JPS6319560A - Method for discriminating prozone in immunoreaction - Google Patents

Method for discriminating prozone in immunoreaction

Info

Publication number
JPS6319560A
JPS6319560A JP16494586A JP16494586A JPS6319560A JP S6319560 A JPS6319560 A JP S6319560A JP 16494586 A JP16494586 A JP 16494586A JP 16494586 A JP16494586 A JP 16494586A JP S6319560 A JPS6319560 A JP S6319560A
Authority
JP
Japan
Prior art keywords
prozone
antigen
wavelengths
absorbance
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16494586A
Other languages
Japanese (ja)
Other versions
JPH07113635B2 (en
Inventor
Hideki Yamamoto
山本 英毅
Junichi Matsumoto
順一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP16494586A priority Critical patent/JPH07113635B2/en
Publication of JPS6319560A publication Critical patent/JPS6319560A/en
Publication of JPH07113635B2 publication Critical patent/JPH07113635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To easily discriminate whether a liquid to be detected is a prozone or not by projecting light to the said liquid which contains an antigen-antibody complex, measuring the absorbancies thereof at tow kinds of wavelengths on a long wavelength side and short wavelength side of a visible region and determining the ratio of two kinds of the absorbancies. CONSTITUTION:The liquid to be detected contg. the antigen-antibody complex is put into a measuring cell 3. The cell 3 is projected with white light from a light source 1 the projected light and is spectrally split by a diffraction grating 6. The split light rays of wavelengths lambda1, lambda2 are projected to corresponding elements 7, 7' and are inputted through preamplifiers 8, 8' to arithmetic circuit 9, 9'. The ratio between the absrobancies A(lambda1) and A(lambda2) by the respective wavelengths is calculated. The ratio thereof and a preset discrimination level are compared 10 and whether the liquid to be detected is the prozone or not is decided. For example, 340-450nm, 600-750nm are selected as two kinds of the wavelengths. Since the change of the absorbancy by the grain size of the antigen-antibody complex is selected by the light rays of two kinds of wavelengths in the above-mentioned manner, the prozone area is easily discriminated and the stable measurement is permitted.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は免疫反応におけるプロゾーン判定方法に関す
る。さらに詳しくは免疫比濁法における抗原抗体複合物
を含有する被検液のプロゾーン検出に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method for determining prozone in an immune reaction. More specifically, the present invention relates to prozone detection of a test liquid containing an antigen-antibody complex in immunoturbidimetry.

(ロ)従来の技術 血清中の抗原を定量する方法として免疫比濁法かある。(b) Conventional technology Immunoturbidimetry is a method for quantifying antigens in serum.

これは試薬中に含有される抗体が測定目的物質である抗
原と特異的に結合しその結果生成する抗原抗体複合物に
よる被検液の濁度を吸光度として測定する方法である。
This is a method in which an antibody contained in a reagent specifically binds to an antigen, which is the substance to be measured, and the resulting turbidity of the test liquid due to the antigen-antibody complex produced is measured as absorbance.

(ハ)発明が解決しようとする問題点 しかしながら上記方法において、一般に濁度は抗原濃度
の上昇に伴い上昇するはずであるが、実際には高濃度側
で逆に濁度が低くなっていく現象が見られる(第5図参
照)。すなわち血清中に含まれる抗原濃度が高いのに対
し、試薬中の抗原濃度が見かけ上低く測定されることに
なる現象でこれはプロゾーンと呼ばれている。このプロ
ゾーンは抗体よりも抗原が多い状態つまり抗原過剰状態
を意味し、この状態では抗原濃度は高くても抗体が不足
していて適当な大きさの抗原抗体複合物を生成できずそ
の結果濁度が低下することとなる。
(c) Problems to be solved by the invention However, in the above method, the turbidity is generally supposed to increase as the antigen concentration increases, but in reality, the turbidity decreases as the concentration increases. can be seen (see Figure 5). In other words, while the antigen concentration contained in serum is high, the antigen concentration in the reagent is apparently measured to be low, and this phenomenon is called prozone. This prozone means a state in which there are more antigens than antibodies, that is, a state of antigen excess. In this state, although the antigen concentration is high, antibodies are insufficient and an antigen-antibody complex of an appropriate size cannot be generated, resulting in turbidity. This results in a decrease in the degree of

