JPS6212191B2 - - Google Patents

Info

Publication number
JPS6212191B2
JPS6212191B2 JP58006863A JP686383A JPS6212191B2 JP S6212191 B2 JPS6212191 B2 JP S6212191B2 JP 58006863 A JP58006863 A JP 58006863A JP 686383 A JP686383 A JP 686383A JP S6212191 B2 JPS6212191 B2 JP S6212191B2
Authority
JP
Japan
Prior art keywords
powder
oxidation
carbon material
present
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58006863A
Other languages
Japanese (ja)
Other versions
JPS59131576A (en
Inventor
Hisayoshi Yoshida
Ichitaro Ogawa
Takeshi Hagio
Kazuo Kobayashi
Takayoshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58006863A priority Critical patent/JPS59131576A/en
Priority to US06/571,188 priority patent/US4518702A/en
Priority to EP84100500A priority patent/EP0116316A1/en
Publication of JPS59131576A publication Critical patent/JPS59131576A/en
Publication of JPS6212191B2 publication Critical patent/JPS6212191B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐酸化性の優れた高強度炭素材に関
するものである。さらに詳しくいえば、本発明は
生コークスを主体とし、これに炭化ホウ素と炭化
ケイ素を配合した均一混合物を焼結した耐酸化性
高強度炭素材に関するものである。 炭素材は高温強度、耐熱衝撃性、高熱伝導性、
良導電性、低熱膨張性等多くの優れた特性を有す
る材料であるが、高い温度条件下で酸化されやす
いという大きな欠点がある。例えば炭素材を大気
中で加熱すると、300℃付近から酸化され始め、
600℃以上で急速に酸化が進行する。このため、
炭素材は優れた高温特性を有するにもかかわら
ず、高温下での使用は非酸化雰囲気下に限られ大
気中では使用することができなかつた。 このような炭素材のもつ欠点を改良し、耐酸化
性を向上するために、これまでリン酸化合物を含
浸させる方法、ガラス皮膜形成成分を含浸させた
りコーテイングする方法、炭素又は黒鉛に炭化ケ
イ素とケイ素鉄を配合するか、あるいは炭化ケイ
素とケイ酸を主体とするケイ酸質結合剤を配合す
る方法などが提案されている。しかしながら、リ
ン酸化合物を含浸させる方法は、炭素材の酸化開
始温度をせいぜい100〜200℃程度上昇させる方法
であり、抜本的な解決手段とはならない。またガ
ラス皮膜形成成分を含浸又はコーテイングすれば
炭素材の耐酸化性はかなり改善されるが、これは
炭素材の表面に形成されるガラス皮膜に依存する
ため、コーテイングのむら、皮膜の損傷や炭素材
とガラス皮膜との熱膨張係数の差に起因する剥離
などにより酸化が局部的に進行するおそれがあ
り、安定した効果は期待できない。さらに、炭素
又は黒鉛に炭化ケイ素その他の結合剤を配合する
方法では、かなり耐酸化性が改善されるとはい
え、まだその効果は不十分であり、例えば空気中
900℃において5時間加熱すると10〜30%の酸化
消耗を生じる上に、結合剤を使用するために、焼
結体のち密化が妨げられ、強度の低下を免れな
い。 このように、これまで耐酸化性を根本的に改善
した炭素材は知られていない。 他方、本発明者らは、先にコークス粉末にセラ
ミツクス粉末を加えたものを加圧成形し焼結する
ことにより炭素―セラミツクス複合材を製造する
方法を開発した(特開昭56―140075号公報)。こ
の方法に従えばコークスに対して比較的多量の炭
化ホウ素、炭化ケイ素又はアルミナを配合し、焼
結することにより、高強度の複合材を得ることが
できるが、このものは高温での耐酸化性が低く、
例えば1000℃で5時間加熱すると5%又はそれ以
上の酸化減量が認められる。 本発明者らは、このような事情に鑑み、耐酸化
性の優れた炭素材を開発すべく鋭意研究を重ねた
結果、炭化ホウ素と炭化ケイ素との特定の割合の
混合物を生コークスに配合し焼結すれば意外にも
著しく耐酸化性が向上することを見出し、この知
見に基づいて本発明をなすに至つた。 すなわち、本発明は、(A)生コークス粉末50〜95
容量%と、(B)炭化ホウ素粉末と炭化ケイ素粉末と
の重量比が1:1ないし4:1の範囲内にある粉
末混合物50〜5容量%との混合摩砕処理物の焼結
体から成る耐酸化性高強度炭素材を提供するもの
である。 本発明で用いる生コークスは、600℃以下の比
較的低温で製造された揮発分を有するコークス
で、石油系、石炭系又は樹脂系のいずれでもよい
が、特に高強度の製品を得るには4重量%以上の
残留揮発分を含むのが好ましい。 この生コークスに配合される炭化ホウ素粉末と
炭化ケイ素粉末は、両者の重量比が1:1ないし
4:1好ましくは7:3付近になるような割合で
用いられる。この炭化ホウ素及び炭化ケイ素の代
りに焼結により結果的に炭化ホウ素や炭化ケイ素
に変換しうる物質例えば酸化ホウ素や酸化ケイ素
を用いることもできる。 炭化ケイ素の割合がこれよりも少ない場合及び
これよりも多い場合には、十分耐酸化性を得るこ
とができない。 また、生コークス粉末と、炭化ホウ素粉末及び
炭化ケイ素粉末の混合物との配合比は、容量比で
前者が50〜95%、後者が50〜5%の範囲内で選ば
れる。 これらの成分は、体積平均粒径25μm以下、好
ましくは5μm以下の粉末として用いられる。 本発明の耐酸化性高強度炭素材は、例えば生コ
ークス粉末に、炭化ホウ素粉末と炭化ケイ素粉末
の所定量を加え、十分に摩砕処理することによ
り、粘結性、焼結性を発生させたのち、成形し、
不活性雰囲気中、1000℃以上の温度で焼結するこ
とにより製造することができる。 本発明は、気孔発生の原因となる結合剤などの
添加物を用いずに、摩砕により生じるメカノケミ
カル効果を利用して焼結性を発生させるため、焼
結後の気孔率がきわめて低く、しかも高い強度の
ものとなる。 本発明の炭素材は、従来の人造黒鉛に近い電気
比抵抗を有し、かつ数倍ないし10倍大きい強度を
有している。また、一般の炭素材が800℃、1時
間で約65〜85重量%、2時間で100重量%の酸化
消耗を示すのに対し、本発明の炭素材は800℃、
5時間で1重量%以下の酸化消耗を示すにすぎな
い。 このように、本発明の炭素材は、高強度、優れ
た耐酸化性に加えて、炭素材本来の特徴である高
温強度、耐熱衝撃性、高熱伝導性、良導電性、低
熱膨張性等の好ましい特性を有するので、各種機
械部品材料、窯業用材料、化学工業用耐食材料、
電気電子部品材料として有用である。 次に実施例により本発明をさらに詳細に説用す
る。 実施例 約500℃で製造した生石油コークス(揮発分約
10重量%)を振動ボールミルで1時間粉砕し、見
掛け比重1.35g/cm2の粉末とした。 このコークス粉末に、炭化ホウ素粉末(平均粒
径1μm)と炭化ケイ素粉末(平均粒径1μm)
とを次表に示す割合で加え、らいかい機で5時間
摩砕混合した。このようにして得られた平均粒径
3μmの混合粉末を、2t/cm2の圧力で成形したの
ち、不活性雰囲気中、2000℃において1時間焼成
した。このようにして得られた焼結体の物性を次
表に示す。
