JPH0497976A - Silicon carbide-based composite body and its production - Google Patents

Silicon carbide-based composite body and its production

Info

Publication number
JPH0497976A
JPH0497976A JP2214066A JP21406690A JPH0497976A JP H0497976 A JPH0497976 A JP H0497976A JP 2214066 A JP2214066 A JP 2214066A JP 21406690 A JP21406690 A JP 21406690A JP H0497976 A JPH0497976 A JP H0497976A
Authority
JP
Japan
Prior art keywords
sic
silicon carbide
alloy
porous body
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2214066A
Other languages
Japanese (ja)
Inventor
Akira Kani
明 可児
Shoji Katayama
片山 彰治
Yoshihiro Tejima
芳博 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2214066A priority Critical patent/JPH0497976A/en
Publication of JPH0497976A publication Critical patent/JPH0497976A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject composite body having high toughness, hardly causing cracking and also having superior corrosion resistance by filling the pores in a porous body made of an SiC skeleton with a specified substance. CONSTITUTION:The pores in a porous body made of an SiC skeleton is filled with 'Silumin(R)' as an Al-Si alloy and/or 'Silumin gamma(R)' as an Al-Si-Mg alloy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭化珪素系複合体およびその製造方法に関し、
さらに詳しくは、高靭性を有する炭化珪素系複合体およ
びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a silicon carbide-based composite and a method for producing the same;
More specifically, the present invention relates to a silicon carbide composite having high toughness and a method for producing the same.

〔従来の技術] メカニカルシール用摺動材として、炭化珪素は、高い硬
度、優れた耐食性、高い熱伝導性等の特性を有するため
、従来の金属材料、超硬合金、アルミナ等の材料にとっ
て替わり使用範囲が拡大しつつある。
[Prior Art] As a sliding material for mechanical seals, silicon carbide has properties such as high hardness, excellent corrosion resistance, and high thermal conductivity, so it can replace conventional materials such as metal materials, cemented carbide, and alumina. The range of use is expanding.

反応焼結したSiC製品は、熔融Siの存在下で、炭素
粉末とSIC粉末の凝集性混合物を反応焼成することに
よって作製される。混合物中の炭素は結合性SiCに転
換し、はぼ連続したSiCマトリックスが、フリーSi
相中に形成される。
Reactively sintered SiC products are made by reactively firing a cohesive mixture of carbon powder and SIC powder in the presence of molten Si. The carbon in the mixture converts to bonded SiC, and the nearly continuous SiC matrix becomes free Si.
Formed during phase.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようにして作製される従来のSiC製品は跪いため
に一度クランクが発生すると、クラックが簡単に成長し
て割れやすいという問題点があった。
Conventional SiC products manufactured in this manner have a problem in that once a crank occurs, cracks easily grow and break because the product is bent.

この現象は、フリーSi相も極めて晩いためクランクの
進展に対しての障壁となり難いということも原因となっ
ている。
This phenomenon is also caused by the fact that the free Si phase is also extremely slow and therefore hardly acts as a barrier to the development of the crank.

本発明の目的は、高靭性を有し、クラックが発生しにに
く、かつクラックが発生してもクランクの成長を阻止で
きると共に、高耐食性を向上させることができる炭化珪
素系複合体とその製造方法を提供することにある。
The object of the present invention is to provide a silicon carbide-based composite that has high toughness, is resistant to cracking, can prevent the growth of cranks even if cracks occur, and can improve high corrosion resistance. The purpose is to provide a manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するために、本発明の炭化珪素系複
合体は、SiCの骨格よりなる多孔体の空隙を、シルミ
ン(Aj!−Si合金)および/またはガンマ−シルミ
ン(、l−1−5i−合金)で充填したことを特徴とす
る。
In order to achieve the above object, the silicon carbide-based composite of the present invention fills the voids of a porous body made of a SiC skeleton with silmine (Aj!-Si alloy) and/or gamma-silmine (, l-1- 5i-alloy).

また、本発明の炭化珪素系複合体の製造方法は、SiC
の多孔体を作製した後、この多孔体の空隙に、融点以上
に加熱されたシルミン(Alfi−Si合金)および/
またはガンマ−シルミン(Alfi−Si−Mg合金)
を含浸させることを特徴とする。
Further, the method for manufacturing a silicon carbide-based composite of the present invention includes SiC
After producing a porous body, Silumin (Alfi-Si alloy) heated above the melting point and/or
or gamma-silumin (Alfi-Si-Mg alloy)
It is characterized by being impregnated with.