プロゾーンが生じると1つの測定吸光度(見かけの吸光
度)に対し2つの抗原濃度が測定されるという問題が生
じる。従って免疫比濁法では被検液がプロゾーン域であ
るかどうかをチェックすることが必要になる。このため
従来で;は抗原濃度を何段階かに希釈していき、低い濃
度でより高い吸光度を示す所がないかどうかを確認した
り、反応液に再度抗原を分注して反応させ吸光度が下が
ったらプロゾーン域であると判断したり、抗体分注直後
の吸光度の変化率がある値以上であるならばプロゾーン
域であると判断する等の方法が行われてきた。しかじ前
1者は希釈系列を調製しそれぞれを反応させるので手間
とコストがかかり、また後2者は自動分析装置でないと
チェックが難しくかつ抗体分注直後の濁度の測定は液の
ゆらぎ等の影響で正確な測定が困難である等それぞれに
問題点がある。
When prozone occurs, a problem arises in that two antigen concentrations are measured for one measured absorbance (apparent absorbance). Therefore, in immunoturbidimetry, it is necessary to check whether the test liquid is in the prozone region. For this reason, in the past, the antigen concentration was diluted in several stages to check whether there was a part that showed higher absorbance at lower concentrations, or the antigen was dispensed into the reaction solution again and allowed to react, so that the absorbance increased. Methods have been used such as determining that the absorbance is in the prozone region if the absorbance decreases, or determining that the absorbance is in the prozone region if the rate of change in absorbance immediately after antibody dispensing is above a certain value. However, the first method involves preparing a dilution series and reacting each one, which is time-consuming and costly, and the second method is difficult to check without an automatic analyzer, and measuring turbidity immediately after antibody dispensing is difficult due to fluctuations in the liquid. Each method has its own problems, such as difficulty in making accurate measurements due to the effects of

この発明はかかる状況に鑑み為されたものであり、こと
に被検液がプロゾーン域にあるかどうかを簡便に判定す
る方法を提供しようとするものである。
The present invention has been made in view of this situation, and specifically aims to provide a method for easily determining whether a test liquid is in the prozone region.

(ニ)問題点を解決するための手段 かくしてこの発明によれば、抗原抗体複合物を含有する
被検液に光を照射してその見かけの吸光度を可視領域の
長波長側と短波長側との異なる2種の波長について測定
し、得られた2種の吸光度の比に基づいて被検液のプロ
ゾーンを判定することを特徴とする免疫反応におけるプ
ロゾーン判定方法が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, a test solution containing an antigen-antibody complex is irradiated with light and its apparent absorbance is divided into long wavelength side and short wavelength side in the visible region. Provided is a method for determining prozone in an immune reaction, which comprises measuring at two different wavelengths and determining the prozone of a test liquid based on the ratio of the obtained two types of absorbance.

この発明の方法の最も特徴とする点は、異なる2種の波
長による見かけ吸光度の比が被検液中に懸濁する抗原抗
体捏合物粒子の粒径のパラメータとなることを利用する
ものであり、該吸光度比と予め設定されている判定レベ
ル値との大小関係によりプロゾーンであるか否かの判定
をするものである。
The most distinctive feature of the method of this invention is that it utilizes the fact that the ratio of apparent absorbance at two different wavelengths is a parameter for the particle size of the antigen-antibody mixture particles suspended in the test liquid. , it is determined whether or not it is a prozone based on the magnitude relationship between the absorbance ratio and a preset determination level value.