The present invention relates to a high-strength carbon material with excellent oxidation resistance. More specifically, the present invention relates to an oxidation-resistant, high-strength carbon material made by sintering a homogeneous mixture of raw coke and boron carbide and silicon carbide. Carbon materials have high temperature strength, thermal shock resistance, high thermal conductivity,
Although it is a material with many excellent properties such as good conductivity and low thermal expansion, it has a major drawback of being easily oxidized under high temperature conditions. For example, when carbon materials are heated in the atmosphere, they begin to oxidize at around 300°C.
Oxidation progresses rapidly at temperatures above 600℃. For this reason,
Although carbon materials have excellent high-temperature properties, their use at high temperatures is limited to non-oxidizing atmospheres and cannot be used in the atmosphere. In order to improve the oxidation resistance and improve the oxidation resistance of carbon materials, methods of impregnating them with phosphoric acid compounds, methods of impregnating or coating them with glass film-forming components, and methods of impregnating or coating carbon or graphite with silicon carbide have been developed. Proposed methods include blending silicon iron or blending a silicic acid binder mainly composed of silicon carbide and silicic acid. However, the method of impregnating the carbon material with a phosphoric acid compound is a method of raising the oxidation initiation temperature of the carbon material by about 100 to 200 degrees Celsius at most, and is not a fundamental solution. In addition, the oxidation resistance of carbon materials can be considerably improved by impregnating or coating them with glass film-forming components, but this depends on the glass film formed on the surface of the carbon material. There is a risk that oxidation will progress locally due to peeling due to the difference in thermal expansion coefficient between the glass film and the glass film, and stable effects cannot be expected. Furthermore, although the method of blending silicon carbide or other binders with carbon or graphite considerably improves oxidation resistance, the effect is still insufficient.
Heating at 900° C. for 5 hours causes oxidative consumption of 10 to 30%, and the use of a binder prevents the sintered body from becoming densified, resulting in a decrease in strength. As described above, no carbon material with fundamentally improved oxidation resistance has been known so far. On the other hand, the present inventors have developed a method for producing a carbon-ceramic composite material by first adding ceramic powder to coke powder and then press-molding and sintering it (Japanese Patent Laid-Open No. 140075/1983). ). According to this method, a relatively large amount of boron carbide, silicon carbide, or alumina is mixed with coke and sintered to obtain a high-strength composite material, but this material is resistant to oxidation at high temperatures. low sex,
For example, when heated at 1000°C for 5 hours, an oxidation loss of 5% or more is observed. In view of these circumstances, the inventors of the present invention have conducted intensive research to develop a carbon material with excellent oxidation resistance, and as a result, have combined a mixture of boron carbide and silicon carbide in a specific ratio into raw coke. It was unexpectedly discovered that sintering significantly improves oxidation resistance, and based on this finding, the present invention was accomplished. That is, the present invention provides (A) raw coke powder of 50 to 95
% by volume and (B) 50 to 5% by volume of a powder mixture in which the weight ratio of boron carbide powder to silicon carbide powder is within the range of 1:1 to 4:1. The present invention provides an oxidation-resistant, high-strength carbon material comprising: The raw coke used in the present invention is a coke with a volatile content produced at a relatively low temperature of 600°C or less, and may be petroleum-based, coal-based, or resin-based. Preferably, it contains at least % by weight of residual volatile matter. The boron carbide powder and the silicon carbide powder to be blended into the raw coke are used in such a ratio that the weight ratio of the two is 1:1 to 4:1, preferably around 7:3. Instead of boron carbide and silicon carbide, it is also possible to use substances that can be converted into boron carbide or silicon carbide by sintering, such as boron oxide or silicon oxide. If the proportion of silicon carbide is less than or greater than this, sufficient oxidation resistance cannot be obtained. Further, the blending ratio of the raw coke powder and the mixture of boron carbide powder and silicon carbide powder is selected within the range of 50 to 95% of the former and 50 to 5% of the latter by volume. These components are used in the form of powder having a volume average particle diameter of 25 μm or less, preferably 5 μm or less. The oxidation-resistant high-strength carbon material of the present invention can be produced by adding predetermined amounts of boron carbide powder and silicon carbide powder to raw coke powder and sufficiently grinding the mixture to generate caking and sintering properties. After that, mold it,
It can be manufactured by sintering at a temperature of 1000°C or higher in an inert atmosphere. The present invention uses the mechanochemical effect produced by grinding to generate sinterability without using additives such as binders that cause pores, so the porosity after sintering is extremely low. Moreover, it has high strength. The carbon material of the present invention has an electrical resistivity close to that of conventional artificial graphite, and has strength several to ten times greater. In addition, while general carbon materials exhibit oxidative consumption of approximately 65 to 85% by weight in 1 hour at 800°C and 100% by weight in 2 hours, the carbon material of the present invention exhibits oxidation consumption at 800°C,
It shows oxidative loss of less than 1% by weight in 5 hours. In this way, the carbon material of the present invention not only has high strength and excellent oxidation resistance, but also has the inherent characteristics of carbon materials such as high temperature strength, thermal shock resistance, high thermal conductivity, good electrical conductivity, and low thermal expansion. Because it has favorable properties, it can be used as various mechanical parts materials, ceramic materials, corrosion-resistant materials for the chemical industry,
It is useful as a material for electrical and electronic parts. Next, the present invention will be explained in more detail with reference to Examples. Example Raw petroleum coke produced at approximately 500℃ (volatile content approximately
(10% by weight) was ground in a vibrating ball mill for 1 hour to obtain a powder with an apparent specific gravity of 1.35 g/cm 2 . Boron carbide powder (average particle size 1 μm) and silicon carbide powder (average particle size 1 μm) are added to this coke powder.
and were added in the proportions shown in the following table, and the mixture was ground and mixed in a sieve machine for 5 hours. The thus obtained mixed powder having an average particle size of 3 μm was molded at a pressure of 2 t/cm 2 and then fired at 2000° C. for 1 hour in an inert atmosphere. The physical properties of the sintered body thus obtained are shown in the table below.

【表】 なお、従来知られている人造黒鉛の物性はかさ
密度1.5〜1.8g/cm2、曲げ強度150〜300Kg/cm2
電気比抵抗0.8〜1.2×10-3Ω・cmであるから、本
発明の焼結体が優れた性質を有することが分る。 参考例 実施例で得た焼結体を7×7×5mmの大きさに
切り出し、あらかじめ800℃又は1000℃に加熱し
た内径35mmの電気炉に入れ、空気を2/分の割
合で導入しながら加熱した。所定時間経過後試料
を取り出し酸化減量を測定した。その結果を第1
図(800℃)及び第2図(1000℃)に示す。 なお比較のために、第1図には人造黒鉛(破
線)及びガラス含浸炭素材(鎖線)についての結
果も併記した。 これらの図から明らかなように、本発明の炭素
材はいずれも800℃、5時間での酸化減量は1重
量%以下であり、またNo.2及びNo.3は1000℃、5
時間におても2重量%以下であつた。
[Table] The physical properties of conventionally known artificial graphite are bulk density 1.5 to 1.8 g/cm 2 , bending strength 150 to 300 Kg/cm 2 ,
Since the electrical specific resistance is 0.8 to 1.2×10 −3 Ω·cm, it can be seen that the sintered body of the present invention has excellent properties. Reference example The sintered body obtained in the example was cut into a size of 7 x 7 x 5 mm, placed in an electric furnace with an inner diameter of 35 mm preheated to 800°C or 1000°C, and heated while introducing air at a rate of 2/min. Heated. After a predetermined period of time, the sample was taken out and the oxidation loss was measured. The result is the first
(800℃) and Figure 2 (1000℃). For comparison, results for artificial graphite (dashed line) and glass-impregnated carbon material (dashed line) are also shown in FIG. As is clear from these figures, the oxidation loss of the carbon materials of the present invention at 800°C for 5 hours is 1% by weight or less, and for No. 2 and No. 3, the weight loss after 5 hours at 800°C is
It was also less than 2% by weight over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の炭素材及び公知の炭素材の
800℃における酸化減量を示すグラフ、第2図は
本発明の炭素材の1000℃における酸化減量を示す
グラフである。
Figure 1 shows the carbon material of the present invention and the known carbon material.
A graph showing the oxidation loss at 800°C. FIG. 2 is a graph showing the oxidation loss at 1000°C of the carbon material of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)生コークス粉末50〜95容量%と、(B)炭化ホ
ウ素粉末と炭化ケイ素粉末との重量比が1:1な
いし4:1の範囲内にある粉末混合物50〜5容量
%との混合摩砕処理物の焼結体から成る耐酸化性
高強度炭素材。
1 (A) 50 to 95% by volume of raw coke powder and (B) 50 to 5% by volume of a powder mixture in which the weight ratio of boron carbide powder to silicon carbide powder is in the range of 1:1 to 4:1. An oxidation-resistant, high-strength carbon material made of a sintered body of mixed milled products.
JP58006863A 1983-01-19 1983-01-19 Acid-resistant high strength carbon material Granted JPS59131576A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58006863A JPS59131576A (en) 1983-01-19 1983-01-19 Acid-resistant high strength carbon material
US06/571,188 US4518702A (en) 1983-01-19 1984-01-16 Silicon carbide-boron carbide carbonaceous body
EP84100500A EP0116316A1 (en) 1983-01-19 1984-01-18 Oxidation-resistant high-strength carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58006863A JPS59131576A (en) 1983-01-19 1983-01-19 Acid-resistant high strength carbon material