すなわち、本発明は、脆いSi0代わりに高靭性と高耐
蝕性を有するシルミン(Alfi−Si合金)、および
/またはガンマ−シルミン(AISi−Mg合金)をS
iC多孔体の空隙に充填したものである。
That is, the present invention replaces the brittle Si0 with silmine (Alfi-Si alloy) and/or gamma-silmine (AISi-Mg alloy), which has high toughness and high corrosion resistance.
It is filled into the voids of an iC porous body.

SiC多孔体は、例えば、下記に示す3通りの方法で作
製することができる。
The SiC porous body can be produced, for example, by the following three methods.

第1は、SiC粉末と炭素粉末との混合物を所定の形状
に成形後、Siと反応結合させて作製する方法である。
The first method is to form a mixture of SiC powder and carbon powder into a predetermined shape and then react and bond it with Si.

第2は、SiC粉末と炭化性樹脂との混合物を所定の形
状に成形し、樹脂を炭化させた後、Siと反応結合させ
て作製する方法である。
The second method is to mold a mixture of SiC powder and carbonizable resin into a predetermined shape, carbonize the resin, and then react and bond it with Si.

第3は、SiC粉末に微量の焼結助剤を添加し、その混
合物を所定の形状に成形後、非酸化性雰囲気中で焼結す
る方法である。
The third method is to add a small amount of sintering aid to SiC powder, mold the mixture into a predetermined shape, and then sinter it in a non-oxidizing atmosphere.

これらの方法の何れかで作製したSIC多孔体に対して
、その空隙にシルミンおよび/またはガンマ−シルミン
が充填される。SiC多孔体は、反応焼結または常圧焼
結でつくられるが、反応焼結の場合におけるSiの供給
量は成形体中の残留炭素をSiCとするための当量のみ
でよい。
The voids of the SIC porous body produced by any of these methods are filled with silmine and/or gamma-silmine. The SiC porous body is produced by reactive sintering or pressureless sintering, but in the case of reactive sintering, the amount of Si supplied only needs to be an equivalent amount to convert residual carbon in the molded body to SiC.

SiC成形体中にSiが余分に残れば、SiC多孔体中
に含浸するシルミンおよび/またはガンマ−シルミンの
不純物として作用し、組成に変化を与え、シルミンおよ
び/またはガンマ−シルミンの特性が発揮できなくなる
If excess Si remains in the SiC molded body, it acts as an impurity in the silmin and/or gamma-silmin impregnated into the SiC porous body, changes the composition, and makes it impossible to exhibit the characteristics of silmin and/or gamma-silmin. It disappears.

一方、SiC成形体中のSiが不足すれば、炭素を残留
させることになる。
On the other hand, if Si in the SiC molded body is insufficient, carbon will remain.

シルミンは1〜20%5i−Aj!合金で、引っ張り強
度10−18kg/鰭、伸び10〜15%の機械的性質
があり、Siよりはるかに侵れた高靭性を持つため、そ
の複合体にもその性質を発揮させることができる。
Silumin is 1-20% 5i-Aj! It is an alloy with mechanical properties such as tensile strength of 10-18 kg/fin and elongation of 10-15%, and has high toughness far superior to that of Si, so its properties can also be exhibited in composites.

また、ガンマ−シルミンは5〜9%SiO,3%Mg−
Al!合金で、引っ張り強度18〜22kg/閣、伸び
4〜10%の機械的性質があり、Siよりはるかに優れ
た高靭性を持つため、その複合体にもその性質を発揮さ
せることができる。
In addition, gamma-silmine is 5-9% SiO, 3% Mg-
Al! It is an alloy with mechanical properties such as a tensile strength of 18 to 22 kg/kg and an elongation of 4 to 10%, and has a high toughness far superior to that of Si, so its properties can also be exhibited in composites.

シルミンの融点は580〜680℃であり、ガンマ−シ
ルミンの融点は650℃前後であるため、溶融状態で高
い流動性を有し、SiCとの濡れ性が極めて高<溶融シ
ルミンおよび/またはガンマ−シルミンは、SiC多孔
体中に容品に含浸する。
The melting point of sirumin is 580 to 680°C, and the melting point of gamma sirumin is around 650°C, so it has high fluidity in the molten state and extremely high wettability with SiC. Sirumin is impregnated into the container in the SiC porous body.