プロゾーン域では抗原過剰状態になっており、抗体価の
低い試薬を使用したときには粒径の小さい抗原抗体複合
物が多数生じて抗原が過剰になっている状態のもの(第
6図(a)参照)と、抗体価の高い試薬を用いたときに
は粒径の大きい抗原抗体複合物が少数で生じている状態
のもの(第6図(b)参照)とがある。従ってプロゾー
ン域では生じている抗原抗体捏合物粒子の粒径が極端に
小さいものまたは大きいものが混在していて粒径に大き
なバラツキが生じており、換言すれば生成する抗原抗体
捏合物粒子の粒径がほぼ均一な状態(通常、0.5〜1
.0μm程度)にあるときは最適な状態(第6図(c)
参照)で免疫反応が進行しており、プロゾーン域ではな
いことを意味することとなる。
The prozone region is in a state of antigen excess, and when a reagent with a low antibody titer is used, many small-sized antigen-antibody complexes are generated, resulting in an excess of antigen (Figure 6 (a)). (see FIG. 6(b)), and when a reagent with a high antibody titer is used, a small number of antigen-antibody complexes with large particle sizes are produced (see FIG. 6(b)). Therefore, in the prozone region, particles of the antigen-antibody mixture produced have a mixture of extremely small and extremely large particle sizes, resulting in large variations in particle size.In other words, the particles of the antigen-antibody mixture produced are The particle size is almost uniform (usually 0.5 to 1
.. When it is approximately 0 μm), it is in the optimal state (Fig. 6 (c)
This means that the immune response is progressing in (see) and the patient is not in the prozone region.

このことから被検液中で生成する抗原抗体捏合物粒子の
粒径変化が見かけの吸光度の比め変化と対応することを
見いだして、該吸光度の比をプロゾーンの判定要素とし
て用いていることがこの発明の方法の特徴である。
From this, it was found that the change in the particle size of the antigen-antibody mixture particles produced in the test solution corresponds to the change in apparent absorbance, and this absorbance ratio is used as a determining factor for prozone. is a feature of the method of this invention.

異なる2種の波長に基づく吸光度の比が、被検液中に懸
濁する粒子の粒径の関数となることは次ぎにより説明さ
れる。すなわち、ある波長の光を、懸濁粒子を含む液媒
体に照射した際に得られる透過光の強度(吸光度は透過
光強度の逆数の対数)は、液媒体自体の吸収以外に懸濁
粒子の散乱作用によって減少し、液媒体自体の吸光度を
0として計算される!!局液の吸光度は見かけ上増加す
る。
The fact that the ratio of absorbances based on two different wavelengths is a function of the particle size of the particles suspended in the test liquid is explained as follows. In other words, the intensity of the transmitted light obtained when a liquid medium containing suspended particles is irradiated with light of a certain wavelength (absorbance is the logarithm of the reciprocal of the transmitted light intensity) is determined by the absorption of suspended particles in addition to the absorption of the liquid medium itself. It decreases due to scattering effects and is calculated assuming that the absorbance of the liquid medium itself is 0! ! The absorbance of the topical solution appears to increase.

この見かけ上の吸光度は懸濁粒子の散乱作用によって異
なり、ことに照射光の波長により散乱光強度の角度分布
が異なる傾向があるため、懸濁粒子の粒径のみならず照
射波長によって計測吸光度は変化する。かかる関係下、
粒径2μm以下の懸濁粒子を対象とした際に、異なる2
波長の見かけ吸光度の比が、粒径の関数となる。
This apparent absorbance varies depending on the scattering effect of the suspended particles, and in particular, the angular distribution of the scattered light intensity tends to vary depending on the wavelength of the irradiated light, so the measured absorbance depends not only on the particle size of the suspended particles but also on the irradiation wavelength. Change. Under such a relationship,
When targeting suspended particles with a particle size of 2 μm or less, two different
The ratio of apparent absorbance to wavelength is a function of particle size.

この発明の方法に用いる2種の波長光は、生じる抗原抗
体捏合物粒子に対して異なる散乱作用を受けるものであ
ればよく、通常、汎用されている可視光領域(約340
〜700nm)の異なる2種の波長を選択するのが便利
である。2種の波長としては、吸光度検出器側の精度や
測定粒径範囲を適合化することにより近接した異波長の
ものを用いることもできるが、通常、それぞれ340〜
450nmと600〜750nmの2種の波長を選択す
るのが適している。
The two wavelengths of light used in the method of this invention may be those that have different scattering effects on the resulting antigen-antibody mixture particles, and are usually in the widely used visible light range (approximately 340
It is convenient to select two different wavelengths (~700 nm). The two wavelengths can be different wavelengths that are close to each other by adapting the accuracy of the absorbance detector and the measurement particle size range.
It is suitable to select two wavelengths: 450 nm and 600-750 nm.

この発明の方法においてプロゾーンであるかどうかの判
定基準に用いられる判定レベルとしては、予め被検液を
各測定項呂に応じて高感度側の波長により吸光度を測定
して検量線を作成し、この検量線のプロゾーン域境界の
濃度において、上記具なる2種の波長について吸光度を
測定して得られる比が用いられる。
In the method of this invention, the determination level used as the criterion for determining whether or not it is a prozone is determined by measuring the absorbance of the test liquid in advance at a wavelength on the high-sensitivity side according to each measurement item to create a calibration curve. At the concentration at the boundary of the prozone region of this calibration curve, the ratio obtained by measuring the absorbance for the above two wavelengths is used.

この発明の方法において、プロゾーンかどうかの判定は
、上記判定レベルと見かけ吸光度の比との大小を比較す
ることにより行われる。試薬が抗体価の高いものを使用
しているときは上記比の値が判定レベルよりも小さいと
ころがプロゾーンと判定され、試薬が抗体価の低いもの
を使用しているときは上記比の値が判定レベルよりも大
きいところをプロゾーン′と判定する。
In the method of the present invention, determination as to whether or not it is prozone is made by comparing the magnitude of the determination level and the ratio of apparent absorbance. When a reagent with a high antibody titer is used, the area where the above ratio value is lower than the determination level is determined to be prozone, and when a reagent with a low antibody titer is used, the above ratio value is lower than the determination level. Areas that are higher than the determination level are determined to be pro zone'.

この発明の方法は、通常の吸光光度計、光電比色計等を
用いて行うことができ、光散乱光度計などの特殊な装置
を用いる必要はない。従って測定セルも通常の角セルを
用いることができ、セル厚も通常のものを使用すること
ができるが、多重散乱を防止すべくセル厚は薄いものを
用いるのが好ましく、通常、5〜10om程度のものを
用いるのが適している。ただし、透過光を対象とするた
め多重散乱の影響は少なくセル厚みに従来のごとき厳密
さは要求されない。
The method of this invention can be carried out using an ordinary absorption photometer, photoelectric colorimeter, etc., and there is no need to use a special device such as a light scattering photometer. Therefore, a normal square cell can be used as the measurement cell, and a normal cell thickness can also be used. However, in order to prevent multiple scattering, it is preferable to use a cell with a thin cell thickness, usually 5 to 10 ohm. It is appropriate to use something of a certain degree. However, since the target is transmitted light, the influence of multiple scattering is small and the cell thickness does not need to be as strict as in the past.

ただし、この発明の方法の実施は、2波長の吸光度計測
手段を有しこれらの吸光度比を出力できる装置を用いて
行うのが適している。なお、この計測手段は連続波長光
源を用い照射光または透過光を分光して少なくとも2つ
の波長についての見 −かけ吸光度を計測できるよう構
成されたものが適している。
However, the method of the present invention is suitably carried out using a device that has absorbance measuring means for two wavelengths and can output the ratio of these absorbances. Note that this measuring means is suitably constructed so as to be able to measure the apparent absorbance for at least two wavelengths by dividing the irradiated light or the transmitted light using a continuous wavelength light source.

(ホ)作用 この発明によれば、プロゾーン境界近傍での生成する抗
原抗体後合物粒子の大きな粒径変化がプロゾーンの判定
要素となるので、粒径のパラメーターとなる2種の波長
に基づく見かけ吸光度の比を計測して、予め設定されて
いるプロゾーン境界付近の見かけ吸光度の比との大小を
比較することによりその被検液がプロゾーンであるかど
うかが判定されることとなる。
(E) Effect According to the present invention, a large change in the particle size of the antigen-antibody compound particles generated near the prozone boundary is a determining factor for the prozone. By measuring the apparent absorbance ratio based on the sample and comparing it with the preset apparent absorbance ratio near the prozone boundary, it is determined whether the test liquid is prozone. .

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 第1図は、この発明の方法の実施に用いる測定装置の一
例の構成説明図である。図においてこの測定装置は、角
型測定セル(3; lha厚)と、光源(1)、コリメ
ータレンズ(2)、集光レンズ(4)、入射スリット(
5)、回折格子(6)、2個の充電変換素子(7)(7
°)、2個のプリアンプ(8)(8°)、および2個の
吸光度算出回路(9)(9°)からなる光学測定系と、
比較測定回路(10)からなる比較器とから構成されて
いる。そして素子(7)(7°)は所定の波長λ、。
(F) Embodiment FIG. 1 is an explanatory diagram of the configuration of an example of a measuring device used to implement the method of the present invention. In the figure, this measuring device consists of a rectangular measuring cell (3; lha thickness), a light source (1), a collimator lens (2), a condensing lens (4), and an entrance slit (
5), diffraction grating (6), two charge conversion elements (7) (7
an optical measurement system consisting of two preamplifiers (8) (8°), and two absorbance calculation circuits (9) (9°);
and a comparator consisting of a comparison measurement circuit (10). And element (7) (7°) has a predetermined wavelength λ.

λ、に対応するように配置されている。They are arranged to correspond to λ.

かかる装置において、光源(1)からの白色光はレンズ
(2)により平行光束となって角型測定セル(3)に照
射され、セル(3)を透過した光束は集光レンズ(4)
により入射スリット(5)に集光され、スリット(5)
を通った光は回折格子(6)によって分光される。分光
された光のうち波長λ1.λ、の光りは対応する素子(
7)(7°)に照射し、プリアンプ(8)(3’)の出
力が算出回路(9)(9’ )に入るよう設定されてい
る。
In this device, white light from a light source (1) is converted into a parallel beam by a lens (2) and irradiated onto a rectangular measurement cell (3), and the beam transmitted through the cell (3) is passed through a condenser lens (4).
The light is focused on the entrance slit (5) by the slit (5)
The light passing through is separated into spectra by a diffraction grating (6). Of the separated light, the wavelength λ1. The light of λ is the corresponding element (
7) (7°), and the outputs of the preamplifiers (8) (3') are set to enter the calculation circuits (9) (9').

まずセル(3)に純水を入れてそのプリアンプ(8)(
8′)の出力■。(λ、)、■。(λ、ンを算出回路(
9X9°)に記憶する。次いで目的とする試料をセル(
3)に入れ、そのプリアンプ出力!(λI)、■(λ、
)を用いて、算出回路(9)(9°)でそれぞれの吸光
度:A(λ+) =  −1ogCI (λ1)/10
(λ、)〕A(1g) =  −1og(1(λt)/
 IO(λ、)〕をそれぞれ算出する。
First, fill the cell (3) with pure water and its preamplifier (8) (
8') output ■. (λ,), ■. (Circuit for calculating λ, n (
9x9°). Next, place the target sample in the cell (
3) and its preamp output! (λI), ■(λ,
), calculate each absorbance using calculation circuit (9) (9°): A(λ+) = −1ogCI (λ1)/10
(λ,)]A(1g) = −1og(1(λt)/
IO(λ, )] respectively.

この出力A(λ1)およびA(λ、)が比測定回路(l
O)に入力され、その比A(λ、)/A(λ、)が出力
されることとなる。
These outputs A(λ1) and A(λ,) are the ratio measurement circuit (l
O), and the ratio A(λ,)/A(λ,) is output.

