanent magnet
JPS60255941A (en) Manufacture of rare earth element-transition metal element-semimetal alloy magnet
JPH11288812A (en) High coercive force r-irone-b thin-film magnet and manufacture thereof
JPS61245505A (en) Manufacture of rare-earth iron magnet
JPH01168844A (en) Permanent magnet material
JPH01119008A (en) Formation of ferromagnetic thin film
Kim et al. Magnetic properties of NdFeB thin film obtained by diffusion annealing
JPH02200775A (en) Sputtering target and its production
JPS6365611A (en) Formation of ferromagnetic thin film
JPH01112703A (en) Manufacture of r-tm-b permanent magnet
JPS61166949A (en) Alloy for permanent magnet
JPS60187008A (en) Vertically magnetized magnetic thin-film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees