JPH049645A - Scattering degree meter - Google Patents

Scattering degree meter

Info

Publication number
JPH049645A
JPH049645A JP11153490A JP11153490A JPH049645A JP H049645 A JPH049645 A JP H049645A JP 11153490 A JP11153490 A JP 11153490A JP 11153490 A JP11153490 A JP 11153490A JP H049645 A JPH049645 A JP H049645A
Authority
JP
Japan
Prior art keywords
light
paper
measured
scattering
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11153490A
Other languages
Japanese (ja)
Inventor
Tomoyuki Yamada
知行 山田
Takashi Chiba
隆司 千葉
Hitoshi Hara
仁 原
Kenji Isozaki
磯崎 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP11153490A priority Critical patent/JPH049645A/en
Publication of JPH049645A publication Critical patent/JPH049645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To attain a scattering degree meter by a simple constitution provided with a light source, a diffusion material, a projecting means, a photodetecting elements, and an arithmetic means. CONSTITUTION:Sample paper 6 is irradiated with light projected from a halogen lamp 1 through a BPF 4 set up on a chopper wheel for rotating a collimeter lens 2 at a constant speed and an optical fiber 5. Light passed through the diffusing material (opaque glass or the like) stuck to the paper 6 is detected by a detector 8 and processed by a computing element. Light in a wavelength range having no absorption is not absorbed to the sample paper 6 and transmitted light corresponds to a value obtained by subtracting light lost by reflection from the incident light. The degree of scattering is calculated based upon relation between the whole quantity of light obtained at the absence of paper and light passed through the paper 6. When a diffuse transmission factor is T, the scattering degree SW is found out by SW = (1/T) - 1.

Description

【発明の詳細な説明】 〈産業」二の利用分野〉 本発明は1例えば紙の散乱度を容易に測定することがで
きる散乱度計に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industry> Second Field of Application The present invention relates to a scatterometer that can easily measure the scattering degree of, for example, paper.

〈従来の技術〉 紙の光学的特性の一つに比散乱係数5(C1l’ /(
1)かある。この比散乱係数に坪量14(o/ C1l
’ )を乗じた値S−は紙の散乱度を表わし1紙の光字
的物性の一つとして使われる。
<Prior art> One of the optical properties of paper is the specific scattering coefficient 5 (C1l'/(
1) There is. Based on this specific scattering coefficient, basis weight 14 (o/C1l
The value S-, which is multiplied by '), represents the degree of scattering of the paper and is used as one of the optical physical properties of the paper.

従来この散乱度(SW)は分光器を用いて紙の拡散反射
率R6,拡散透過率T0を測定し次式により演算して求
めていた。
Conventionally, this degree of scattering (SW) has been determined by measuring the diffuse reflectance R6 and diffuse transmittance T0 of the paper using a spectrometer and calculating it using the following equation.

5W=(1/2b) NTL [(Ro fa−b)−
1)/(Ro (a+b)−1)]ここで、 a=(1
+R,2−T、 ’ )/2R。
5W=(1/2b) NTL [(Ro fa-b)-
1)/(Ro (a+b)-1)] where a=(1
+R, 2-T, ')/2R.

b=−f丁]〜−r なお、上式は中外産業調査会発行の製紙化学0紙の光学
測定方法、 P、511.4〜、P2S5・・・198
2年発行に示されている。
b=-f]~-r The above formula is based on the optical measurement method for Paper Manufacturing Chemical 0 paper published by Chugai Sangyo Research Group, P, 511.4~, P2S5...198
It is shown in the 2nd year issue.

〈発明が解決し2ようとする課題〉 し、かじながら、上記従来例においては分光器を用いて
拡散反射率や拡散透過率を求めているため。
<Problems to be solved by the invention> However, in the conventional example described above, a spectroscope is used to obtain the diffuse reflectance and diffuse transmittance.

次のような問題かぁ−)な。I wonder if the problem is as follows.

(+)  光源が回折格子−で分光された光なので光i
か弱<S/Nが悪い。
(+) Since the light source is light separated by a diffraction grating -, the light i
Weak<Poor S/N.

(2〕  拡散反射率や拡散透過率を求める為には分光
器に積分球をセットし、なければならないのて1間がか
かる。
(2) In order to determine the diffuse reflectance and diffuse transmittance, an integrating sphere must be set in the spectrometer, which takes an hour.

本発明は上記従来技術の問題を解決するために成された
もので簡単な構成で散乱度討を実現憚ることを目的とし
ている。
The present invention has been made to solve the problems of the prior art described above, and aims to reduce the amount of scattering with a simple configuration.

く課顕を解決するための#段〕〉 、1記従来技術の問題点を解決する為の本発明の構成は
、請求項1においては被測定物による吸収のない波長範
囲のうちの任意の光を放射する光源と、被測定物に密着
して設けられた拡散材と1前記光源からの光を前記被測
定物に投光させる手段と、前記被測定物と拡散材によっ
て散乱した光の一部を受光する光検出素子と1この光検
出素rからの信号に基づいて散乱度を演算する演算手段
を具備したことを特徴とするものであり。
In claim 1, the configuration of the present invention for solving the problems of the prior art described in item 1 is as follows: a light source that emits light; a diffusing material provided in close contact with the object to be measured; 1. means for projecting the light from the light source onto the object to be measured; It is characterized by comprising a photodetection element that receives a portion of light and a calculation means that calculates the degree of scattering based on the signal from the photodetection element r.

請求項2においては被測定物による吸収のない波長範囲
のうちの任意の光を放射プる光源と、この光源からの光
を被測定物に19光させる投光手段と、前記被測定物を
透過l5.な光のほとんどを受光する様に光学的に配置
さハロな尤検出素f−と、この光検出素子からの信−号
に基づいて散乱度を演算づる演算f−段を具備[7たこ
とを特徴とするものである。
In claim 2, a light source for emitting arbitrary light within a wavelength range that is not absorbed by the object to be measured, a light projecting means for projecting 19 beams of light from the light source to the object to be measured, and said object to be measured. Transmission l5. It is equipped with a halo-like detection element f which is optically arranged so as to receive most of the light, and a calculation stage f which calculates the degree of scattering based on the signal from this light detection element. It is characterized by:

く作用〉 被測定物による吸収のない波長範囲の光は紙により吸収
されない。従ってこの波長の光を紙に投光すると、光は
反射および透過する光に別れるが紙による光の吸収(損
失)はないので透過する光は反射により失われた光を差
引いたものとなる。
Effect> Light in the wavelength range that is not absorbed by the object to be measured is not absorbed by the paper. Therefore, when light of this wavelength is projected onto paper, the light is separated into reflected and transmitted light, but since there is no absorption (loss) of light by the paper, the transmitted light is equal to the light lost due to reflection.

紙がないときの全光量と紙を透過[7て来た光の関係か
ら散乱度を求めることができる。
The degree of scattering can be determined from the relationship between the total amount of light when there is no paper and the light transmitted through the paper.

〈実施例〉 以下図面に従い本発明の詳細な説明する。第1図は本発
明の請求項1に関する一実施例を示す原理構成図である
<Example> The present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing the principle structure of an embodiment related to claim 1 of the present invention.

第1図において、1はランプ(ハロゲンランプ)2はラ
ング1からの光をコリメ−卜する:1リメー、−タレン
ズ、3は一定速度で回転するチ3ツバホイールであり、
このチョッパーホイーA3Lx、は0.7〜1□3μm
・の範囲の任意の波長の赤外線を透過させるフィルタ4
が同心円1.に設けられている。5は例えば光ファイバ
からなる導光手段であり、この光ファイバにフィルタ4
を透過した一定波長範囲の赤外線が入射する。6は散乱
度を測定すべき紙、7は紙6に密着して配置された例え
ばオバー、−ルガラス等の拡散材であり、導光、1段5
からの出射光が紙を照射する。8は導光1段の出射口に
対向する位置に拡散材7を介して配置された光検出素子
、9は光検出素子からの信号を入力して散乱度を演算す
る演算器である。
In Fig. 1, 1 is a lamp (halogen lamp), 2 is a lamp for collimating the light from rung 1;
This chopper wheel A3Lx is 0.7~1□3μm
・A filter 4 that transmits infrared rays of any wavelength within the range of
are concentric circles 1. It is set in. Reference numeral 5 denotes a light guiding means made of, for example, an optical fiber, and a filter 4 is attached to this optical fiber.
Infrared rays in a certain wavelength range that have passed through are incident. Reference numeral 6 indicates a paper whose degree of scattering is to be measured; 7 indicates a diffusion material such as an over glass, which is placed in close contact with the paper 6;
The emitted light illuminates the paper. Reference numeral 8 denotes a photodetection element disposed at a position opposite to the exit port of the first stage of light guide via a diffusing material 7, and 9 is an arithmetic unit that inputs a signal from the photodetection element and calculates the degree of scattering.

第2図は紙の吸収特性と散乱特性を示すもので。Figure 2 shows the absorption and scattering properties of paper.

上質紙(坪量80に+/1m’)に赤外線を照射した場
合の波長λと比散乱係数S (cI’ /g)と比吸収
係数K (C112/U)の関係を示している。第2図
において0.7〜1゜3μmの波長は比吸収係数がほと
んど零であり、このことは1この範囲の波長の赤外線は
紙に吸収されないことを示(2ている。
It shows the relationship between wavelength λ, specific scattering coefficient S (cI' /g), and specific absorption coefficient K (C112/U) when high-quality paper (basis weight 80 +/1 m') is irradiated with infrared rays. In FIG. 2, the specific absorption coefficient for wavelengths from 0.7 to 1.3 μm is almost zero, which indicates that infrared rays in this range of wavelengths are not absorbed by paper (2).

第1図の構成において、導光1段から出射し5た例えば
1μmの波長の光は紙4に投射され散乱・透過する。紙
を透過し、な光量をVとすると、この■は紙に密着して
配置された拡散材7によ−って散乱されるので、検出器
にはα・Vの先板が入射する(αは拡散材の材質や厚さ
等によ−)で決まる定数でαく1)。
In the configuration shown in FIG. 1, light having a wavelength of, for example, 1 μm, which is emitted from the first stage of light guide, is projected onto the paper 4 and is scattered and transmitted. If the amount of light that passes through the paper is V, then this ■ is scattered by the diffusing material 7 placed in close contact with the paper, so the front plate of α and V is incident on the detector ( α is a constant determined by the material, thickness, etc. of the diffusion material.

一方紙がなく導光手段から出射[7か光が直接拡散材を
透過した場合の透過光量をα・Voと憚ると(このα・
VOは予め測定しておくものとする)拡散透過率′]゛
は ′r= (a ・V)/ (α・Vo ) = Vl’
Vo −(1)となる。なお、この棟に拡散材を用いて
散乱特性を有するサンプルの拡散透過率を求める方法は
オパールグラス法として従来より知られている。
On the other hand, if there is no paper and the light is emitted from the light guiding means [7], the amount of transmitted light when the light directly passes through the diffusing material is α・Vo (this α・
VO shall be measured in advance) Diffuse transmittance'] is 'r = (a ・V) / (α ・Vo ) = Vl'
Vo −(1). Note that the method of determining the diffused transmittance of a sample having scattering properties using a diffusing material in this ridge has been conventionally known as the opal glass method.