項目としてはIgAおよびIgGを選び、試料としては
標準血清を用いた。また、試薬としては免疫比濁用Ig
A、IgGおよびネフェロメトリ用工gGを用い、免疫
比濁用1gAに対しては9300mg/d1、IgGに
対しては43000mg/ dQ、ネフzロメトリ用1
gGに対しては900rDg/d(!の試料を用いて希
釈系列を作り、λ、=340nm、λ、=700nmの
場合のA(λI)、A(λ、)、A(λ、)、/A(λ
2)を測定した。第2.3および4図に測定結果を示す
IgA and IgG were selected as the items, and standard serum was used as the sample. In addition, the reagent used is Ig for immunoturbidimetry.
A, using IgG and nephelometric gG, 9300 mg/d1 for 1 gA for immunoturbidimetry, 43000 mg/dQ for IgG, 1 for nephelometry
For gG, a dilution series was made using a sample of 900 rDg/d(!), and A(λI), A(λ,), A(λ,), / A(λ
2) was measured. The measurement results are shown in Figures 2.3 and 4.

第2図において、340nmでの吸光度(A、4゜)で
はプロゾーン現象が起こっているが700nmの吸光度
(A?。。)ではまだプロゾーン現象は起こりていない
。ここで吸光度の比(、A y−o/ A 700)の
値を計算してプロットしたもの(×印)が、判定レベル
〔図中の点線(A340の検量線に基づいて算出したも
の〕〕以下であれば、プロゾーン現象が起こっていると
判定され、これはA34゜より指摘されるプロゾーン域
とよく一致している。
In FIG. 2, the prozone phenomenon occurs at absorbance at 340 nm (A, 4°), but it has not yet occurred at absorbance at 700 nm (A?...). Here, the value of the absorbance ratio (A y-o/A 700) calculated and plotted (x mark) is the judgment level [the dotted line in the figure (calculated based on the calibration curve of A340]) If it is below, it is determined that a prozone phenomenon is occurring, and this agrees well with the prozone region pointed out by A34°.

第3図において、340n m、 700n mの吸光
度ともにプロゾーン現象が起こっているが、この場合も
吸光度の比(A34゜/A?。。)の値を計算してプロ
ットしたもの(×印)が、判定レベル〔図中の点線(A
s4oの検量線に基づいて算出したもの)〕以下であれ
ば、プロゾーン現象が起こっていると判定され、これは
A saoより指摘されるプロゾーン域とよく一致して
いる。
In Figure 3, the prozone phenomenon occurs for both 340nm and 700nm absorbance, but in this case too, the value of the absorbance ratio (A34°/A?...) is calculated and plotted (x mark). However, the judgment level [dotted line (A
(calculated based on the calibration curve of s4o)], it is determined that the prozone phenomenon is occurring, and this agrees well with the prozone region pointed out by Asao.

第4図において、340n m、 700n mの吸光
度ともにプロゾーン現象が起こっているが、この場合は
吸光度の比(A34゜/A?。。)の値を計算してプロ
ットしたもの(×印)が、判定レベル〔図中の点線CA
s4oの検量線に基づいて算出したもの)〕以上であれ
ば、プロゾーン現象が起こっていると判定され、これは
As4゜より指摘されるプロゾーン域とよく一致してい
る。
In Figure 4, the prozone phenomenon occurs for both absorbance at 340 nm and 700 nm, but in this case, the value of the absorbance ratio (A34°/A?...) is calculated and plotted (x mark). However, the judgment level [dotted line CA in the figure]
(calculated based on the calibration curve of s4o)], it is determined that a prozone phenomenon is occurring, and this agrees well with the prozone region pointed out by As4°.