SiC多孔体中に充填されるシルミンおよび/またはガ
ンマ−シルミンの量は、SiC多孔体に対して、5〜4
0体積%、望ましくは、10〜25体積%が好ましい、
SiC多孔体中に充填されるシルミンおよび/またはガ
ンマ−シルミンの量が40体積%よりも多いと、SIC
の特長である高硬度、高熱伝導性等の特性が発揮できな
くなり、一方、SiC多孔体中に充填されるシルミンお
よび/またはガンマ−シルミンの量が5体積%よりも少
ないと、最終的に得られる複合体の靭性が十分でない。
The amount of sirumine and/or gamma sirumine filled in the SiC porous material is 5 to 4% relative to the SiC porous material.
0% by volume, preferably 10-25% by volume,
SIC
On the other hand, if the amount of silmine and/or gamma-silmine filled in the porous SiC material is less than 5% by volume, the characteristics such as high hardness and high thermal conductivity, which are the characteristics of SiC porous material, cannot be exhibited. The toughness of the composite is insufficient.

本発明の炭化珪素系複合体を製造するには、例えば、平
均粒径10〜20μmのSiC粉末とこれにフェノール
樹脂、フラン樹脂、ウレタン樹脂等の樹脂を5〜15重
量%の割合で配合し、また、ステアリン酸、パラフィン
、ワックス等の滑剤を1〜3重量%の割合で添加して湿
式混合する。
In order to produce the silicon carbide composite of the present invention, for example, SiC powder with an average particle size of 10 to 20 μm is blended with a resin such as a phenol resin, a furan resin, or a urethane resin in a proportion of 5 to 15% by weight. In addition, a lubricant such as stearic acid, paraffin, wax, etc. is added in a proportion of 1 to 3% by weight and wet-mixed.

次いで乾燥後、所定の圧力で加圧成形し、真空または不
活性ガス雰囲気中、1400〜1500℃の温度で加熱
して前記樹脂を炭化する。そして、十分なSiと接触可
能な形態で再度1450〜1550°Cの温度で加熱す
る。
After drying, the resin is press-molded at a predetermined pressure and heated at a temperature of 1,400 to 1,500° C. in a vacuum or an inert gas atmosphere to carbonize the resin. Then, it is heated again at a temperature of 1,450 to 1,550°C in a form that allows contact with sufficient Si.

次いで降温後の材料に、所定の配合割合でシルミンおよ
び/またはガンマ−シルミンを接触させ、650〜50
0℃程度の温度範囲に維持する。
Next, the material after cooling is brought into contact with sirumin and/or gamma sirumin at a predetermined blending ratio, and
Maintain the temperature range around 0℃.

実施例1 平均粒径10μmのSIC粉末に対しフェノール樹脂を
10重量%、ステアリン酸を1重量%加えて湿式混合し
た。乾燥後、金型に移して1.5ton/cdの圧力で
加圧成形した。非酸化性雰囲気で1500℃に加熱し樹
脂を炭化させた。
Example 1 10% by weight of phenol resin and 1% by weight of stearic acid were added to SIC powder having an average particle size of 10 μm, and wet-mixed. After drying, it was transferred to a mold and pressure-molded at a pressure of 1.5 ton/cd. The resin was carbonized by heating to 1500° C. in a non-oxidizing atmosphere.

次いで炭化物を完全にSiCとするための最小必要限度
の51と接触させつつ再び1500℃まで加熱した。降
温後の材料に5115%A285%粉末を接触させ、再
び昇温させ750℃に1時間保持し、除冷した。
Next, the carbide was heated again to 1500° C. while being brought into contact with 51, which is the minimum necessary amount to completely convert the carbide into SiC. After cooling, the material was brought into contact with 5115%A285% powder, heated again, held at 750°C for 1 hour, and slowly cooled.

焼結体はシルミンおよび/またはガンマ−シルミンを1
5体積%含む複合体となった。シルミンおよび/または
ガンマ−シルミンの代わりにSiC多孔体の空隙にSi
を含浸させた場合との比較を第1表に示す。
The sintered body contains 1 silumin and/or gamma silumin.
The result was a composite containing 5% by volume. Si is added to the voids of the SiC porous material instead of sirumin and/or gamma sirumin.
Table 1 shows a comparison with the case of impregnating with.

実施例2 平均粒径10μmのSiC粉末に対しフェノール樹脂を
10重量%、ステアリン酸を1重量%加えて湿式混合し
た。乾燥後、金型に移して1、5 ton / c−の
圧力で加圧成形した。非酸化性雰囲気で1500℃に加
熱し樹脂を炭化させた。
Example 2 10% by weight of phenol resin and 1% by weight of stearic acid were added to SiC powder having an average particle size of 10 μm, and wet-mixed. After drying, it was transferred to a mold and press-molded at a pressure of 1.5 ton/c-. The resin was carbonized by heating to 1500° C. in a non-oxidizing atmosphere.

次いで炭化物を完全にSiCとするための最小必要限度
のSiと接触させつつ再び1500°Cまで加熱した。
Next, the carbide was heated again to 1500° C. while being brought into contact with the minimum necessary amount of Si to completely convert the carbide into SiC.

降温後の材料に5i18%−Mg0.3%−A1粉末を
接触させ、再び昇温させ700°Cに1時間保持し、除
冷した。
After cooling, the material was brought into contact with 5i18%-Mg0.3%-A1 powder, and the temperature was raised again and held at 700°C for 1 hour, followed by gradual cooling.

焼結体はシルミンおよび/またはガンマ−シルミンを1
5体積%含む複合体となった。
The sintered body contains 1 silumin and/or gamma silumin.
The result was a composite containing 5% by volume.

比較例 平均粒径10μmのSiC粉末に対しフェノール樹脂を
10重量%、ステアリン酸を1重量%加えて湿式混合し
た。乾燥後、金型に移して1、5 t o n / c
jの圧力で加圧成形した。非酸化性雰囲気で1500℃
に加熱し、樹脂を炭化させた0次いで炭化物を完全にS
iCとするためのSiと残留する気孔を完全に埋めるた
めのSiの合計量より過剰のSiを接触させつつ再び1
500°Cまで加熱した。降温後、焼結体の上に残った
Siを除去した。
Comparative Example 10% by weight of phenolic resin and 1% by weight of stearic acid were added to SiC powder having an average particle size of 10 μm and wet-mixed. After drying, transfer to a mold and make 1.5 tons/c.
Pressure molding was performed at a pressure of j. 1500℃ in non-oxidizing atmosphere
The resin was heated to 0 and then the carbide was completely S
1 again while contacting Si in excess of the total amount of Si to form iC and Si to completely fill the remaining pores.
Heated to 500°C. After the temperature was lowered, the Si remaining on the sintered body was removed.

(以下、余白) (以下、余白) 第1表から明らかなように、SiC多孔体の空隙にシル
ミンおよび/またはガンマ−シルミンを充填した複合体
は、比較例に比べて曲げ強度が高くなっており、破壊靭
性値は大幅に向上している。
(Hereafter, margin) (Hereafter, margin) As is clear from Table 1, the composite in which the voids of the SiC porous body are filled with sirumin and/or gamma sirumin has higher bending strength than the comparative example. The fracture toughness value has been significantly improved.

〔発明の効果〕〔Effect of the invention〕

本発明の材料は破壊靭性値が大きい利点を有しており、
クラックの発生が防止され、信鯨性の高い材料として用
いることができる。
The material of the present invention has the advantage of a large fracture toughness value,
It prevents the occurrence of cracks and can be used as a material with high reliability.

Claims (5)

【特許請求の範囲】[Claims] (1)SiCの骨格よりなる多孔体の空隙を、シルミン
(Al−Si合金)および/またはガンマーシルミン(
Al−Si−Mg合金)で充填したことを特徴とする炭
化珪素系複合体。
(1) Fill the voids in a porous body consisting of a SiC skeleton with silumin (Al-Si alloy) and/or gamma silumin (
1. A silicon carbide-based composite, characterized in that it is filled with an Al-Si-Mg alloy.
(2)SiCの多孔体を作製した後、この多孔体の空隙
に、融点以上に加熱されたシルミン (Al−Si合金)および/またはガンマーシルミン(
Al−Si−Mg合金)を含浸させることを特徴とする
炭化珪素系複合体の製造方法。
(2) After producing a SiC porous body, fill the voids of this porous body with silmine (Al-Si alloy) and/or gamma silmine (Al-Si alloy) heated above the melting point.
1. A method for producing a silicon carbide-based composite, the method comprising impregnating a silicon carbide-based composite with an Al-Si-Mg alloy.
(3)前記SiC多孔体を、SiC粉末と炭素粉末との
混合物を所定の形状に成形後、Siと反応結合させて作
製することを特徴とする請求項2記載の炭化珪素系複合
体の製造方法。
(3) Manufacturing the silicon carbide-based composite according to claim 2, wherein the SiC porous body is produced by molding a mixture of SiC powder and carbon powder into a predetermined shape and then reacting and bonding it with Si. Method.
(4)前記SiC多孔体を、SiC粉末と炭化性樹脂と
の混合物を所定の形状に成形し、前記樹脂を炭化させた
後、Siと反応結合させて作製することを特徴とする請
求項2記載の炭化珪素系複合体の製造方法。
(4) The SiC porous body is produced by molding a mixture of SiC powder and a carbonizable resin into a predetermined shape, carbonizing the resin, and then reacting and bonding it with Si. A method for producing the silicon carbide-based composite described above.
(5)SiC粉末に微量の焼結助剤を添加し、その混合
物を所定の形状に成形後、非酸化性雰囲気中で焼結する
ことを特徴とする請求項2記載の炭化珪素系複合体の製
造方法。
(5) The silicon carbide composite according to claim 2, wherein a small amount of sintering aid is added to the SiC powder, the mixture is formed into a predetermined shape, and then sintered in a non-oxidizing atmosphere. manufacturing method.
JP2214066A 1990-08-13 1990-08-13 Silicon carbide-based composite body and its production Pending JPH0497976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2214066A JPH0497976A (en) 1990-08-13 1990-08-13 Silicon carbide-based composite body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2214066A JPH0497976A (en) 1990-08-13 1990-08-13 Silicon carbide-based composite body and its production

Publications (1)

Publication Number Publication Date
JPH0497976A true JPH0497976A (en) 1992-03-30

Family

ID=16649691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214066A Pending JPH0497976A (en) 1990-08-13 1990-08-13 Silicon carbide-based composite body and its production

Country Status (1)

Country Link
JP (1) JPH0497976A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281468A (en) * 1998-11-12 2000-10-10 Denki Kagaku Kogyo Kk Silicon carbide complex, its production and radiator article uisng the same
JP2012144389A (en) * 2011-01-07 2012-08-02 Taiheiyo Cement Corp SiC/Si COMPOSITE MATERIAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281468A (en) * 1998-11-12 2000-10-10 Denki Kagaku Kogyo Kk Silicon carbide complex, its production and radiator article uisng the same
JP2012144389A (en) * 2011-01-07 2012-08-02 Taiheiyo Cement Corp SiC/Si COMPOSITE MATERIAL

Similar Documents

Publication Publication Date Title
US4320204A (en) Sintered high density boron carbide
US4419161A (en) Method of producing composite ceramic articles
JPS5918349B2 (en) Titanium carbonitride-metal boride ceramic materials
JP2535768B2 (en) High heat resistant composite material
WO2014207776A1 (en) Method for producing aluminum matrix composites through pressureless infiltration
JPH0497976A (en) Silicon carbide-based composite body and its production
KR20110037774A (en) Adhesive materials of wc-fe based hard metal and manufacturing method of the same
CN109136606B (en) Enhanced self-lubricating copper-based composite material and preparation method and application thereof
JP2000288714A (en) Production of metal-ceramics composite material
JPH0497975A (en) Silicon carbide-based composite body and its production
JPS6357389B2 (en)
JPH034514B2 (en)
JPS58125667A (en) Composite carborundum sintered shape and its manufacture
JPS6212191B2 (en)
JPH11157965A (en) Metal-ceramic composite material and its production
JP4313442B2 (en) Metal-ceramic composite material and manufacturing method thereof
CN117684070A (en) Ni (nickel) 3 Ti/WC composite material and liquid metal infiltration process preparation method thereof
JP4167318B2 (en) Method for producing metal-ceramic composite material
JPH0571541B2 (en)
JP4183361B2 (en) Method for producing metal-ceramic composite material
JPH10219369A (en) Composite material of ceramics and metal, and its production
JP3358472B2 (en) Method for producing silicon nitride ceramic-based composite material
JP4279370B2 (en) Method for producing metal-ceramic composite material
JP2000087156A (en) Metal-ceramic composite material for casting and its manufacture
JPH02258948A (en) Ceramic grain reinforced titanium composite material