また、散乱度Skは拡散透過率′rを用いて公知の次式
により求めることができる6 SW=(1/T)−1・・・(2) 演算器9はα・voの値をメモリに格納し”ζおき一定
のタイミングで送られてくる信号(α・■)に基づいて
前2 (+) 、 (2)式を演算シ、て散乱度を出力
する。
In addition, the degree of scattering Sk can be determined using the diffuse transmittance 'r using the following well-known formula 6 SW = (1/T) - 1 (2) The calculator 9 stores the value of α·vo in the memory. Based on the signal (α・■) sent at regular intervals of ζ, Equation (2) is calculated and the degree of scattering is output.

第3図は請求項2に関する一実施例を示すものである。FIG. 3 shows an embodiment related to claim 2.

図において第1図と興なるところは拡散$、47を除去
L 、光検出素子9を紙6を透過した光をすべて捕捉で
きる位置に近接させて配W1だことにある。この櫟な構
成において、予め紙6がない状態で導光1段5からの出
射光の強さを光検出素子8で測定11,1その信号 (
v2)を演算器9のメモリーに格納しておく。次に紙を
設置した状態で紙を透過[7た光の強さ(v3)を測定
し。
What differs from FIG. 1 in this figure is that the diffuser 47 is removed L, and the photodetector element 9 is placed close to the position W1 where it can capture all the light that has passed through the paper 6. In this rectangular configuration, the intensity of the light emitted from the first light guide stage 5 is measured with the photodetector element 8 in advance without the paper 6 11,1 and its signal (
v2) is stored in the memory of the computing unit 9. Next, with the paper installed, the intensity (v3) of the light transmitted through the paper was measured.

丁、・V 、 /V2  および SW’−(1/TI )−1 を演算器により演算する。Ding,・V, /V2 and SW'-(1/TI)-1 is calculated by a computing unit.

上記構成においても第】図に示すものと同様紙の散乱度
を測定することができる。なお9本実施例においては検
出素子を紙に近接させて透過光のほとんどを受光する様
にしたが1積分球を用いてすべての光を捕捉する様にし
てもよい。
With the above configuration as well, the degree of scattering of paper can be measured in the same manner as shown in FIG. In this embodiment, the detection element is placed close to the paper to receive most of the transmitted light, but one integrating sphere may be used to capture all the light.

また1本実施例においては被測定物を紙どし5で説明L
7たが、透光性があり1ある波長範囲の光に対し7、て
吸収のないものであtl、ば例ノばプラスゴ、ツクシー
 1−などであ)でもよい。
In addition, in this embodiment, the object to be measured is explained using a piece of paper 5.
However, it may also be a material that is translucent and does not absorb light in a certain wavelength range (for example, Plasgo, Tsukushi, etc.).

〈発明の効果〉 本発明によれば、簡単な構成で散乱瓜計を実現すること
ができる。
<Effects of the Invention> According to the present invention, a scattering meter can be realized with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の請求項1に関−する一実施例装置の原
理構成図、第2図は紙に赤外線を照射し、た場合の波長
λと比散乱係数と比吸収係数の関係を示す図、第3図は
本発明の請求項2に関する一実施例装置の原理構成図で
ある。 1・・・ランプ、2・・・レンズ、3・・・チョッパー
ホイル、4・・・フィルタ、5・・・導光手段、6・・
・紙、7第1図 第3図 第2図 3J2&久、ζittn)
Fig. 1 is a diagram showing the principle configuration of an embodiment of an apparatus according to claim 1 of the present invention, and Fig. 2 shows the relationship between wavelength λ, specific scattering coefficient, and specific absorption coefficient when paper is irradiated with infrared rays. The figure shown in FIG. 3 is a diagram showing the principle configuration of an embodiment of the apparatus according to claim 2 of the present invention. DESCRIPTION OF SYMBOLS 1... Lamp, 2... Lens, 3... Chopper foil, 4... Filter, 5... Light guide means, 6...
・Paper, 7 Fig. 1 Fig. 3 Fig. 2 Fig. 3 J2 & Ku, ζittn)

Claims (1)