(ト)発明の効果 この発明によれば、ある濃度において異なる2波長で測
定した見かけの吸光度の比を、予め設定した判定レベル
と大小を比較することにより簡便に被検液がプロゾーン
現象を起こしているかどうかの判定ができ、希釈検体に
よるチェックまたは抗原再添加によるチェック等煩雑な
手間が不要となる。また反応の終点での吸光度を計測す
るので、常に安定した測定ができる。
(G) Effects of the Invention According to the present invention, a test liquid can easily detect the prozone phenomenon by comparing the ratio of apparent absorbance measured at two different wavelengths at a certain concentration with a preset judgment level. It can be determined whether or not this has occurred, eliminating the need for complicated checks such as checking with diluted samples or checking by re-adding antigen. In addition, since the absorbance is measured at the end point of the reaction, stable measurements are always possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の方法の実施に用いる測定装置の一
例の構成説明図、第2.3図はそれぞれ第1図の装置に
より各標準血清を各免疫比濁用試薬で測定したときの結
果および測定値に基づいて求めた吸光度比と判定レベル
を示すグラフ図、第4図は標準血清をネフェロメトリ用
試薬で測定したときの第2弗Φ舎略図相当図、第5図は
プロゾーン現象を説明するグラフ図、第6図は被検液中
に生成する抗原抗体複合物の粒子の状態を説明する模式
図である。 (1)・・・・−・光源、   (2)・・・・・・コ
リメータレンズ、(3)・・・・・・角型測定セル、(
4)・・・・・・集光レンズ、(5)・・・・・・入射
スリット、(6)・・・・・・回折格子、(7)(7’
 )・・・・・・光電変換素子、(8)(8’ )・・
・・・・プリアンプ、(9)C9°)・・・・・・吸光
度算出回路、(10)・・・・・・比較測定回路。 第2図 ×A31Q/A7(イ) 45釈系列 第3図 wA340/A700 第4図 廊釈系列
Fig. 1 is an explanatory diagram of the configuration of an example of a measuring device used to carry out the method of the present invention, and Figs. 2 and 3 show the results when each standard serum is measured with each immune nephelometric reagent using the apparatus shown in Fig. 1, respectively. A graph showing the absorbance ratio and judgment level determined based on the results and measured values. Figure 4 is a schematic diagram of the second filter when standard serum is measured with a nephelometry reagent. Figure 5 is the prozone phenomenon. FIG. 6 is a schematic diagram illustrating the state of particles of the antigen-antibody complex generated in the test liquid. (1)...Light source, (2)...Collimator lens, (3)...Square measurement cell, (
4) Condenser lens, (5) Input slit, (6) Diffraction grating, (7) (7'
)...Photoelectric conversion element, (8)(8')...
...Preamplifier, (9)C9°) ...Absorbance calculation circuit, (10) ...Comparison measurement circuit. Figure 2 x A31Q/A7 (a) 45 interpretation series Figure 3 wA340/A700 Figure 4 Corridor interpretation series

Claims (1)

【特許請求の範囲】[Claims] 1、抗原抗体複合物を含有する被検液に光を照射してそ
の見かけの吸光度を可視領域の長波長側と短波長側との
異なる2種の波長について測定し、得られた2種の吸光
度の比に基づいて被検液のプロゾーンを判定することを
特徴とする免疫反応におけるプロゾーン判定方法。
1. The test solution containing the antigen-antibody complex was irradiated with light and its apparent absorbance was measured at two different wavelengths: long wavelength and short wavelength in the visible region. 1. A method for determining prozone in an immune reaction, comprising determining the prozone of a test liquid based on the ratio of absorbance.
JP16494586A 1986-07-14 1986-07-14 Method for determining prozone in immune reaction Expired - Lifetime JPH07113635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16494586A JPH07113635B2 (en) 1986-07-14 1986-07-14 Method for determining prozone in immune reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16494586A JPH07113635B2 (en) 1986-07-14 1986-07-14 Method for determining prozone in immune reaction

Publications (2)

Publication Number Publication Date
JPS6319560A true JPS6319560A (en) 1988-01-27
JPH07113635B2 JPH07113635B2 (en) 1995-12-06

Family

ID=15802835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16494586A Expired - Lifetime JPH07113635B2 (en) 1986-07-14 1986-07-14 Method for determining prozone in immune reaction

Country Status (1)