Publications (2)

Publication Number Publication Date
JPS59131576A JPS59131576A (en) 1984-07-28
JPS6212191B2 true JPS6212191B2 (en) 1987-03-17

Family

ID=11650076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006863A Granted JPS59131576A (en) 1983-01-19 1983-01-19 Acid-resistant high strength carbon material

Country Status (1)

Country Link
JP (1) JPS59131576A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272563A (en) * 1985-09-27 1987-04-03 工業技術院長 Hot press mold for high temperature and high pressure
JPS62108767A (en) * 1985-11-06 1987-05-20 川崎製鉄株式会社 Manufacture of high oxidation resistance isotropic high density high strength carbon material
JPS6465071A (en) * 1987-09-04 1989-03-10 Denki Kagaku Kogyo Kk Member having resistance to corrosion caused by molten copper
WO2015025612A1 (en) * 2013-08-23 2015-02-26 東洋炭素株式会社 Carbon material and heat treatment jig using said carbon material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140075A (en) * 1980-03-31 1981-11-02 Kogyo Gijutsuin Manufacture of carbon-ceramics complex material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140075A (en) * 1980-03-31 1981-11-02 Kogyo Gijutsuin Manufacture of carbon-ceramics complex material

Also Published As

Publication number Publication date
JPS59131576A (en) 1984-07-28

Similar Documents

Publication Publication Date Title
US4320204A (en) Sintered high density boron carbide
JPS6138144B2 (en)
JPS62197353A (en) Manufacture of silicon carbide sintered body
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
JPS6350310B2 (en)
US4372902A (en) Preparation of dense ceramics
JPS6212191B2 (en)
US4518702A (en) Silicon carbide-boron carbide carbonaceous body
JPS5891061A (en) Silicon carbide ceramics
JPS6246508B2 (en)
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JPH0253388B2 (en)
JPS60131862A (en) High strength silicon carbide base sintered body
JPS6127352B2 (en)
JPS6328873B2 (en)
JPH02221157A (en) Production of oxidation resistant high-strength carbon material
JPH0571541B2 (en)
JPH0712980B2 (en) Silicon carbide sintered body and method for producing the same
JPH08119741A (en) Carbon-boron carbide sintered compact and carbon-boron carbide-silicon carbide sintered compact
JPH05279119A (en) Carbon material having oxidation resistance and its production
JPS643830B2 (en)
JPH04104954A (en) Production of oxidation resistant high-density carbon material
JP3543529B2 (en) Method for producing silicon carbide ceramics
JPS62283871A (en) Manufacture of silicon carbide sintered body
JPH07118065A (en) Carbonaceous material excellent in oxidation resistance