【特許請求の範囲】 1)被測定物による吸収のない波長範囲のうちの任意の
光を放射する光源と、前記被測定物に密着して設けられ
た拡散材と、前記光源からの光を前記被測定物に投光さ
せる投光手段と、前記被測定物と拡散材を透過した光を
受光する光検出素子と、この光検出素子からの信号に基
づいて散乱度を演算する演算手段を具備したことを特徴
とする散乱度計。 2)被測定物による吸収のない波長範囲のうちの任意の
光を放射する光源と、この光源からの光を被測定物に投
光させる投光手段と、前記被測定物を透過した光のほと
んどを受光する様に光学的に配置された光検出素子と、
この光検出素子からの信号に基づいて散乱度を演算する
演算手段を具備したことを特徴とする散乱度計。
[Claims] 1) A light source that emits any light within a wavelength range that is not absorbed by the object to be measured, a diffusing material provided in close contact with the object to be measured, and a light source that emits light from the light source. A light projecting means for projecting light onto the object to be measured, a light detection element for receiving the light transmitted through the object to be measured and the diffusing material, and a calculation means for calculating the degree of scattering based on the signal from the light detection element. A scatterometer characterized by comprising: 2) A light source that emits any light within a wavelength range that is not absorbed by the object to be measured, a light projection means that projects the light from the light source onto the object to be measured, and a light source that emits light that has passed through the object to be measured. A photodetector element optically arranged to receive most of the light,
A scatterometer characterized by comprising a calculating means for calculating a degree of scattering based on a signal from the photodetecting element.
JP11153490A 1990-04-26 1990-04-26 Scattering degree meter Pending JPH049645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11153490A JPH049645A (en) 1990-04-26 1990-04-26 Scattering degree meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11153490A JPH049645A (en) 1990-04-26 1990-04-26 Scattering degree meter

Publications (1)

Publication Number Publication Date
JPH049645A true JPH049645A (en) 1992-01-14

Family

ID=14563788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11153490A Pending JPH049645A (en) 1990-04-26 1990-04-26 Scattering degree meter

Country Status (1)

Country Link
JP (1) JPH049645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7740466B2 (en) 2006-06-29 2010-06-22 Toyoda Gosei Co., Ltd. Molding device for molding a weather strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7740466B2 (en) 2006-06-29 2010-06-22 Toyoda Gosei Co., Ltd. Molding device for molding a weather strip

Similar Documents

Publication Publication Date Title
JP3526652B2 (en) Optical measuring method and optical measuring device
JP2879141B2 (en) Concentration measuring device and method
JPS5839931A (en) Method of measuring characteristic of plastic film by using infrared ray
JPH0875639A (en) Light-absorption-spectrum measuring apparatus making use of slab optical waveguide
JPS6189543A (en) Method and device for measuring dual beam spectral transmittance
JPH049645A (en) Scattering degree meter
JPH1164217A (en) Component quantity detecting device for spectral analyzer
JPH0781840B2 (en) Optical film thickness measuring device
RU178357U1 (en) INFRARED HYDROGEN
JP2906613B2 (en) Moisture content measuring device
JPS6319560A (en) Method for discriminating prozone in immunoreaction
US4240753A (en) Method for the quantitative determination of turbidities, especially of immune reactions
JP2013053919A (en) Haze value measuring apparatus and haze value measuring method
JP2597515Y2 (en) Total reflection absorption spectrum measurement device
JP3302208B2 (en) Infrared analyzer
JPH02115750A (en) Infrared moisture meter less affected by basis weight
JPS62289749A (en) Reflection factor measuring instrument
SU811084A1 (en) Optical moisture meter
JP2932783B2 (en) Equipment for measuring characteristics of sheet-like objects
JP2576457Y2 (en) Equipment for measuring characteristics of sheet-like objects
JPH05296920A (en) Infrared spectrophotometer
JP3265700B2 (en) Moisture measuring device for sheet-like objects
JPS5831861B2 (en) gas concentration meter
JPS6381229A (en) Instrument and method for spectrochemical analysis
JPH08136445A (en) Absorbance measuring device for liquid