Country Link
JP (1) JPH07113635B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496361A1 (en) * 2003-07-07 2005-01-12 Matsushita Electric Industrial Co., Ltd. Immunoassay method and immunoassay system using a Fourier transformation to judge the occurrence of zone phenomena.
JP2014173904A (en) * 2013-03-06 2014-09-22 Sysmex Corp Blood coagulation analyzer and blood coagulating analyzing method
EP2837937A1 (en) 2013-08-15 2015-02-18 Roche Diagniostics GmbH Method for the detection of the prozone effect of photometric assays
CN110114677A (en) * 2016-12-15 2019-08-09 株式会社堀场制作所 The determination method of the appropriateness of the test substance concentration in the concentration mensuration of immune aggregation and the sample analyzer with the processing unit for the determination method are used
CN110542660A (en) * 2019-09-29 2019-12-06 迈克医疗电子有限公司 method, device and detection system for detecting prozone effect in sample reaction
CN110542662A (en) * 2019-09-29 2019-12-06 迈克医疗电子有限公司 method and device for detecting prozone effect in sample reaction and optical detection system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496361A1 (en) * 2003-07-07 2005-01-12 Matsushita Electric Industrial Co., Ltd. Immunoassay method and immunoassay system using a Fourier transformation to judge the occurrence of zone phenomena.
JP2014173904A (en) * 2013-03-06 2014-09-22 Sysmex Corp Blood coagulation analyzer and blood coagulating analyzing method
EP2837937A1 (en) 2013-08-15 2015-02-18 Roche Diagniostics GmbH Method for the detection of the prozone effect of photometric assays
US10809258B2 (en) 2013-08-15 2020-10-20 Roche Diagnostics Operations, Inc. Method for the detection of the prozone effect of photometric assays
CN110114677A (en) * 2016-12-15 2019-08-09 株式会社堀场制作所 The determination method of the appropriateness of the test substance concentration in the concentration mensuration of immune aggregation and the sample analyzer with the processing unit for the determination method are used
CN110114677B (en) * 2016-12-15 2023-06-20 株式会社堀场制作所 Method for determining suitability of concentration of test substance in concentration measurement using immune coagulation reaction, and sample analyzer having processing unit for the determination method
CN110542660A (en) * 2019-09-29 2019-12-06 迈克医疗电子有限公司 method, device and detection system for detecting prozone effect in sample reaction
CN110542662A (en) * 2019-09-29 2019-12-06 迈克医疗电子有限公司 method and device for detecting prozone effect in sample reaction and optical detection system

Also Published As

Publication number Publication date
JPH07113635B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
US8673576B2 (en) Multi-wavelength analyses of sol-particle specific binding assays
US3990851A (en) Process and device for measuring antigen-antibody reactions
US5750410A (en) Method of and apparatus for immune analysis
US4988630A (en) Multiple beam laser instrument for measuring agglutination reactions
JPS5925460B2 (en) Nephelometric immunoassay method and device
US4204837A (en) Method of rate immunonephelometric analysis
US4889815A (en) Nephelometric method for determination of an antigen or antibody content in whole blood
JPS6319560A (en) Method for discriminating prozone in immunoreaction
JPS62291547A (en) Method for measuring concentration of substance
JPS6128866A (en) Measuring method and apparatus for immuno-reaction using fluctuating intensity of light
EP0786665A1 (en) Method and apparatus for immune analysis
JPH0783819A (en) Particle measuring apparatus
JPH01313737A (en) Inspection device for body to be inspected
EP0433629B1 (en) A method for the qualitative and quantitative determination of antibodies against bacterial antigens by means of the photometric measurement of agglutination
JPS61173138A (en) Method for measuring immune reaction by intensity fluctuation of light
US4240753A (en) Method for the quantitative determination of turbidities, especially of immune reactions
JPS6165144A (en) Instrument for measuring immune reaction using intensity fluctuation of light
JPS6314295B2 (en)
JPS6259841A (en) Method and instrument for measuring immunoreaction using linearly polarized light
JPS62175643A (en) Method and apparatus for measuring particle size
JPH076985B2 (en) Method for measuring antigen-antibody reaction
JPS63247644A (en) Method for measuring immune reaction
JP2906613B2 (en) Moisture content measuring device
JPH03274462A (en) Apparatus and reagent for examining specimen
JPS61173139A (en) Method of measuring immune reaction by intensity fluctuation of light